Startseite Variations in the intermolecular interactions in (E) benzaldehyde 7-chloro-1-methyl- 4H-quinolinyl-4-ylidene-hydrazone and seven halo derivatives
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Variations in the intermolecular interactions in (E) benzaldehyde 7-chloro-1-methyl- 4H-quinolinyl-4-ylidene-hydrazone and seven halo derivatives

  • Marcelle de L.F. Bispo , Camila C. de Alcantara , Solange M.S.V. Wardell , Marcus V.N. de Souza und James L. Wardell EMAIL logo
Veröffentlicht/Copyright: 1. März 2016

Abstract

Eight crystal structures are reported here: substituted (E) benzaldehyde 7-chloro-1-methyl-4H-quinolinyl-4-ylidene-hydrazones, 1, [substituted benzaldehyde: XYC6H4CHO: X,Y=H,H; 2-F,H; 3-F,H; 4-F,H; 3-Cl,H; 4-Cl,H; 2-Br,H and 2,3-Cl2]. None of the molecules, 1, are overall planar: angles between the phenyl and and quinolinyl rings vary from <5°, for (1:X,Y=3-F,H; 4-F,H; 3-Cl,H and 2,3-Cl2) to 15–16° for (1: X,Y=H,H and 4-Cl,H). The supramolecular arrangements in the parent compound (1: X=Y=H) are generated solely from C–Z···π (Z=H and Cl) interactions, while the supramolecular arrangements for each of the halo derivatives arise from combinations of π···π and some of C–Z···π (Z=H, F, Cl) and C–H···Z (Z=N, F, Cl) intermolecular interactions: in each case different assemblies result. While there are possibilities for π(quin)···π(quin), π(quin)···π(phen) and π(phen)···π(phen) interactions [quin and phen refer to the quinolinyl and phenyl moieties], only compounds (1: X,Y=2,3-Cl2) and (1: X,Y=4-Cl,H) exhibit all three, (1: X,Y=2-Br,H) just π(quin)···π(quin) of the three, and in the others two of the three. All the halo derivatives exhibit π(quin)···π(quin) interactions. It is argued that steric hindrance between molecules, generated by the halo substituents, prevents the halo derivatives from adopting the packing arrangements of the parent compound, (1: X,Y=H,H). As there appears to be no reason, steric or otherwise, why compound (1: X,Y=H,H) cannot utiilize π···π interactions, it is apparent that the packing of molecules via the C–Y···π interactions is the most stable.

Acknowledgments

The use of the NCS crystallographic service at Southampton and the valuable assistance of the staff there are gratefully acknowledged. JLW thanks FAPERJ and CNPq, Brazil for support.

References

[1] M. de L. F. Bispo, C. C. de Alcantara, S. M. S. V. Wardell, M. V. N. de Souza, J. L. Wardell, Structures of three methoxy-substituted benzaldehyde 7-chloro-1-methyl-4H-quinolinyl-4-ylidene-hydrazones: variations in π···π interactions. Z. Kristallogr.2015, 230, 519.10.1515/zkri-2015-1848Suche in Google Scholar

[2] R. A. Howie, M. V. N. de Souza, M. L. Ferreira, C. R. Kaiser, J. L. Wardell, S. M. S. V. Wardell, Structures of arylaldehyde 7-chloroquinoline-4-hydrazones:supramolecular arrangements derived from N–H···N, C–H···X (X=N, O, or π) and π···π interactions. Z. Kristallogr. 2010, 225, 440.10.1524/zkri.2010.1291Suche in Google Scholar

[3] M. L. Ferreira, M. V. N. de Souza, S. M. S. V. Wardell, E. R. T. Tiekink, J. L. Wardell, 7-Chloro-4-[(E)-2-(3,4,5-trimethoxybenzylidene)hydrazin-1-yl]quinoline. Acta Crystallogr. 2012, E68, o1214.10.1107/S1600536812012755Suche in Google Scholar PubMed PubMed Central

[4] M. V. N. de Souza, M. L. Ferreira, S. M. S. V. Wardell, E. R. T. Tiekink, J. L. Wardell, 7-Chloro-4-[(E)-2-(2,5-dimethoxybenzylidene)hydrazin-1-yl]quinoline. Acta Crystallogr. 2012, E68, o1244.10.1107/S1600536812012871Suche in Google Scholar PubMed PubMed Central

[5] M. L. Ferreira, M. V. N. de Souza, R. A. Howie, E. R. T. Tiekink, J. L.Wardell, S. M. S. V. Wardell, 3-[(E)-(7-Chloro-4-quinolyl)hydrazonomethyl]benzonitrile monohydrate. Acta Crystallogr. 2009, E65, o3239.10.1107/S1600536809050120Suche in Google Scholar PubMed PubMed Central

[6] M. V. N. de Souza, R. A. Howie, E. R. T. Tiekink, J. L. Wardell, S. M. S. V. Wardell, C. R. Kaiser, 7-Chloro-4-[(E)-2-(2-methoxybenzylidene)hydrazin-1-yl]quinoline monohydrate. Acta Crystallogr. 2010, E66, o698.10.1107/S1600536810006586Suche in Google Scholar PubMed PubMed Central

[7] M. V. N. de Souza, R. A. Howie, E. R. T. Tiekink, J. L. Wardell, S. M. S. V. Wardell, 7-Chloro-4- [(E)-N-(4-fluorobenzylidene)hydrazinyl]quinoline monohydrate. Acta Crystallogr. 2010, E66, o152.10.1107/S1600536809053367Suche in Google Scholar PubMed PubMed Central

[8] M. D. Ferreira, M. V. N. de Souza, R. A. Howie, E. R. T. Tiekink, J. L. Wardell, S. M. S. V. Wardell, 7-Chloro-4-[(E)-2-(4-methoxybenzylidene)hydrazin-1-yl]quinoline monohydrate. Acta Crystallogr. 2010, E66, o696.10.1107/S1600536810006598Suche in Google Scholar PubMed PubMed Central

[9] M. L. Ferreira, M.V. N. de Souza, R. A. Howie, E. R. T. Tiekink, J. L. Wardell, S. M. S.V. Wardell, 3-[(E)-(7-Chloro-4-quinolyl)hydrazonomethyl]benzonitrile monohydrate. Acta Crystallogr. 2009, E65, o3239.10.1107/S1600536809050120Suche in Google Scholar

[10] M. V. N. de Souza, T. C. M. Noguiera, S. M. S. V. Wardell, J. L. Wardell, Crystal structures of (E)-2-(2-benzylidenehydrazinyl)quinoxalines: persistent N–H···N intermolecular hydrogen bonds but variable π···π interactions. Z. Kristallogr. 2014, 229, 587.10.1515/zkri-2014-1769Suche in Google Scholar

[11] T. C. M. Noguiera, A. C. Pinheiro, M. V. N. de Souza, J. L. Wardell, E. R. T. Tiekink, 2-[(E)-2-(3,4-Dichlorobenzylidene)-hydrazin-1-yl]quinoxaline. Acta Crystallogr. 2014, E70, o125.10.1107/S1600536814000415Suche in Google Scholar PubMed PubMed Central

[12] L. R. Gomes, J. N. Low, A. S. M. C. Rodrigues, J. L. Wardell, M. V. N. de Souza, T. C. M. Noguiera, A. C. Pinheiro, Comparison of the structure of (E)-2-(2-benzylidene)hydrazinylidene)quinoxaline with those of its chloro- and bromobenzylidene analogues. Acta Crystalllogr. 2013, C69, 920.10.1107/S0108270113015370Suche in Google Scholar

[13] F. A. R. Rodrigues, I. S. Bomfim, B. C. Cavalcanti, C. O. Pessoa, J. L. Wardell, S. M. S. V. Wardell, A. C. Pinheiro, C. R. Kaiser, T. C. M. Nogueira, J. N. Low, L. R. Gomes, M. V. N. de Souza, Design, synthesis and biological evaluation of (E)-2-(2-arylhydrazinyl)quinoxalines, a promising and potent new class of anticancer agents. Bioorg. Med. Chem. Letters2014, 24, 934.10.1016/j.bmcl.2013.12.074Suche in Google Scholar PubMed

[14] E. B. Lindgren, J. D. Yoneda, K. Z. Leal, A. F. Nogueira, T. R. A. Vasconcelos, J. L. Wardell, S. M. S. V. Wardell, Structures of hydrazones, (E)-2-(1,3-benzothiazolyl)-NH-N=CHAr, [Ar=4- (pyridin-2-yl)phenyl, pyrrol-2-yl, thien-2-yl and furan-2-yl]: Difference in conformations and intermolecular hydrogen bonding. J. Mol. Struct. 2013, 1036, 19.10.1016/j.molstruc.2012.09.058Suche in Google Scholar

[15] A. F. Nogueira, T. R. A. Vasconcelos, J. L. Wardell, S. M. S. V. Wardell, Crystal structures of hydrazones, 2-(1,3-benzothiazolyl)-NH-N=CH-Ar, prepared from arenealdehydes and 2-hydrazinyl- 1,3-benzothiazole. Z. Kristallogr.2011, 226, 846.10.1524/zkri.2011.1424Suche in Google Scholar

[16] S. A. Carvalho, W. T. A. Harrison, C. A. M. Fraga, E. F. da Silva, J. L. Wardell, S. M. S. V. Wardell, 5-Phenyl-2-(benzalhydrazonyl)-1,3,4-thiadiazoles, potential trypanocidal agents: consistent dimer formation via N–H···N intermolecular hydrogen bonds. Z. Kristallogr.2009, 224, 598.10.1524/zkri.2009.1203Suche in Google Scholar

[17] CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan. 2011.Suche in Google Scholar

[18] G. M. Sheldrick, SADABS Version 2007/2, Bruker AXS Inc., Madison, WI. 2007.Suche in Google Scholar

[19] L. J. Farrugia, ORTEP-3 for Windows – a version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565.10.1107/S0021889897003117Suche in Google Scholar

[20] Mercury 3.3. Cambridge Crystallographic Data Centre, UK, 2013.Suche in Google Scholar

[21] G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. 2008, A64, 112.10.1107/S0108767307043930Suche in Google Scholar PubMed

[22] A. L. Spek, Single-crystal structure validation with the program PLATON. J. Appl.Crystallogr. 2003, 36, 7.10.1107/S0021889802022112Suche in Google Scholar

[23] G. R. Desiraju, Crystal engineering: A holistic view. Angew.Chem., Int. Ed.2007, 46, 8342.10.1002/anie.200700534Suche in Google Scholar PubMed

[24] E. R. T. Tiekink, Crystal engineering, in Supramolecular Chemistry: from Molecules to Nanomaterials, (Eds. J. W. Steed and P. A. Gale) John Wiley & Sons Ltd, Chichester, UK, p. 2791, 2012.Suche in Google Scholar

[25] The importance of π-Interactions in Crystal Engineering: Frontiers in Crystal Engineering, 2nd Edition, E. R. T. Tiekink, J. Zukerman-Schpector, Eds Wiley, Singapore, 2012.Suche in Google Scholar

[26] J. Bernstein, R. E. Davis, L. Shimoni, N.-L. Chang, Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555.10.1002/anie.199515551Suche in Google Scholar


Supplemental Material:

The online version of this article (DOI: 10.1515/zkri-2015-1893) offers supplementary material, available to authorized users.


Received: 2015-8-27
Accepted: 2015-11-28
Published Online: 2016-3-1
Published in Print: 2016-4-1

©2016 by De Gruyter

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2015-1893/html
Button zum nach oben scrollen