Startseite Studying the hydrogen atom position in the strong-short intermolecular hydrogen bond of pure and 5-substituted 9-hydroxyphenalenones by invariom refinement and ONIOM cluster computations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Studying the hydrogen atom position in the strong-short intermolecular hydrogen bond of pure and 5-substituted 9-hydroxyphenalenones by invariom refinement and ONIOM cluster computations

  • Irina Gruber , Lisa Bensch , Thomas J. J. Müller ORCID logo , Christoph Janiak ORCID logo und Birger Dittrich ORCID logo EMAIL logo
Veröffentlicht/Copyright: 3. Juni 2020

Abstract

The solid-state structures of three H-bonded enol forms of 5-substituted 9-hydroxyphenalenones were investigated to accurately determine the H atom positions of the intramolecular hydrogen bond. For this purpose, single-crystal X-ray diffraction (SC-XRD) data were evaluated by invariom-model refinement. In addition, QM/MM computations of central molecules in their crystal environment show that results of an earlier standard independent atom model refinement, which pointed to the presence of a resonance-assisted hydrogen bond in unsubstituted 9-hydroxyphenalone, are misleading: in all our three and the earlier solid-state structures the lowest energy form is that of an asymmetric hydrogen bond (CS form). Apparent differences of results from SC-XRD and other analytical methods are explained.


Corresponding author: Birger Dittrich, Institut für Anorganische Chemie und Strukturchemie II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany, E-mail:

Funding source: DFG

Award Identifier / Grant number: DI 921/6-1

Acknowledgments

We thank the DFG, project DI 921/6-1, for financial support.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: B.D. acknowledges funding from the Deutsche Forschungsgemeinschaft DFG, project DI 921/6-1.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, NY, 1997.Suche in Google Scholar

2. Desiraju, G. R., Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: New York, NY, 1999.Suche in Google Scholar

3. Grabowski, S. J. Hydrogen Bonding – New Insights; Ed.; Springer: Dordrecht, Netherlands, 2006.10.1007/978-1-4020-4853-1Suche in Google Scholar

4 Scheiner, S., Ed. Molecular Interactions: From van der Waals to Strongly Bound Complexes; Wiley: Chichester, UK, 1997.Suche in Google Scholar

5. Garcia-Viloca, M., González-Lafont, A., Lluch, J. M. J. Am. Chem. Soc. 1997, 119, 1081–1086; doi: https://doi.org/10.1021/ja962662n.Suche in Google Scholar

6. Garcia-Viloca, M., Gelabert, R., González-Lafont, A., Moreno, M., Lluch, J. M. J. Phys. Chem. A 1997, 101, 8727–8733; doi: https://doi.org/10.1021/jp972335h.Suche in Google Scholar

7. Perrin, C. L., Nielson, J. B. Annu. Rev. Phys. Chem. 1997, 48, 511–544; doi: https://doi.org/10.1146/annurev.physchem.48.1.511.Suche in Google Scholar

8. Mochida, T., Izuoka, A., Sugawara, T., Moritomo, Y., Tokura, Y. J. Am. Chem. Soc. 1994, 101, 7971–7974; doi: https://doi.org/10.1063/1.468224.Suche in Google Scholar

9. Malaspinna, L. A., Edwards, A. J., Woińska, M., Jayatilaka, D., Turner, M. J., Price, J. R., Herbst-Irmer, R., Sugimoto, K., Nishibori, E., Grabowsky, S. Cryst. Grow. Des. 2017, 17, 3812–3825; doi: https://doi.org/10.1021/acs.cgd.7b00390.Suche in Google Scholar

10. Hibbert, F., Emsley, J. J. Adv. Phys. Org. Chem. 1990, 26, 255–379; doi: https://doi.org/10.1016/S0065-3160(08)60047-7.Suche in Google Scholar

11. Emsley, J. Struct. Bond. 1984, 57, 147–191; doi: https://doi.org/10.1007/BFb0111456.Suche in Google Scholar

12. Gilli, G., Bellucci, F., Ferretti, V., Bertolasi, V. J. Am. Chem. Soc. 1989, 111, 1023−1028; doi: https://doi.org/10.1021/ja00185a035.Suche in Google Scholar

13. Bertolasi, V., Gilli, P., Ferretti, V., Gilli, G. Chem. Eur. J. 1996, 2, 925–934; doi: https://doi.org/10.1002/chem.19960020806.Suche in Google Scholar

14. Mahmudov, K. T., Pombeiro, A. J. L. Chem. Eur. J. 2016, 22, 16356−16398; doi: https://doi.org/10.1002/chem.201601766.Suche in Google Scholar PubMed

15. Brown, R. S., Tse, A., Nakashima, T., Haddon, R. C. J. Am. Chem. Soc. 1979, 101, 3157–3162; doi: https://doi.org/10.1021/ja00506a003.Suche in Google Scholar

16. Demura, Y., Kawato, T., Kanatomi, H., Murase, I. Bull. Chem. Soc. Jpn. 1975, 48, 2820–2824; doi: https://doi.org/10.1246/bcsj.48.2820.Suche in Google Scholar

17. Svensson, C., Abrahams, S. C., Bernstein, J. L., Haddon, R. C., J. Am. Chem. Soc. 1979, 101, 5759–5764; doi: https://doi.org/10.1021/ja00513a048.Suche in Google Scholar

18. Svensson, C., Abrahams, S. C. Acta Crystallogr. 1986, B42, 280–286; doi: https://doi.org/10.1107/S0108768186098221.Suche in Google Scholar

19. Jackman, L. M., Trewella, J. C., Haddon, R. C. J. Am. Chem. Soc. 1980, 102, 2519–2525; doi: https://doi.org/10.1021/ja00528a001.Suche in Google Scholar

20. Rossetti, R., Haddon, R. C., Brus, L. E. J. Am. Chem. Soc. 1980, 102, 6913–6916; doi: https://doi.org/10.1021/ja00543a002.Suche in Google Scholar

21. Hameka, H., de la Vega, J. R. J. Am. Chem. Soc. 1984, 106, 7703–7705; doi: https://doi.org/10.1021/ja00337a009.Suche in Google Scholar

22. Gilli, P., Bertolasi, V., Ferretti, V., Gilli, G. J. Am. Chem. Soc. 1994, 116, 909–915; doi: https://doi.org/10.1021/ja00082a011.Suche in Google Scholar

23. Gilli, G., Gilli, P. The Nature of Hydrogen Bond; Oxford University Press: New York, NY, 2009.10.1093/acprof:oso/9780199558964.001.0001Suche in Google Scholar

24. Kovács, A., Izvekov, V., Zauer, K., Ohta, K. J. Phys. Chem. A 2001, 105, 5000–5009; doi: https://doi.org/10.1021/jp0045033.Suche in Google Scholar

25. Pal, S. K., Itkis, M. E., Reed, R. W., Oakley, R. T., Cordes, A. W., Tham, F. S., Siegrist, T., Haddon, R. C. J. Am. Chem. Soc. 2004, 126, 1478–1484; doi: https://doi.org/10.1021/ja037864f.Suche in Google Scholar PubMed

26. Pariyar, A., Vijaykumar, G., Bhunia, M., Dey, S. K., Singh, S. K., Kurungot, S., Mandal, S. K. J. Am. Chem. Soc. 2015, 137, 5955–5960; doi: https://doi.org/10.1021/jacs.5b00272.Suche in Google Scholar PubMed

27. Das, A., Scherer, T. M., Mondal, P., Mobin, S. M., Kaim, W., Lahiri, G. K. Chem. Eur. J. 2012, 18, 14434–14443; doi: https://doi.org/10.1002/chem.201201785.Suche in Google Scholar PubMed

28. Dey, S. K., Honecker, A., Mitra, P., Mandal, S. K., Mukherjee, A. Eur. J. Inorg. Chem. 2012, 35, 5814–5824; doi: https://doi.org/10.1002/ejic.201200800.Suche in Google Scholar

29. Mochida, T., Torigoe, R., Koinuma, T., Asano, C., Satou, T., Koike, K., Nikaido, T. Eur. J. Inorg. Chem. 2006, 3, 558–565; doi: https://doi.org/10.1002/ejic.200500778.Suche in Google Scholar

30. Gu, Y.-J., Yan, B. Inorg. Chim. Acta 2013, 408, 96–102; doi: https://doi.org/10.1016/j.ica.2013.09.008.Suche in Google Scholar

31. Koelsch, C. F., Anthes, J. A. J. Org. Chem. 1941, 6, 558–565; doi: https://doi.org/10.1021/jo01204a009.Suche in Google Scholar

32. Das, A., Ghosh, T. K., Dutta Chowdhury, A., Mobin, S. M., Lahiri, G. K. Polyhedron 2013, 52, 1130–1137; doi: https://doi.org/10.1016/j.poly.2012.06.057.Suche in Google Scholar

33. Mandal, S. K., Samanta, S., Itkis, M. E., Jensen, D. W., Reed, R. W., Oakley, R. T., Tham, F. S., Donnadieu, B., Haddon, R. C. J. Am. Chem. Soc. 2006, 128, 1982–1994; doi: https://doi.org/10.1021/ja0560276.Suche in Google Scholar PubMed

34. He, G., Hou, Y., Sui, D., Wan, X., Long, G., Yun, P., Yu, A., Zhang, M., Chen, Y. Tetrahedron 2013, 69, 6890–6896; doi: https://doi.org/10.1016/j.tet.2013.05.111.Suche in Google Scholar

35. Bensch, L., Gruber, I., Janiak, C., Müller, T. J. J. Chem. Eur. J. 2017, 23, 10551–10558; doi: https://doi.org/10.1002/chem.201700553.Suche in Google Scholar PubMed

36. Engdahl, C., Gogoll, A., Edlund, U., Magn. Reson. Chem. 1991, 29, 54–62; doi: https://doi.org/10.1002/mrc.1260290112.Suche in Google Scholar

37. Ozeki, H., Takahashi, M., Okuyama, K., Kimura, K. J. Chem. Phys. 1993, 99, 56–66; doi: https://doi.org/10.1063/1.465783.Suche in Google Scholar

38. Kunze, K. L., de la Vega, J. R. J. Am. Chem. Soc. 1984, 106, 6528–6533; doi: https://doi.org/10.1021/ja00334a012.Suche in Google Scholar

39. Svensson, C., Abrahams, S. C. J. Appl. Crystallogr. 1984, 17, 459–463; doi: https://doi.org/10.1107/S0021889884011936.Suche in Google Scholar

40. Dittrich, B., Koritsanszky, T., Luger, P. Angew. Chem. Int. Ed. 2004, 43, 2718–2721; doi: https://doi.org/10.1002/anie.200353596.Suche in Google Scholar PubMed

41. Dittrich, B., Lübben, J., Mebs, S., Wagner, A., Luger, P., Flaig, R. Chem. Eur. J. 2017, 23, 4605–4614; doi: https://doi.org/10.1002/chem.201604705.Suche in Google Scholar PubMed PubMed Central

42. Dittrich, B., Hübschle, C. B., Pröpper, K., Dietrich, F., Stolper, T., Holstein, J. J. Acta Crystallogr. 2013, B69, 91–104; doi: https://doi.org/10.1107/S2052519213002285.Suche in Google Scholar PubMed

43. Stewart, R. F. Acta Crystallogr. 1976, A32, 565–574; doi: https://doi.org/10.1107/S056773947600123X.Suche in Google Scholar

44. Hansen, N., Coppens, P. Acta Crystallogr. 1978, A34, 909–921; doi: https://doi.org/10.1107/S0567739478001886.Suche in Google Scholar

45. Bensch, L., Ebeling, R., Arasu, N. P., Schulze Lammers, B., Mayer, B., Müller, T. J. J., Vázquez, H. S., Karthäuser. submitted for publication.Suche in Google Scholar

46. Kabsch, W. Acta Crystallogr. 2010, D66, 125–132; doi: https://doi.org/10.1107/S0907444909047337.Suche in Google Scholar PubMed PubMed Central

47. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8; doi: https://doi.org/10.1107/S2053273314026370.Suche in Google Scholar PubMed PubMed Central

48. Krause, L., Herbst-Irmer, R., Sheldrick, G. M., Stalke, D. J. Appl. Crystallogr. 2015, 48, 3–10; doi: https://doi.org/10.1107/S1600576714022985.Suche in Google Scholar PubMed PubMed Central

49. Parsons, S., Flack, H. D., Wagner, T. Acta Crystallogr. 2013, B69, 249–259; doi: https://doi.org/10.1107/S2052519213010014.Suche in Google Scholar PubMed PubMed Central

50. Volkov, A., Macchi, P., Farrugia, L. J., Gatti, C., Mallinson, P., Richter, T., Koritsánszky, T. XD2006. University at Buffalo USA, University of Milan, Italy, University of CNRIST Mand Middle Tennessee State University, NY Glasgow, UK Milan, Italy TN, USA, 2006.Suche in Google Scholar

51. Weininger, D. J. Chem. Inf. Comp. Sci. 1988, 28, 31–36; doi: https://doi.org/10.1021/ci00057a005.Suche in Google Scholar

52. Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A.Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J., Frisch, M. J., GAUSSIAN 09(Revision D.01). Gaussian, Inc.: Wallingford CT, 2013.Suche in Google Scholar

53. Jayatilaka, D., Grimwood, D. J. Tonto: A fortran based object-oriented system for quantum chemistry and crystallography. In Computational Science – ICCS 2003. ICCS 2003. Lecture Notes in Computer Science, vol 2660; Sloot P. M. A., Abramson D., Bogdanov A. V., Gorbachev Y. E., Dongarra J. J., Zomaya A. Y., Eds. Springer: Berlin, Heidelberg, 2003; pp. 142–151.10.1007/3-540-44864-0_15Suche in Google Scholar

54. Hübschle, C. B., Dittrich, B. J. Appl. Crystallogr. 2011, 44, 238–240; doi: https://doi.org/10.1107/S0021889810042482.Suche in Google Scholar PubMed PubMed Central

55. Dittrich, B., Hübschle, C. B., Luger, P., Spackman, M. A. Acta Crystallogr. 2006, D62, 1325–1335; doi: https://doi.org/10.1107/S090744490602899X.Suche in Google Scholar PubMed

56. Hübschle, C. B., Dittrich, B. J. Appl. Crystallogr. 2011, 44, 238–240; doi: https://doi.org/10.1107/S0021889810042482.Suche in Google Scholar

57. Svensson, M., Humbel, S., Froese, R. D. J., Matsubara, T., Sieber, S., Morokuma, K. J. Phys. Chem. 1996, 100, 19357–19363; doi: https://doi.org/10.1021/jp962071j.Suche in Google Scholar

58. Dittrich, B., Pfitzenreuter, S., Hübschle, C. B. Acta Crystallogr. A 2012, 68, 110–116; doi: https://doi.org/10.1107/S0108767311037974.Suche in Google Scholar PubMed

59. Besler, B. H., Merz, K. M.Jr., Kollman, P. A. J. Comput. Chem 1990, 11, 431–439; doi: https://doi.org/10.1002/jcc.540110404.Suche in Google Scholar

60. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., Skid, W. M., Bernstein, E. R. J. Am. Chem. Soc. 1992, 114, 10024–10039; doi: https://doi.org/10.1021/ja00051a040.Suche in Google Scholar

61. Bannwarth, C., Ehlert, S., Grimme, S. J. Chem. Theory Comput. 2019, 15, 1652–1671; doi: https://doi.org/10.1021/acs.jctc.8b01176.Suche in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2020-0022).


Received: 2020-03-02
Accepted: 2020-05-04
Published Online: 2020-06-03
Published in Print: 2020-07-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2020-0022/html
Button zum nach oben scrollen