Startseite The Residual Symmetry and Consistent Tanh Expansion for the Benney System
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The Residual Symmetry and Consistent Tanh Expansion for the Benney System

  • Zheng-Yi Ma EMAIL logo , Jin-Xi Fei und Jun-Chao Chen
Veröffentlicht/Copyright: 7. August 2017

Abstract

The residual symmetry of the (2+1)-dimensional Benney system is derived from the truncated Painlevé expansion. Such residual symmetry is localised and the original Benney equation is extended into an enlarged system by introducing four new variables. By using Lies first theorem, we obtain the finite transformation for the localised residual symmetry. More importantly, we further localise the linear superposition of multiple residual symmetries and construct the nth Bäcklund transformation for the Benney system in the form of the determinant. Moreover, it is proved that the (2+1)-dimensional Benney system is consistent tanh expansion (CTE) solvable. The exact interaction solutions between solitons and any other types of potential Burgers waves are also obtained, which include soliton-error function waves, soliton-periodic waves, and so on.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11447017), the Natural Science Foundation of Zhejiang Province (Grant No. LY14A010005), and the Scientific Research Foundation of the First-Class Discipline of Zhejiang Province (B) (No. 201601).

References

[1] P. A. Clarkson and M. D. Kruskal, J. Math. Phys. 30, 2201 (1989).10.1063/1.528613Suche in Google Scholar

[2] P. A. Clarkson and E. L. Mansfield, SIAM J. Appl. Math. 54, 1693 (1994).10.1137/S0036139993251846Suche in Google Scholar

[3] G. W. Bluman and J. D. Cole, Similarity Methods for Differential Equations, Springer-Verlag Press, Berlin 1974.10.1007/978-1-4612-6394-4Suche in Google Scholar

[4] G. W. Bluman and S. Kumei, Symmetries and Differential Equation, Springer-Verlag Press, Berlin 1989.10.1007/978-1-4757-4307-4Suche in Google Scholar

[5] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag Press, New York 1993.10.1007/978-1-4612-4350-2Suche in Google Scholar

[6] S. Lie, Arch. Math. 6, 328 (1981).Suche in Google Scholar

[7] L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York 1982.10.1016/B978-0-12-531680-4.50012-5Suche in Google Scholar

[8] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag Press, Berlin 1986.10.1007/978-1-4684-0274-2Suche in Google Scholar

[9] N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Boston Press, Reidel 1985.10.1007/978-94-009-5243-0Suche in Google Scholar

[10] Z. Z. Dong, F. Huang, and Y. Chen, Z. Naturforsch 66, 75 (2011).10.1515/zna-2011-1-212Suche in Google Scholar

[11] G. W. Bluman and J. D. Cole, J. Math. Mech. 18, 1025 (1969).10.1512/iumj.1969.18.18074Suche in Google Scholar

[12] F. Galas, J. Phys. A: Math. Gen. 25, L981 (1992).10.1088/0305-4470/25/15/014Suche in Google Scholar

[13] S. Y. Lou, J. Phys. A: Math. Phys. 30, 4803 (1997).10.1088/0305-4470/30/13/028Suche in Google Scholar

[14] S. Y. Lou and X. B. Hu, J. Phys. A: Math. Gen. 30, L95 (1997).10.1088/0305-4470/30/5/004Suche in Google Scholar

[15] Z. Y. Ma, J. X. Fei, and Y. M. Chen, Appl. Math. Lett. 37, 54 (2014).10.1016/j.aml.2014.05.013Suche in Google Scholar

[16] X. N. Gao, S. Y. Lou, and X. Y. Tang, J. High Energy Phys. 5, 029 (2013).10.1007/JHEP05(2013)029Suche in Google Scholar

[17] S. Y. Lou, X. R. Hu, and Y. Chen, J. Phys. A 45, 155209 (2012).10.1088/1751-8113/45/15/155209Suche in Google Scholar

[18] S. Y. Lou, arXiv: 1308.1140 (2013).10.1038/scibx.2014.1140Suche in Google Scholar

[19] Y. Jin, M. Jia, and S. Y. Lou, Commun. Theor. Phys. 58, 795 (2012).10.1088/0253-6102/58/6/02Suche in Google Scholar

[20] X. Z. Liu, J. Yu, B. Ren, and J. R. Yang, Chin. Phys. B 24, 010203 (2015).10.1088/1674-1056/24/1/010203Suche in Google Scholar

[21] X. Z. Liu, J. Yu, and B. Ren, Chin. Phys. B 24, 30202 (2015).10.1088/1674-1056/24/3/030202Suche in Google Scholar

[22] X. P. Xin, Q. Miao, and Y. Chen, Chin. Phys. B 23, 010203 (2014).10.1088/1674-1056/23/1/010203Suche in Google Scholar

[23] Q. Miao, X. P. Xin, and Y. Chen, Appl. Math. Lett. 28, 7 (2014).10.1016/j.aml.2013.09.002Suche in Google Scholar

[24] X. P. Xin, J. C. Chen, and Y. Chen, Chin. Ann. Math. 3B, 1 (2014).Suche in Google Scholar

[25] G. W. Bluman, A. F. Cheviakov, and S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Springer Press, New York 2010.10.1007/978-0-387-68028-6Suche in Google Scholar

[26] B. Ren, Z. M. Lou, Z. F. Liang, and X. Y. Tang, Eur. Phys. J. Plus 131, 441 (2016).10.1140/epjp/i2016-16441-7Suche in Google Scholar

[27] S. Y. Lou and X. B. Hu, Chin. Phys. Lett. 10, 577 (1993).10.1088/0256-307X/10/10/001Suche in Google Scholar

[28] D. J. Benney, Stud. Appl. Math. L11, 45 (1973).10.1002/sapm197352145Suche in Google Scholar

[29] N. H. Ibragimov, V. F. Kovalev, and V. V. Pustovalov, Nonlinear Dynam. 28, 135 (2002).10.1023/A:1015061100660Suche in Google Scholar

[30] D. S. Wang and Y. B. Yin, Comput. Math. Appl. 71, 748 (2016).10.1016/j.camwa.2015.12.035Suche in Google Scholar

[31] V. E. Zakharov, Singular Limits of Dispersive Waves, Plenum Press, New York 1994.Suche in Google Scholar

[32] F. Guil, M. Manas, and L. M. Alonso, J. Phys. A: Math. Gen. 36, 4047 (2003).10.1088/0305-4470/36/14/309Suche in Google Scholar

Received: 2017-6-3
Accepted: 2017-7-11
Published Online: 2017-8-7
Published in Print: 2017-8-28

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2017-0191/html
Button zum nach oben scrollen