Startseite On-the-fly geometrical calibration fine-tuning of a mobile C-arm CBCT system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On-the-fly geometrical calibration fine-tuning of a mobile C-arm CBCT system

  • Wissam El Hakimi

    Wissam El Hakimi received a diploma degree in automation technology at the University of Stuttgart. Since 2011 he has been working as a research assistant at the medical computing group at GRIS (TU-Darmstadt).

    Interactive Graphics Systems Group (GRIS), Technische Universität Darmstadt, Fraunhoferstr. 5, 64283 Darmstadt, Germany

    EMAIL logo
    und Georgios Sakas

    Georgios Sakas received Diploma (MSc) in Computer Engineering and Ph.D. in Computer graphics. 1994–2011 heading the “Cognitive Computing & Medical Imaging” department by Fraunhofer IGD, since 1997 until today funder & CEO of MedCom GmbH.

    Interactive Graphics Systems Group (GRIS), Technische Universität Darmstadt, Fraunhoferstr. 5, 64283 Darmstadt, Germany

Veröffentlicht/Copyright: 28. April 2016

Abstract

C-arm cone-beam computed tomography (CBCT) offers CT-like 3D imaging capabilities while being appropriate for interventional suites. 3D images are reconstructed based on 2D projections gathered during the rotation of the C-arm around the object under investigation. It is mandatory to provide accurate geometrical projection parameters for each acquired 2D image, otherwise significant CT artifacts may be induced in the reconstructed 3D volume. Usually, a pre-calibration (offline calibration) using an X-ray phantom is preformed under the assumption that the C-arm motion is reproducible. Thereby, stochastic misalignments due to the open design of mobile C-arm CBCT systems are not considered. In this article we introduce a novel online calibration algorithm to compensate stochastic mechanical inaccuracies. The performance of the proposed method is demonstrated on simulated and real data.

Zusammenfassung

Intraoperative 3D-Röntgenbildgebung ist zum Standard in der modernen Chirurgie geworden. Mithilfe von mobilen C-Bögen können 3D Computertomographie-ähnliche Bilder intraoperativ aufgenommen werden. Während der Rotation des C-Bogens um den Patienten werden 2D-Projektionen akquiriert, die zur Rekonstruktion der Volumendaten verwendet werden. Präzise geometrische Projektionsparameter (Position der Röntgenquelle, Detektor-Lage und -Orientierung) werden für jedes Projektionsbild benötigt, da sonst bei der Rekonstruktion Artefakte entstehen können. Aufgrund der mechanischen Stabilität des C-Bogens wird eine Offline-Kalibrierung üblicherweise durchgeführt, damit die Projekionsparameter ermittelt werden können. Es wird dabei angenommen, dass Abweichungen von der Idealgeometrie reproduzierbar sind; stochastische Abweichungen (z. B. Vibrationen bei der Rotation) werden dabei nicht berücksichtigt. In dieser Arbeit präsentieren wir eine neue Methode zur geometrischen Online-Kalibrierung, die zusätzlich die stochastisch-mechanischen Abweichungen kompensiert. Die Qualität der Kalibrierung wird anhand von Simulations- und experimentellen Daten demonstriert.

Funding statement: Deutsche Forschungsgemeinschaft

About the authors

Wissam El Hakimi

Wissam El Hakimi received a diploma degree in automation technology at the University of Stuttgart. Since 2011 he has been working as a research assistant at the medical computing group at GRIS (TU-Darmstadt).

Interactive Graphics Systems Group (GRIS), Technische Universität Darmstadt, Fraunhoferstr. 5, 64283 Darmstadt, Germany

Georgios Sakas

Georgios Sakas received Diploma (MSc) in Computer Engineering and Ph.D. in Computer graphics. 1994–2011 heading the “Cognitive Computing & Medical Imaging” department by Fraunhofer IGD, since 1997 until today funder & CEO of MedCom GmbH.

Interactive Graphics Systems Group (GRIS), Technische Universität Darmstadt, Fraunhoferstr. 5, 64283 Darmstadt, Germany

Received: 2015-6-26
Revised: 2015-10-28
Accepted: 2015-10-28
Published Online: 2016-4-28
Published in Print: 2016-5-28

©2016 Walter de Gruyter Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/teme-2015-0059/html
Button zum nach oben scrollen