Startseite Na3GaF6 – A crystal chemical and solid state NMR spectroscopic study
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Na3GaF6 – A crystal chemical and solid state NMR spectroscopic study

  • David Böhnisch , Stefan Seidel , Christopher Benndorf , Thomas Jansen , Lena Funke , Rolf-Dieter Hoffmann , Lukas Heletta , Juliane Stahl , Dirk Johrendt , Hellmut Eckert , Thomas Jüstel EMAIL logo und Rainer Pöttgen EMAIL logo
Veröffentlicht/Copyright: 19. Februar 2018

Abstract

Na3GaF6 and Na3GaF6:Mn4+ samples were obtained from NaNO3 and Ga(NO3)3·9H2O in hydrofluoric acid using K2MnF6 or NaMnO4 as manganese sources. The structure of Na3GaF6 was studied by single crystal X-ray diffraction at 90, 293, 440 and 500 K, confirming the monoclinic cryolite type structure, space group P21/c. The gallium atoms show slightly distorted octahedral coordination by fluorine atoms, similar to the Na1 atoms. Coordination number 8 is observed for Na2. Both sodium sites are clearly distinguished by 23Na MAS-NMR spectroscopy. Above 400 K the spectra reveal distinct chemical exchange effects, signifying sodium ion hopping between these two sites. At the same time static 19F NMR spectra indicate pronounced motional narrowing effects in this temperature region. The nearly invariant 69Ga MAS-NMR spectra suggest that any reorientational motion involving the GaF63− ions (if present) occurs with preservation of the center of mass of these octahedra.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft and Merck KGaA Darmstadt, Germany. L. F. thanks the Stiftung der Deutschen Wirtschaft for a personal scholarship.

References

[1] A. F. Holleman, E. Wiberg, N. Wiberg, Anorganische Chemie, 103. Auflage, De Gruyter, Berlin, 2017.Suche in Google Scholar

[2] M. Binnewies, M. Jäckel, H. Willner, G. Rayner-Canham, Allgemeine und Anorganische Chemie, 2. Auflage, Spektrum Akademischer Verlag, Heidelberg, 2011.Suche in Google Scholar

[3] St. v. Náray-Szabó, K. Savári, Z. Kristallogr. 1938, 99, 27.10.1524/zkri.1938.99.1.27Suche in Google Scholar

[4] E. G. Steward, H. P. Rooksby, Acta Crystallogr. 1953, 6, 49.10.1107/S0365110X53000107Suche in Google Scholar

[5] C. W. F. T. Pistorius, J. Solid State Chem. 1975, 13, 208.10.1016/0022-4596(75)90121-8Suche in Google Scholar

[6] H. Yang, S. Ghose, D. M. Hatch, Phys. Chem. Miner.1993, 19, 528.10.1007/BF00203053Suche in Google Scholar

[7] Q. Zhou, B. J. Kennedy, J. Solid State Chem. 2004, 177, 654.10.1016/j.jssc.2003.08.012Suche in Google Scholar

[8] L’. Smrčok, K. Kucharík, M. Tovar, I. Žižak, Cryst. Res. Technol. 2009, 44, 834.10.1002/crat.200900141Suche in Google Scholar

[9] O. Bock, U. Müller, Acta Crystallogr. B2002, 58, 594.10.1107/S0108768102001490Suche in Google Scholar PubMed

[10] W. Pugh, J. Chem. Soc. 1937, 1046.10.1039/jr9370001046Suche in Google Scholar

[11] J. Chassaing, Rev. Chim. Minér. 1968, 5, 1115.Suche in Google Scholar

[12] A. Chrétien, J. Chassaing, C. R. Acad. Sci. Paris1966, 263C, 1301.Suche in Google Scholar

[13] J. Lu, Q. Zhang, J. Wang, F. Saito, J. Am. Ceram. Soc. 2004, 87, 1814.10.1111/j.1551-2916.2004.01814.xSuche in Google Scholar

[14] J. Yeon, H.-C. zur Loye, J. Chem. Crystallogr. 2017, 47, 129.10.1007/s10870-017-0687-xSuche in Google Scholar

[15] E. Song, T. Deng, Q. Zhang, S. Ye, J. Wang, Faming Zhuanli Shenqing, Patent, CN 2016-10494975; CN 106010514.Suche in Google Scholar

[16] T. T. Deng, E. H. Song, J. Sun, L. Y. Wang, Y. Deng, S. Ye, J. Wang, Q. Y. Zhang, J. Mater. Chem. C2017, 5, 2910.10.1039/C7TC00011ASuche in Google Scholar

[17] P. Rawat, S. K. Saroj, M. Gupta, G. V. Prakash, R. Nagarajan, J. Fluorine Chem. 2017, 200, 1.10.1016/j.jfluchem.2017.05.008Suche in Google Scholar

[18] T. T. Deng, E. H. Song, Y. Y. Zhou, L. Y. Wang, S. Ye, Q. Y. Zhang, J. Mater. Chem. C2017, 5, 9588.10.1039/C7TC03116ESuche in Google Scholar

[19] T. Jansen, F. Baur, T. Jüstel, J. Lumin.2017, 192, 644.10.1016/j.jlumin.2017.07.061Suche in Google Scholar

[20] T. Jansen, T. Jüstel, J. Phys. Chem. Solids2017, 110, 180.10.1016/j.jpcs.2017.06.009Suche in Google Scholar

[21] T. Jansen, J. Gorobez, M. Kirm, M. G. Brik, S. Vielhauer, M. Oja, N. M.Khaidukov, V. N.Makhov, T.Jüstel, ECS J. Solid State Sci. Technol.2018, 7, R3086.10.1149/2.0121801jssSuche in Google Scholar

[22] D. Böhnisch, T. Jansen, R. Pöttgen, T. Jüstel, Z. Kristallogr. 2018, 233, 489.10.1515/zkri-2017-2118Suche in Google Scholar

[23] H. Bode, H. Jenssen, F. Bandte, Angew. Chem.1953, 65, 304.10.1002/ange.19530651108Suche in Google Scholar

[24] T. Takahashi, H. Kawashima, H. Sugisawa, T. Baba, Solid State Nucl. Magn. Reson.1999, 15, 119.10.1016/S0926-2040(99)00039-9Suche in Google Scholar

[25] C. Jaeger, F. Hemmann, Solid State Nucl. Magn. Reson.2014, 57–58, 22.10.1016/j.ssnmr.2013.11.002Suche in Google Scholar PubMed

[26] D. Massiot, F. Fayon, M. Capron, I. King, S. L. Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem.2002, 40, 70.10.1002/mrc.984Suche in Google Scholar

[27] L. Palatinus, G. Chapuis, J. Appl. Crystallogr.2007, 40, 786.10.1107/S0021889807029238Suche in Google Scholar

[28] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr.2014, 229, 345.10.1515/zkri-2014-1737Suche in Google Scholar

[29] I. N. Flerov, M. V. Gorev, J. Grannec, A. Tressaud, J. Fluorine Chem. 2002, 116, 9.10.1016/S0022-1139(02)00068-4Suche in Google Scholar

[30] M. Leblanc, V. Maisonnneuve, A. Tressaud, Chem. Rev. 2015, 115, 1191.10.1021/cr500173cSuche in Google Scholar PubMed

[31] G. A. Bain, J. F. Berry, J. Chem. Education2008, 85, 532.10.1021/ed085p532Suche in Google Scholar

[32] G. Silly, C. Legein, J. Y. Buzaré, F. Clavayrac, Solid State Nucl. Magn. Reson. 2004, 25, 241.10.1016/j.ssnmr.2003.09.001Suche in Google Scholar PubMed

[33] B. Zhou, B. L. Sherriff, J. S. Hartmann, G. Wu, Am. Mineral.2007, 92, 34.10.2138/am.2007.2269Suche in Google Scholar

[34] D. A. Spearing, J. F. Stebbins, I. Farnan, Phys. Chem. Miner. 1994, 21, 373.10.1007/BF00203295Suche in Google Scholar

[35] M. Kotecha, S. Chaudhuri, C. P. Grey, L. Frydman, J. Am. Chem. Soc. 2005, 127, 16701.10.1021/ja0549749Suche in Google Scholar PubMed

[36] T. Krahl, M. Ahrens, G. Scholz, D. Heidemann, E. Kemnitz, Inorg. Chem.2008, 47, 663.10.1021/ic700604sSuche in Google Scholar PubMed

[37] V. Lacassagne, C. Bessada, D. Massiot, P. Florian, J.-P. Coutures, J. Chim. Phys.1998, 95, 322.10.1051/jcp:1998139Suche in Google Scholar

[38] M. M. De, V. Steyn, A. M. Heyns, R. B. English, J. Crystallogr. Spectrosc. Res.1984, 14, 505.10.1007/BF01160697Suche in Google Scholar

[39] S. Loss, C. Röhr, Z. Naturforsch.1998, 53b, 75.10.1515/znb-1998-0114Suche in Google Scholar

[40] J.-X. Mi, S.-M. Luo, H.-Y. Sun, X.-X. Liu, Z.-B. Wei, J. Solid State Chem.2008, 181, 1723.10.1016/j.jssc.2008.03.017Suche in Google Scholar

[41] M. J. Reisfeld, Spectrochim. Acta1973, 29A, 1923.Suche in Google Scholar

[42] E. M. Anghel, P. Florian, C. Bessada, J. Phys. Chem. B2007, 111, 962.10.1021/jp061977eSuche in Google Scholar PubMed

Received: 2017-11-27
Accepted: 2018-1-29
Published Online: 2018-2-19
Published in Print: 2018-7-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2017-2138/html
Button zum nach oben scrollen