Startseite Twinned single crystal structure of Li4P2S6
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Twinned single crystal structure of Li4P2S6

  • Hamdi Ben Yahia ORCID logo EMAIL logo , Kota Motohashi , Shigeo Mori , Atsushi Sakuda und Akitoshi Hayashi ORCID logo EMAIL logo
Veröffentlicht/Copyright: 18. Mai 2023

Abstract

Yellow needles-like single crystals of Li4P2S6 were obtained serendipitously during the preparation of Li7P3S10O. The twinned crystal structure of Li4P2S6 was determined from single-crystal X-ray diffraction data [wR(F2) = 0.069, 716 reflections, 40 variables]. Li4P2S6 crystallizes in the trigonal system, space group P 3 m 1 (N° 164), a = 10.5042(8) Å, c = 6.5837(6) Å, V = 629.11(9) Å3 and Z = 2. The lithium octahedra form a [Li4S6]8− honeycomb-like structure within which diphosphate units are located. The comparison of our crystal structure to those of P63/mcm-, P 3 1 m -, and P321-Li4P2S6 demonstrated group-subgroup relationships and associated the disorder or order of the phosphorus atoms within the identical [Li4S6]8− 3d-frameworks to the choice of the unit cell (the subcell with a ∼ 6.07 Å vs. the supercell with a ∼ 10.5 Å).


Corresponding authors: Hamdi Ben Yahia and Akitoshi Hayashi, Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan, E-mail: ,

Funding source: JSPS KAKENHI

Award Identifier / Grant number: 19H05816

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was supported by JSPS KAKENHI (Grant Numbers 19H05816).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Al-Thyabat, S., Nakamura, T., Shibata, E., Iizuka, A. Adaptation of minerals processing operations for lithium-ion (LiBs) and nickel metal hydride (NiMH) batteries recycling: critical review. Miner. Eng. 2013, 45, 4–17. https://doi.org/10.1016/j.mineng.2012.12.005.Suche in Google Scholar

2. Ouyang, D., Chen, M., Huang, Q., Weng, J., Wang, Z., Wang, J. A review on the thermal hazards of the lithium-ion battery and the corresponding countermeasures. Appl. Sci. 2019, 9, 2483. https://doi.org/10.3390/app9122483.Suche in Google Scholar

3. Du, X., Yang, B., Lu, Y., Guo, X., Zu, G., Huang, J. Detection of electrolyte leakage from lithium-ion batteries using a miniaturized sensor based on functionalized double-walled carbon nanotubes. J. Mater. Chem. C Mater. 2021, 9, 6760–6765. https://doi.org/10.1039/D1TC01069G.Suche in Google Scholar

4. Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., Chen, C. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224. https://doi.org/10.1016/j.jpowsour.2012.02.038.Suche in Google Scholar

5. Tolganbek, N., Serikkazyyeva, A., Kalybekkyzy, S., Sarsembina, M., Kanamura, K., Bakenov, Z., Mentbayeva, A. Interface modification of NASICON-type Li-ion conducting ceramic electrolytes: a critical evaluation. Mater. Adv. 2022, 3, 3055–3069. https://doi.org/10.1039/D1MA01239H.Suche in Google Scholar

6. Yan, S., Yim, C.-H., Pankov, V., Bauer, M., Baranova, E., Weck, A., Merati, A., Abu-Lebdeh, Y. Perovskite solid-state electrolytes for lithium metal batteries. Batteries 2021, 7, 75. https://doi.org/10.3390/batteries7040075.Suche in Google Scholar

7. Sun, H., Kang, S., Cui, L. Prospects of LLZO type solid electrolyte: from material design to battery application. Chem. Eng. J. 2023, 454, 140375. https://doi.org/10.1016/j.cej.2022.140375.Suche in Google Scholar

8. Okumura, T., Taminato, S., Miyazaki, Y., Kitamura, M., Saito, T., Takeuchi, T., Kobayashi, H. LISICON-based amorphous oxide for bulk-type all-solid-state lithium-ion battery. ACS Appl. Energy Mater. 2020, 3, 3220–3229. https://doi.org/10.1021/acsaem.9b01949.Suche in Google Scholar

9. Li, X., Liang, J., Chen, N., Luo, J., Adair, K. R., Wang, C., Banis, M. N., Sham, T., Zhang, L., Zhao, S., Lu, S., Huang, H., Li, R., Sun, X. Water‐mediated synthesis of a superionic halide solid electrolyte. Angew. Chem. 2019, 131, 16579–16584. https://doi.org/10.1002/ange.201909805.Suche in Google Scholar

10. Asano, T., Sakai, A., Ouchi, S., Sakaida, M., Miyazaki, A., Hasegawa, S. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 2018, 30, 1803075. https://doi.org/10.1002/adma.201803075.Suche in Google Scholar PubMed

11. Kanno, R., Murayama, M. Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system. J. Electrochem. Soc. 2001, 148, A742. https://doi.org/10.1149/1.1379028.Suche in Google Scholar

12. Sun, Y., Suzuki, K., Hori, S., Hirayama, M., Kanno, R. Superionic conductors: Li10+δ[SnySi1–y]1+δP2−δS12 with a Li10GeP2S12-type structure in the Li3PS4–Li4SnS4–Li4SiS4 quasi-ternary system. Chem. Mater. 2017, 29, 5858–5864. https://doi.org/10.1021/acs.chemmater.7b00886.Suche in Google Scholar

13. Seino, Y., Ota, T., Takada, K., Hayashi, A., Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 2014, 7, 627–631. https://doi.org/10.1039/C3EE41655K.Suche in Google Scholar

14. Kong, S. T., Gün, Ö., Koch, B., Deiseroth, H. J., Eckert, H., Reiner, C. Structural characterisation of the Li argyrodites Li7PS6 and Li7PSe6 and their solid solutions: quantification of site preferences by MAS-NMR spectroscopy. Chem. Eur. J. 2010, 16, 5138–5147. https://doi.org/10.1002/chem.200903023.Suche in Google Scholar PubMed

15. Homma, K., Yonemura, M., Kobayashi, T., Nagao, M., Hirayama, M., Kanno, R. Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ionics 2011, 182, 53–58. https://doi.org/10.1016/j.ssi.2010.10.001.Suche in Google Scholar

16. Mercier, R., Malugani, J.-P., Fahys, B., Robert, G., Douglade, J. Structure du tetrathiophosphate de lithium. Acta Crystallogr. B. 1982, 38, 1887–1890. https://doi.org/10.1107/S0567740882007535.Suche in Google Scholar

17. Yamane, H., Shibata, M., Shimane, Y., Junke, T., Seino, Y., Adams, S., Minami, K., Hayashi, A., Tatsumisago, M. Crystal structure of a superionic conductor, Li7P3S11. Solid State Ionics 2007, 178, 1163–1167. https://doi.org/10.1016/j.ssi.2007.05.020.Suche in Google Scholar

18. Dietrich, C., Weber, D. A., Culver, S., Senyshyn, A., Sedlmaier, S. J., Indris, S., Janek, J., Zeier, W. G. Synthesis, structural characterization, and lithium ion conductivity of the lithium thiophosphate Li2P2S6. Inorg. Chem. 2017, 56, 6681–6687. https://doi.org/10.1021/acs.inorgchem.7b00751.Suche in Google Scholar PubMed

19. Mercier, R., Malugani, J. P., Fahys, B., Douglande, J., Robert, G. Synthese, structure cristalline et analyse vibrationnelle de l’hexathiohypodiphosphate de lithium Li4P2S6. J. Solid State Chem. 1982, 43, 151–162. https://doi.org/10.1016/0022-4596(82)90224-9.Suche in Google Scholar

20. Hood, Z. D., Kates, C., Kirkham, M., Adhikari, S., Liang, C., Holzwarth, N. A. W. Structural and electrolyte properties of Li4P2S6. Solid State Ionics 2016, 284, 61–70. https://doi.org/10.1016/j.ssi.2015.10.015.Suche in Google Scholar

21. Dietrich, C., Sadowski, M., Sicolo, S., Weber, D. A., Sedlmaier, S. J., Weldert, K. S., Indris, S., Albe, K., Janek, J., Zeier, W. G. Local structural investigations, defect formation, and ionic conductivity of the lithium ionic conductor Li4P2S6. Chem. Mater. 2016, 28, 8764–8773. https://doi.org/10.1021/acs.chemmater.6b04175.Suche in Google Scholar

22. Neuberger, S., Culver, S. P., Eckert, H., Zeier, W. G. Schmedt auf der Günne, J. Refinement of the crystal structure of Li4P2S6 using NMR crystallography. Dalton Trans. 2018, 47, 11691–11695. https://doi.org/10.1039/C8DT02619.Suche in Google Scholar

23. Schmedt auf der Günne, J., Eckert, H. High-resolution double-quantum 31P NMR: a new approach to structural studies of thiophosphates. Chem. Eur. J. 1998, 4, 1762–1767. https://doi.org/10.1002/(SICI)1521-3765(19980904)4:9<1762::AID-CHEM1762>3.0.CO;2-I.10.1002/(SICI)1521-3765(19980904)4:9<1762::AID-CHEM1762>3.0.CO;2-ISuche in Google Scholar

24. Eckert, H., Zhang, Z., Kennedy, J. H. Structural transformation of non-oxide chalcogenide glasses. The short-range order of lithium sulfide (Li2S)-phosphorus pentasulfide (P2S5) glasses studied by quantitative phosphorus-31, lithium-6, and lithium-7 high-resolution solid-state NMR. Chem. Mater. 1990, 2, 273–279. https://doi.org/10.1021/cm00009a017.Suche in Google Scholar

25. Nagata, H., Akimoto, J. Ionic conductivity of low‐crystalline Li4P2S6 and Li4P2S6–LiX (X=Cl, Br, and I) systems and their role in improved positive electrode performance in all‐solid‐state LiS battery. ChemistrySelect 2020, 5, 9926–9931. https://doi.org/10.1002/slct.202002308.Suche in Google Scholar

26. Sadowski, M., Sicolo, S., Albe, K. Defect thermodynamics and interfacial instability of crystalline Li4P2S6. Solid State Ionics 2018, 319, 53–60. https://doi.org/10.1016/j.ssi.2018.01.047.Suche in Google Scholar

27. Li, Y., Hood, Z. D., Holzwarth, N. A. W. Computational and experimental (re)investigation of the structural and electrolyte properties of Li4P2S6, Na4P2S6, and Li2Na2P2S6. Phys. Rev. Mater. 2020, 4, 045406. https://doi.org/10.1103/PhysRevMaterials.4.045406.Suche in Google Scholar

28. Stamminger, A. R., Ziebarth, B., Mrovec, M., Hammerschmidt, T., Drautz, R. Fast diffusion mechanism in Li4P2S6 via a concerted process of interstitial Li ions. RSC Adv. 2020, 10, 10715–10722. https://doi.org/10.1039/D0RA00932F.Suche in Google Scholar

29. Chen, H., Hong, T., Jing, Y. The mechanical, vibrational and thermodynamic properties of glass-ceramic lithium thiophosphates Li4P2S6. J. Alloys Compd. 2020, 819, 152950. https://doi.org/10.1016/j.jallcom.2019.152950.Suche in Google Scholar

30. Müller, U. Relating crystal structures by group–subgroup relations. Presented at the December 15. 2011. https://doi.org/10.1107/97809553602060000795.Suche in Google Scholar

31. Müller, U. Kristallographische Gruppe-Untergruppe-Beziehungen und ihre Anwendung in der Kristallchemie. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537. https://doi.org/10.1002/zaac.200400250.Suche in Google Scholar

32. Barnighausen, H. Group-subgroup relations between space groups: a useful tool in crystal chemistry. MATCH, Commun. Math. Chem. 1980, 9, 139–175.Suche in Google Scholar

33. Petříček, V., Dušek, M., Palatinus, L. Crystallographic computing system Jana2006: general features. Z. Kristallogr. 2014, 229, 345–352. https://doi.org/10.1515/zkri-2014-1737.Suche in Google Scholar

34. CrysAlisPro Agilent technologies. Version 1.171.36.28.Suche in Google Scholar

35. Prince, E., Ed. International Tables for Crystallography; International Union of Crystallography: Chester, England, 2006.10.1107/97809553602060000103Suche in Google Scholar

36. Palatinus, L., Chapuis, G. Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, 40, 786–790. https://doi.org/10.1107/S0021889807029238.Suche in Google Scholar

37. Stokes, H. T., Hatch, D. M. FINDSYM: program for identifying the space-group symmetry of a crystal. J. Appl. Crystallogr. 2005, 38, 237–238. https://doi.org/10.1107/S0021889804031528.Suche in Google Scholar

38. Spek, A. L. PLATON-a Multipurpose Crystallographic Tool; Utrecht University: Utrecht, the Netherlands, 2002.Suche in Google Scholar

39. Le Page, Y. Computer derivation of the symmetry elements implied in a structure description. J. Appl. Crystallogr. 1987, 20, 264–269.10.1107/S0021889887086710Suche in Google Scholar

40. Brown, I. D., Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr. B. 1985, 41, 244–247. https://doi.org/10.1107/S0108768185002063.Suche in Google Scholar

41. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A. 1976, 32, 751–767. https://doi.org/10.1107/S0567739476001551.Suche in Google Scholar

42. De la Flor, G., Orobengoa, D., Tasci, E., Perez-Mato, J. M., Aroyo, M. I. Comparison of structures applying the tools available at the Bilbao Crystallographic Server. J. Appl. Crystallogr. 2016, 49, 653–664. https://doi.org/10.1107/S1600576716002569.Suche in Google Scholar

43. Mizuno, F., Hayashi, A., Tadanaga, K., Tatsumisago, M. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses. Adv. Mater. 2005, 17, 918–921. https://doi.org/10.1002/adma.200401286.Suche in Google Scholar

44. Gaudin, E., Ben Yahia, H., Zúñiga, F. J., Pérez-Mato, J. M., Darriet, J. Modulated and disordered phases in the system LiCdVO4−LiCd4(VO4)3. Chem. Mater. 2005, 17, 2436–2447. https://doi.org/10.1021/cm050104e.Suche in Google Scholar

45. Gaudin, E., Ben Yahia, H., Shikano, M., Amara, M. B., zur Loye, H.-C., Darriet, J. Incommensurate crystal structure of LiCd4(VO4)3. Z. Kristallogr. 2004, 219, 755–762. https://doi.org/10.1524/zkri.219.11.755.52432.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zkri-2023-0013).


Received: 2023-03-16
Accepted: 2023-04-28
Published Online: 2023-05-18
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2023-0013/html
Button zum nach oben scrollen