Studying the hydrogen atom position in the strong-short intermolecular hydrogen bond of pure and 5-substituted 9-hydroxyphenalenones by invariom refinement and ONIOM cluster computations
Abstract
The solid-state structures of three H-bonded enol forms of 5-substituted 9-hydroxyphenalenones were investigated to accurately determine the H atom positions of the intramolecular hydrogen bond. For this purpose, single-crystal X-ray diffraction (SC-XRD) data were evaluated by invariom-model refinement. In addition, QM/MM computations of central molecules in their crystal environment show that results of an earlier standard independent atom model refinement, which pointed to the presence of a resonance-assisted hydrogen bond in unsubstituted 9-hydroxyphenalone, are misleading: in all our three and the earlier solid-state structures the lowest energy form is that of an asymmetric hydrogen bond (CS form). Apparent differences of results from SC-XRD and other analytical methods are explained.
Funding source: DFG
Award Identifier / Grant number: DI 921/6-1
Acknowledgments
We thank the DFG, project DI 921/6-1, for financial support.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: B.D. acknowledges funding from the Deutsche Forschungsgemeinschaft DFG, project DI 921/6-1.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, NY, 1997.Suche in Google Scholar
2. Desiraju, G. R., Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: New York, NY, 1999.Suche in Google Scholar
3. Grabowski, S. J. Hydrogen Bonding – New Insights; Ed.; Springer: Dordrecht, Netherlands, 2006.10.1007/978-1-4020-4853-1Suche in Google Scholar
4 Scheiner, S., Ed. Molecular Interactions: From van der Waals to Strongly Bound Complexes; Wiley: Chichester, UK, 1997.Suche in Google Scholar
5. Garcia-Viloca, M., González-Lafont, A., Lluch, J. M. J. Am. Chem. Soc. 1997, 119, 1081–1086; doi: https://doi.org/10.1021/ja962662n.Suche in Google Scholar
6. Garcia-Viloca, M., Gelabert, R., González-Lafont, A., Moreno, M., Lluch, J. M. J. Phys. Chem. A 1997, 101, 8727–8733; doi: https://doi.org/10.1021/jp972335h.Suche in Google Scholar
7. Perrin, C. L., Nielson, J. B. Annu. Rev. Phys. Chem. 1997, 48, 511–544; doi: https://doi.org/10.1146/annurev.physchem.48.1.511.Suche in Google Scholar
8. Mochida, T., Izuoka, A., Sugawara, T., Moritomo, Y., Tokura, Y. J. Am. Chem. Soc. 1994, 101, 7971–7974; doi: https://doi.org/10.1063/1.468224.Suche in Google Scholar
9. Malaspinna, L. A., Edwards, A. J., Woińska, M., Jayatilaka, D., Turner, M. J., Price, J. R., Herbst-Irmer, R., Sugimoto, K., Nishibori, E., Grabowsky, S. Cryst. Grow. Des. 2017, 17, 3812–3825; doi: https://doi.org/10.1021/acs.cgd.7b00390.Suche in Google Scholar
10. Hibbert, F., Emsley, J. J. Adv. Phys. Org. Chem. 1990, 26, 255–379; doi: https://doi.org/10.1016/S0065-3160(08)60047-7.Suche in Google Scholar
11. Emsley, J. Struct. Bond. 1984, 57, 147–191; doi: https://doi.org/10.1007/BFb0111456.Suche in Google Scholar
12. Gilli, G., Bellucci, F., Ferretti, V., Bertolasi, V. J. Am. Chem. Soc. 1989, 111, 1023−1028; doi: https://doi.org/10.1021/ja00185a035.Suche in Google Scholar
13. Bertolasi, V., Gilli, P., Ferretti, V., Gilli, G. Chem. Eur. J. 1996, 2, 925–934; doi: https://doi.org/10.1002/chem.19960020806.Suche in Google Scholar
14. Mahmudov, K. T., Pombeiro, A. J. L. Chem. Eur. J. 2016, 22, 16356−16398; doi: https://doi.org/10.1002/chem.201601766.Suche in Google Scholar PubMed
15. Brown, R. S., Tse, A., Nakashima, T., Haddon, R. C. J. Am. Chem. Soc. 1979, 101, 3157–3162; doi: https://doi.org/10.1021/ja00506a003.Suche in Google Scholar
16. Demura, Y., Kawato, T., Kanatomi, H., Murase, I. Bull. Chem. Soc. Jpn. 1975, 48, 2820–2824; doi: https://doi.org/10.1246/bcsj.48.2820.Suche in Google Scholar
17. Svensson, C., Abrahams, S. C., Bernstein, J. L., Haddon, R. C., J. Am. Chem. Soc. 1979, 101, 5759–5764; doi: https://doi.org/10.1021/ja00513a048.Suche in Google Scholar
18. Svensson, C., Abrahams, S. C. Acta Crystallogr. 1986, B42, 280–286; doi: https://doi.org/10.1107/S0108768186098221.Suche in Google Scholar
19. Jackman, L. M., Trewella, J. C., Haddon, R. C. J. Am. Chem. Soc. 1980, 102, 2519–2525; doi: https://doi.org/10.1021/ja00528a001.Suche in Google Scholar
20. Rossetti, R., Haddon, R. C., Brus, L. E. J. Am. Chem. Soc. 1980, 102, 6913–6916; doi: https://doi.org/10.1021/ja00543a002.Suche in Google Scholar
21. Hameka, H., de la Vega, J. R. J. Am. Chem. Soc. 1984, 106, 7703–7705; doi: https://doi.org/10.1021/ja00337a009.Suche in Google Scholar
22. Gilli, P., Bertolasi, V., Ferretti, V., Gilli, G. J. Am. Chem. Soc. 1994, 116, 909–915; doi: https://doi.org/10.1021/ja00082a011.Suche in Google Scholar
23. Gilli, G., Gilli, P. The Nature of Hydrogen Bond; Oxford University Press: New York, NY, 2009.10.1093/acprof:oso/9780199558964.001.0001Suche in Google Scholar
24. Kovács, A., Izvekov, V., Zauer, K., Ohta, K. J. Phys. Chem. A 2001, 105, 5000–5009; doi: https://doi.org/10.1021/jp0045033.Suche in Google Scholar
25. Pal, S. K., Itkis, M. E., Reed, R. W., Oakley, R. T., Cordes, A. W., Tham, F. S., Siegrist, T., Haddon, R. C. J. Am. Chem. Soc. 2004, 126, 1478–1484; doi: https://doi.org/10.1021/ja037864f.Suche in Google Scholar PubMed
26. Pariyar, A., Vijaykumar, G., Bhunia, M., Dey, S. K., Singh, S. K., Kurungot, S., Mandal, S. K. J. Am. Chem. Soc. 2015, 137, 5955–5960; doi: https://doi.org/10.1021/jacs.5b00272.Suche in Google Scholar PubMed
27. Das, A., Scherer, T. M., Mondal, P., Mobin, S. M., Kaim, W., Lahiri, G. K. Chem. Eur. J. 2012, 18, 14434–14443; doi: https://doi.org/10.1002/chem.201201785.Suche in Google Scholar PubMed
28. Dey, S. K., Honecker, A., Mitra, P., Mandal, S. K., Mukherjee, A. Eur. J. Inorg. Chem. 2012, 35, 5814–5824; doi: https://doi.org/10.1002/ejic.201200800.Suche in Google Scholar
29. Mochida, T., Torigoe, R., Koinuma, T., Asano, C., Satou, T., Koike, K., Nikaido, T. Eur. J. Inorg. Chem. 2006, 3, 558–565; doi: https://doi.org/10.1002/ejic.200500778.Suche in Google Scholar
30. Gu, Y.-J., Yan, B. Inorg. Chim. Acta 2013, 408, 96–102; doi: https://doi.org/10.1016/j.ica.2013.09.008.Suche in Google Scholar
31. Koelsch, C. F., Anthes, J. A. J. Org. Chem. 1941, 6, 558–565; doi: https://doi.org/10.1021/jo01204a009.Suche in Google Scholar
32. Das, A., Ghosh, T. K., Dutta Chowdhury, A., Mobin, S. M., Lahiri, G. K. Polyhedron 2013, 52, 1130–1137; doi: https://doi.org/10.1016/j.poly.2012.06.057.Suche in Google Scholar
33. Mandal, S. K., Samanta, S., Itkis, M. E., Jensen, D. W., Reed, R. W., Oakley, R. T., Tham, F. S., Donnadieu, B., Haddon, R. C. J. Am. Chem. Soc. 2006, 128, 1982–1994; doi: https://doi.org/10.1021/ja0560276.Suche in Google Scholar PubMed
34. He, G., Hou, Y., Sui, D., Wan, X., Long, G., Yun, P., Yu, A., Zhang, M., Chen, Y. Tetrahedron 2013, 69, 6890–6896; doi: https://doi.org/10.1016/j.tet.2013.05.111.Suche in Google Scholar
35. Bensch, L., Gruber, I., Janiak, C., Müller, T. J. J. Chem. Eur. J. 2017, 23, 10551–10558; doi: https://doi.org/10.1002/chem.201700553.Suche in Google Scholar PubMed
36. Engdahl, C., Gogoll, A., Edlund, U., Magn. Reson. Chem. 1991, 29, 54–62; doi: https://doi.org/10.1002/mrc.1260290112.Suche in Google Scholar
37. Ozeki, H., Takahashi, M., Okuyama, K., Kimura, K. J. Chem. Phys. 1993, 99, 56–66; doi: https://doi.org/10.1063/1.465783.Suche in Google Scholar
38. Kunze, K. L., de la Vega, J. R. J. Am. Chem. Soc. 1984, 106, 6528–6533; doi: https://doi.org/10.1021/ja00334a012.Suche in Google Scholar
39. Svensson, C., Abrahams, S. C. J. Appl. Crystallogr. 1984, 17, 459–463; doi: https://doi.org/10.1107/S0021889884011936.Suche in Google Scholar
40. Dittrich, B., Koritsanszky, T., Luger, P. Angew. Chem. Int. Ed. 2004, 43, 2718–2721; doi: https://doi.org/10.1002/anie.200353596.Suche in Google Scholar PubMed
41. Dittrich, B., Lübben, J., Mebs, S., Wagner, A., Luger, P., Flaig, R. Chem. Eur. J. 2017, 23, 4605–4614; doi: https://doi.org/10.1002/chem.201604705.Suche in Google Scholar PubMed PubMed Central
42. Dittrich, B., Hübschle, C. B., Pröpper, K., Dietrich, F., Stolper, T., Holstein, J. J. Acta Crystallogr. 2013, B69, 91–104; doi: https://doi.org/10.1107/S2052519213002285.Suche in Google Scholar PubMed
43. Stewart, R. F. Acta Crystallogr. 1976, A32, 565–574; doi: https://doi.org/10.1107/S056773947600123X.Suche in Google Scholar
44. Hansen, N., Coppens, P. Acta Crystallogr. 1978, A34, 909–921; doi: https://doi.org/10.1107/S0567739478001886.Suche in Google Scholar
45. Bensch, L., Ebeling, R., Arasu, N. P., Schulze Lammers, B., Mayer, B., Müller, T. J. J., Vázquez, H. S., Karthäuser. submitted for publication.Suche in Google Scholar
46. Kabsch, W. Acta Crystallogr. 2010, D66, 125–132; doi: https://doi.org/10.1107/S0907444909047337.Suche in Google Scholar PubMed PubMed Central
47. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8; doi: https://doi.org/10.1107/S2053273314026370.Suche in Google Scholar PubMed PubMed Central
48. Krause, L., Herbst-Irmer, R., Sheldrick, G. M., Stalke, D. J. Appl. Crystallogr. 2015, 48, 3–10; doi: https://doi.org/10.1107/S1600576714022985.Suche in Google Scholar PubMed PubMed Central
49. Parsons, S., Flack, H. D., Wagner, T. Acta Crystallogr. 2013, B69, 249–259; doi: https://doi.org/10.1107/S2052519213010014.Suche in Google Scholar PubMed PubMed Central
50. Volkov, A., Macchi, P., Farrugia, L. J., Gatti, C., Mallinson, P., Richter, T., Koritsánszky, T. XD2006. University at Buffalo USA, University of Milan, Italy, University of CNRIST Mand Middle Tennessee State University, NY Glasgow, UK Milan, Italy TN, USA, 2006.Suche in Google Scholar
51. Weininger, D. J. Chem. Inf. Comp. Sci. 1988, 28, 31–36; doi: https://doi.org/10.1021/ci00057a005.Suche in Google Scholar
52. Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A.Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J., Frisch, M. J., GAUSSIAN 09(Revision D.01). Gaussian, Inc.: Wallingford CT, 2013.Suche in Google Scholar
53. Jayatilaka, D., Grimwood, D. J. Tonto: A fortran based object-oriented system for quantum chemistry and crystallography. In Computational Science – ICCS 2003. ICCS 2003. Lecture Notes in Computer Science, vol 2660; Sloot P. M. A., Abramson D., Bogdanov A. V., Gorbachev Y. E., Dongarra J. J., Zomaya A. Y., Eds. Springer: Berlin, Heidelberg, 2003; pp. 142–151.10.1007/3-540-44864-0_15Suche in Google Scholar
54. Hübschle, C. B., Dittrich, B. J. Appl. Crystallogr. 2011, 44, 238–240; doi: https://doi.org/10.1107/S0021889810042482.Suche in Google Scholar PubMed PubMed Central
55. Dittrich, B., Hübschle, C. B., Luger, P., Spackman, M. A. Acta Crystallogr. 2006, D62, 1325–1335; doi: https://doi.org/10.1107/S090744490602899X.Suche in Google Scholar PubMed
56. Hübschle, C. B., Dittrich, B. J. Appl. Crystallogr. 2011, 44, 238–240; doi: https://doi.org/10.1107/S0021889810042482.Suche in Google Scholar
57. Svensson, M., Humbel, S., Froese, R. D. J., Matsubara, T., Sieber, S., Morokuma, K. J. Phys. Chem. 1996, 100, 19357–19363; doi: https://doi.org/10.1021/jp962071j.Suche in Google Scholar
58. Dittrich, B., Pfitzenreuter, S., Hübschle, C. B. Acta Crystallogr. A 2012, 68, 110–116; doi: https://doi.org/10.1107/S0108767311037974.Suche in Google Scholar PubMed
59. Besler, B. H., Merz, K. M.Jr., Kollman, P. A. J. Comput. Chem 1990, 11, 431–439; doi: https://doi.org/10.1002/jcc.540110404.Suche in Google Scholar
60. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., Skid, W. M., Bernstein, E. R. J. Am. Chem. Soc. 1992, 114, 10024–10039; doi: https://doi.org/10.1021/ja00051a040.Suche in Google Scholar
61. Bannwarth, C., Ehlert, S., Grimme, S. J. Chem. Theory Comput. 2019, 15, 1652–1671; doi: https://doi.org/10.1021/acs.jctc.8b01176.Suche in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2020-0022).
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Original papers
- High temperature tetragonal crystal structure of UPt2Si2
- The ternary phase Li8SbxSn3-x with 0.3 ≤ x ≤ 1.0
- Shock wave induced defect engineering on structural and optical properties of pure and dye doped potassium dihydrogen phosphate crystals
- A new parallel version of a dichotomy based algorithm for indexing powder diffraction data
- On the nature of the phase transitions of aluminosilicate perrhenate sodalite
- Studying the hydrogen atom position in the strong-short intermolecular hydrogen bond of pure and 5-substituted 9-hydroxyphenalenones by invariom refinement and ONIOM cluster computations
- Synthesis, X-ray characterization and catalytic homogenous alcohol oxidation activity of Co(II)–carboxamide complex with green oxidant (H2O2) under mild conditions
Artikel in diesem Heft
- Frontmatter
- In this issue
- Original papers
- High temperature tetragonal crystal structure of UPt2Si2
- The ternary phase Li8SbxSn3-x with 0.3 ≤ x ≤ 1.0
- Shock wave induced defect engineering on structural and optical properties of pure and dye doped potassium dihydrogen phosphate crystals
- A new parallel version of a dichotomy based algorithm for indexing powder diffraction data
- On the nature of the phase transitions of aluminosilicate perrhenate sodalite
- Studying the hydrogen atom position in the strong-short intermolecular hydrogen bond of pure and 5-substituted 9-hydroxyphenalenones by invariom refinement and ONIOM cluster computations
- Synthesis, X-ray characterization and catalytic homogenous alcohol oxidation activity of Co(II)–carboxamide complex with green oxidant (H2O2) under mild conditions