Startseite Wirtschaftswissenschaften Portfolio selection based on Extended Gini Shortfall risk measures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Portfolio selection based on Extended Gini Shortfall risk measures

  • Lhoucine Ben Hssain ORCID logo EMAIL logo , Mohammed Berkhouch ORCID logo und Ghizlane Lakhnati ORCID logo
Veröffentlicht/Copyright: 5. Oktober 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we conducted a comprehensive examination of the Extended Gini Shortfall (EGS) as a flexible risk measure for portfolio selection, employing various approaches. The EGS measure possesses desirable properties, such as coherence, risk and variability measurement, and risk aversion. Additionally, we introduced the Reward Risk Ratio induced from EGS and explored its associated properties. Our main focus centered on a convex optimization problem, where the objective was to minimize portfolio risk while adhering to reward and budget constraints. We demonstrated the effectiveness of the obtained theoretical results through a practical application.

MSC 2010: 91G70; 91G10; 47N10

A Before Covid-19

Table 6

Correlation between stocks before Covid-19.

MSFT AAPL AMZN NFLX FB TSLA WMT GOOGL VZ IBM
MSFT 1.000 0.629 0.733 0.580 0.537 0.325 0.272 0.729 0.182 0.482
AAPL 0.629 1.000 0.602 0.459 0.464 0.314 0.222 0.601 0.065 0.391
AMZN 0.733 0.602 1.000 0.623 0.593 0.305 0.217 0.687 0.046 0.373
NFLX 0.580 0.459 0.623 1.000 0.460 0.306 0.160 0.558 0.048 0.299
FB 0.537 0.464 0.593 0.460 1.000 0.254 0.132 0.610 0.047 0.253
TSLA 0.325 0.314 0.305 0.306 0.254 1.000 0.143 0.292 0.061 0.199
WMT 0.272 0.222 0.217 0.160 0.132 0.143 1.000 0.199 0.284 0.275
GOOGL 0.729 0.601 0.687 0.558 0.610 0.292 0.199 1.000 0.095 0.419
VZ 0.182 0.065 0.046 0.048 0.047 0.061 0.284 0.095 1.000 0.242
IBM 0.482 0.391 0.373 0.299 0.253 0.199 0.275 0.419 0.242 1.000
Table 7

Descriptive statistics of stocks before Covid-19.

MSFT AAPL AMZN NFLX FB TSLA WMT GOOGL VZ IBM
𝜎 0.0137 0.0156 0.0172 0.0233 0.0186 0.0306 0.0121 0.0145 0.0112 0.0130
Mean 0.00129 0.00124 0.0011 0.00117 0.0007 0.00075 0.00085 0.0007 0.0003 −0.00012
Min −0.0558 −0.1049 −0.0814 −0.1083 −0.2102 −0.1496 −0.1073 −0.0779 −0.0479 −0.0793
Max 0.0729 0.0680 0.1241 0.1270 0.10270 0.1627 0.1034 0.0918 0.0739 0.0849
Skew −0.0375 −0.4997 0.1662 0.0256 −1.9722 0.1059 0.3243 −0.3015 −0.0506 −0.3185
Kurt 3.7288 5.1659 6.5953 3.2477 24.648 4.9720 19.642 5.0146 4.2105 8.8486

B During Covid-19

Table 8

Correlation between stocks during Covid-19.

MSFT AAPL AMZN NFLX FB TSLA WMT GOOGL VZ IBM
MSFT 1.000 0.808 0.697 0.568 0.705 0.490 0.518 0.825 0.466 0.509
AAPL 0.808 1.000 0.675 0.522 0.701 0.479 0.476 0.704 0.396 0.458
AMZN 0.697 0.675 1.000 0.612 0.637 0.431 0.367 0.654 0.269 0.308
NFLX 0.568 0.522 0.612 1.000 0.538 0.38 0.369 0.510 0.225 0.190
FB 0.705 0.701 0.637 0.538 1.000 0.389 0.358 0.743 0.342 0.389
TSLA 0.490 0.479 0.431 0.380 0.389 1.000 0.165 0.413 0.084 0.224
WMT 0.518 0.476 0.367 0.369 0.358 0.165 1.000 0.415 0.513 0.363
GOOGL 0.825 0.704 0.654 0.510 0.743 0.413 0.415 1.000 0.447 0.508
VZ 0.466 0.396 0.269 0.225 0.342 0.084 0.513 0.447 1.000 0.594
IBM 0.509 0.458 0.308 0.19 0.389 0.224 0.363 0.508 0.594 1.000
Table 9

Descriptive statistics of stocks during Covid-19.

MSFT AAPL AMZN NFLX FB TSLA WMT GOOGL VZ IBM
𝜎 0.0216 0.0235 0.0202 0.0249 0.0242 0.0466 0.0157 0.0202 0.0126 0.0210
Mean 0.0015 0.0018 0.0012 0.0012 0.0010 0.0049 0.0003 0.0015 −0.00013 0.00016
Min −0.1594 −0.1370 −0.0825 −0.11809 −0.1530 −0.2365 −0.0950 −0.1236 −0.0684 −0.1375
Max 0.1329 0.1131 0.0763 0.1557 0.0974 0.1814 0.1107 0.0883 0.0696 0.1070
Skew −0.4636 −0.2805 −0.0338 0.2214 −0.3884 −0.3181 0.7753 −0.377 0.5953 −0.9468
Kurt 10.3165 5.5327 2.2052 5.3735 4.7758 4.0342 12.1188 5.3392 7.5634 8.6554

References

[1] C. Acerbi, Spectral measures of risk: A coherent representation of subjective risk aversion, J. Bank. Finance 26 (2002), no. 7, 1505–1518. 10.1016/S0378-4266(02)00281-9Suche in Google Scholar

[2] C. Acerbi and P. Simonetti, Portfolio optimization with spectral measures of risk, preprint (2002), https://arxiv.org/abs/cond-mat/0203607. Suche in Google Scholar

[3] C. Acerbi and D. Tasche, On the coherence of expected shortfall, J. Bank. Finance 26 (2002), no. 7, 1487–1503. 10.1016/S0378-4266(02)00283-2Suche in Google Scholar

[4] A. Adam, M. Houkari and J. P. Laurent, Spectral risk measures and portfolio selection, J. Bank. Finance 32 (2008), no. 9, 1870–1882. 10.1016/j.jbankfin.2007.12.032Suche in Google Scholar

[5] A. Ahmadi-Javid and M. Fallah-Tafti, Portfolio optimization with entropic value-at-risk, European J. Oper. Res. 279 (2019), no. 1, 225–241. 10.1016/j.ejor.2019.02.007Suche in Google Scholar

[6] P. Artzner, F. Delbaen, J. M. Eber and D. Heath, Coherent measures of risk, Math. Finance 9 (1999), no. 3, 203–228. 10.1111/1467-9965.00068Suche in Google Scholar

[7] B. N. Ashraf, Stock markets reaction to COVID-19: Cases or fatalities?, Res. Int. Bus. Finance 54 (2020), Article ID 101249. 10.1016/j.ribaf.2020.101249Suche in Google Scholar PubMed PubMed Central

[8] S. R. Baker, N. Bloom, S. J. Davis, K. Kost, M. Sammon and T. Viratyosin, The unprecedented stock market reaction to COVID-19, Rev. Asset Pricing Stud. 10 (2020), no. 4, 742–758. 10.1093/rapstu/raaa008Suche in Google Scholar

[9] A. Beck and N. Guttmann-Beck, FOM – a MATLAB toolbox of first-order methods for solving convex optimization problems, Optim. Methods Softw. 34 (2019), no. 1, 172–193. 10.1080/10556788.2018.1437159Suche in Google Scholar

[10] L. Ben Hssain, J. Agouram and G. Lakhnati, Impact of COVID-19 pandemic on Moroccan sectoral stocks indices, Sci. African 17 (2022), Article ID e01321. 10.1016/j.sciaf.2022.e01321Suche in Google Scholar PubMed PubMed Central

[11] M. Berkhouch, G. Lakhnati and M. B. Righi, Extended Gini-type measures of risk and variability, Appl. Math. Finance 25 (2018), no. 3, 295–314. 10.1080/1350486X.2018.1538806Suche in Google Scholar

[12] F. Bilen, Z. Csizmadia and T. Illés, Anstreicher–Terlaky type monotonic simplex algorithms for linear feasibility problems, Optim. Methods Softw. 22 (2007), no. 4, 679–695. 10.1080/10556780701223541Suche in Google Scholar

[13] K. H. Borgwardt, The Simplex Method: A Probabilistic Analysis, Vol. 1, Springer, Berlin, 2012. Suche in Google Scholar

[14] L. Ceriani and P. Verme, The origins of the Gini index: Extracts from Variabilità e Mutabilità (1912) by Corrado Gini, J. Econ. Inequal. 10 (2012), no. 3, 421–443. 10.1007/s10888-011-9188-xSuche in Google Scholar

[15] P. Cheridito and E. Kromer, Reward-risk ratios, J. Invest. Strategies 3 (2013), no. 1, 3–18. 10.21314/JOIS.2013.022Suche in Google Scholar

[16] G. Choquet, Theory of capacities, Ann. Inst. Fourier 5 (1953), 131–295. 10.5802/aif.53Suche in Google Scholar

[17] R. A. Dana, A representation result for concave Schur concave functions, Int. J. Math. Stat. Financ. Econ. 15 (2005), no. 4, 613–634. 10.1111/j.1467-9965.2005.00253.xSuche in Google Scholar

[18] G. Dantzig, Linear Programming and Extensions, Princeton University, Princeton, 2016. Suche in Google Scholar

[19] G. M. Davis and K. B. Ensor, Risk: Diversification and performance precursors for stocks, Amer. J. Math. Manag. Sci. 28 (2018), no. 3–4, 255–273. 10.1080/01966324.2008.10737728Suche in Google Scholar

[20] J. Dhaene, M. Denuit, M. J. Goovaerts, R. Kaas and D. Vyncke, The concept of comonotonicity in actuarial science and finance: Theory, Insurance Math. Econom. 31 (2022), no. 1, 3–33. 10.1016/S0167-6687(02)00134-8Suche in Google Scholar

[21] N. Engelhardt, M. Krause, D. Neukirchen and P. N. Posch, Trust and stock market volatility during the COVID-19 crisis, Financ. Res. Lett. 38 (2021), Article ID 101873. 10.1016/j.frl.2020.101873Suche in Google Scholar PubMed PubMed Central

[22] C. I. Fábián, G. Mitra, D. Roman and V. Zverovich, An enhanced model for portfolio choice with SSD criteria: A constructive approach, Quant. Finance 11 (2011), no. 10, 1525–1534. 10.1080/14697680903493607Suche in Google Scholar

[23] L. Favre and J. A. Galeano, Mean-modified value-at-risk optimization with hedge funds, J. Alternative Invest. 5 (2022), no. 2, 21–25. 10.3905/jai.2002.319052Suche in Google Scholar

[24] H. Föllmer and A. Schied, Preface to the third edition, Stochastic Finance, De Gruyter, Berlin (2011), https://www.degruyter.com/document/doi/10.1515/9781478004356-001/html. Suche in Google Scholar

[25] E. Furman, R. Wang and R. Zitikis, Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks, J. Banking & Finance 83 (2017), 70–84. 10.1016/j.jbankfin.2017.06.013Suche in Google Scholar

[26] I. Gilboa and D. Schmeidler, Maxmin expected utility with non-unique prior, J. Math. Econom. 18 (1989), no. 2, 141–153. 10.1016/0304-4068(89)90018-9Suche in Google Scholar

[27] S. Guo, H. Xu and L. Zhang, Probability approximation schemes for stochastic programs with distributionally robust second-order dominance constraints, Optim. Methods Softw. 32 (2017), no. 4, 770–789. 10.1080/10556788.2016.1175003Suche in Google Scholar

[28] B. Grechuk, A. Molyboha and M. Zabarankin, Maximum entropy principle with general deviation measures, Math. Oper. Res. 34 (2009), no. 2, 445–467. 10.1287/moor.1090.0377Suche in Google Scholar

[29] H. Iiduka, Two stochastic optimization algorithms for convex optimization with fixed point constraints, Optim. Methods Softw. 34 (2019), no. 4, 731–757. 10.1080/10556788.2018.1425860Suche in Google Scholar

[30] E. Jondeau, S. H. Poon and M. Rockinger, Financial Modeling Under Non-Gaussian Distributions, Springer, London, 2007. Suche in Google Scholar

[31] H. Konno and H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Manag. Sci. 37 (1991), no. 5, 519–531. 10.1287/mnsc.37.5.519Suche in Google Scholar

[32] S. Kusuoka, On law invariant coherent risk measures, Advances in Mathematical Economics, Springer, Tokyo (2001), 83–95. 10.1007/978-4-431-67891-5_4Suche in Google Scholar

[33] C. Lim, H. D. Sherali and S. Uryasev, Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization, Comput. Optim. Appl. 46 (2010), no. 3, 391–415. 10.1007/s10589-008-9196-3Suche in Google Scholar

[34] H. M. Markowits, Portfolio selection, J. Finance 7 (1952), no. 1, 71–91. 10.1111/j.1540-6261.1952.tb01525.xSuche in Google Scholar

[35] R. D. Martin, S. Z. Rachevand and F. Siboulet, Phi-alpha optimal portfolios and extreme risk management, Wilmott 6 (2003), 70–83. 10.1002/wilm.42820030619Suche in Google Scholar

[36] S. Nickel, C. Steinhardt, H. Schlenker, W. Burkart and M. Reuter-Oppermann, Ibm ilog cplex optimization studio, Angewandte Optimierung mit IBM ILOG CPLEX Optimization Studio, Springer, Berlin (2021), 9–23. 10.1007/978-3-662-62185-1_2Suche in Google Scholar

[37] W. Ogryczak and A. Ruszczyński, On consistency of stochastic dominance and mean-semideviation models, Math. Program. 89 (2001), no. 2, 217–232. 10.1007/PL00011396Suche in Google Scholar

[38] W. Ogryczak and T. Śliwiński, On solving the dual for portfolio selection by optimizing conditional value at risk, Comput. Optim. Appl. 50 (2011), no. 3, 591–595. 10.1007/s10589-010-9321-ySuche in Google Scholar

[39] S. Pisal, Rise of Facebook, Amazon, Apple, Netflix, Google during COVID-19 pandemic, 2021. Suche in Google Scholar

[40] G. G. Polak, D. F. Rogers and D. J. Sweeney, Risk management strategies via minimax portfolio optimization, European J. Oper. Res. 207 (2010), no. 1, 409–419. 10.1016/j.ejor.2010.04.025Suche in Google Scholar

[41] M. O. Rieger, Co-monotonicity of optimal investments and the design of structured financial products, Finance and Stochastics 15 (2011), no. 1, 27–55. 10.1007/s00780-009-0117-9Suche in Google Scholar

[42] R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, J. Risk 2 (2000), 21–42. 10.21314/JOR.2000.038Suche in Google Scholar

[43] L. Rüschendorf, Mathematical Risk Analysis, Springer, Heidelberg, 2013. 10.1007/978-3-642-33590-7Suche in Google Scholar

[44] D. Schmeidler, Integral representation without additivity, Proc. Amer. Math. Soc. 97 (1986), no. 2, 255–261. 10.1090/S0002-9939-1986-0835875-8Suche in Google Scholar

[45] H. D. Sherali, J. Desai and T. S. Glickman, Allocating emergency response resources to minimize risk with equity considerations, Amer. J. Math. Manag. Sci. 24 (2004), no. 3–4, 367–410. 10.1080/01966324.2004.10737638Suche in Google Scholar

[46] P. Soto-Acosta, COVID-19 pandemic: Shifting digital transformation to a high-speed gear, Inform. Syst. Manag. 37 (2020), no. 4, 260–266. 10.1080/10580530.2020.1814461Suche in Google Scholar

[47] P. K. Srivastava and D. C. Bisht, A segregated advancement in the solution of triangular fuzzy transportation problems, Amer. J. Math. Manag. Sci 40 (2021), no. 2, 134–144. 10.1080/01966324.2020.1854137Suche in Google Scholar

[48] R. J. Vanderbei, Linear Programming, Springer, Cham, 2020. 10.1007/978-3-030-39415-8Suche in Google Scholar

[49] W. Wang, W. Li, N. Zhang and K. Liu, Portfolio formation with preselection using deep learning from long-term financial data, Expert Syst. Appl. 143 (2020), Article ID 113042. 10.1016/j.eswa.2019.113042Suche in Google Scholar

[50] J. Z. Wang, J. J. Wang, Z. G. Zhang and S. P. Guo, Forecasting stock indices with back propagation neural network, Expert Syst. Appl. 38 (2011), no. 11, 14346–14355. 10.1016/j.eswa.2011.04.222Suche in Google Scholar

[51] M. E. Yaari, The dual theory of choice under risk, Econometrica 55 (1987), 95–115. 10.2307/1911158Suche in Google Scholar

Received: 2022-12-27
Revised: 2023-08-01
Accepted: 2023-08-16
Published Online: 2023-10-05
Published in Print: 2024-01-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/strm-2023-0001/html
Button zum nach oben scrollen