Startseite Wirtschaftswissenschaften EM algorithm for Markov chains observed via Gaussian noise and point process information: Theory and case studies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

EM algorithm for Markov chains observed via Gaussian noise and point process information: Theory and case studies

  • Camilla Damian , Zehra Eksi und Rüdiger Frey EMAIL logo
Veröffentlicht/Copyright: 21. November 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper we study parameter estimation via the Expectation Maximization (EM) algorithm for a continuous-time hidden Markov model with diffusion and point process observation. Inference problems of this type arise for instance in credit risk modelling. A key step in the application of the EM algorithm is the derivation of finite-dimensional filters for the quantities that are needed in the E-Step of the algorithm. In this context we obtain exact, unnormalized and robust filters, and we discuss their numerical implementation. Moreover, we propose several goodness-of-fit tests for hidden Markov models with Gaussian noise and point process observation. We run an extensive simulation study to test speed and accuracy of our methodology. The paper closes with an application to credit risk: we estimate the parameters of a hidden Markov model for credit quality where the observations consist of rating transitions and credit spreads for US corporations.

MSC 2010: 60G35; 62P05

Funding statement: Camilla Damian and Rüdiger Frey are grateful for the support by the Vienna Science and Technology Fund (WWTF) through project MA14-031.

A EM algorithm for Example 2.2

In what follows we are going to provide the steps of the EM algorithm corresponding to Example 2.2. To this, we need to define new processes due to the dependence of the variates λt+ and λt- on the rating observation Rti. Namely, we define the processes Cjk and Bjk, 1j,kK, with the following:

Bt+,jk=0t1{Rs=ej}Xs,ek𝑑Ds+andCtjk=0t1{Rs=ej}Xs,ek𝑑s.

We can define B-,jk in a similar fashion. Now we have the following likelihood function:

L(θ,θ)=+0tlog(λ+(Xs,Rs))𝑑Ds+-0tλ+(Xs,Rs)𝑑s+0tlog(λ-(Xs,Rs))𝑑Ds--0tλ-(Xs,Rs)𝑑s+R(θ).

Note that we can write

λ+(Xs,Rs)=i=1Kj=1Kλ+,ij1{Rs=ej}Xs,ei.

Hence

L(λ+,λ+)=0tk=1Kj=1Klog(λ+,jk)1{Rs=ej}Xs,ekdDs+-0tk=1Kj=1Kλ+,jk1{Rs=ej}Xs,ekds+R(λ+).

Thus we have

L(λ+,λ+)=k=1Kj=1Klog(λ+,jk)Bt+,jk-k=1Kj=1Kλ+,jkCtjk+R(λ+).

Next we write the filtered estimate of the log-likelihood function:

L(λ+,λ+)^=k=1Kj=1Klog(λ+,jk)Bt+,jk^-k=1Kj=1Kλ+,jkCtjk^+R(λ+).

Hence, we have what is needed for the E-Step. Let us now use the parametrization

λ+,jk=λ1+1{k<j}+λ2+1{k=j}+λ3+1{k>j},1j,kK,k>1.

Hence

L(λ+,λ+)^=k=2Kj=1Klog(λ1+1{k<j}+λ2+1{k=j}+λ3+1{k>j})Bt+,jk^
-k=2Kj=1K(λ1+1{k<j}+λ2+1{k=j}+λ3+1{k>j})Ctjk^+R(λ+).

From the first order conditions we then obtain the following estimates:

λ1+^=j=1K1<k<jKBt+,jk^j=1K1<k<jKCtjk^,λ2+^=k=2KBt+,kk^k=2KCtkk^,λ3+^=j=1Kk>jKBt+,jk^j=1Kk>jKCtjk^.

To apply the algorithm, we need to obtain the filtered estimates for the quantities Ctjk and Btjk, and their robust version. These are computed exactly as in Section 3.

References

[1] S. R. Asmussen, Risk theory in a Markovian environment, Scand. Actuar. J. (1989), no. 2, 69–100. 10.1080/03461238.1989.10413858Suche in Google Scholar

[2] A. Berndt, R. Douglas, D. Duffie, F. Ferguson and D. Schranz, Measuring default risk premia from default swap rates and EDFs, preprint (2008). 10.2139/ssrn.556080Suche in Google Scholar

[3] P. Brémaud, Point Processes and Queues. Martingale Dynamics, Springer, Berlin, 1981. 10.1007/978-1-4684-9477-8Suche in Google Scholar

[4] J. M. C. Clark, The design of robust approximations to the stochastic differential equations of nonlinear filtering, Communication Systems and Random Process Theory, Nato Science Series E: 25, Springer, Berlin (1978), 721–734. 10.1007/978-94-011-7577-7_41Suche in Google Scholar

[5] K. Colaneri, Z. Eksi, R. Frey and M. Szoelgyenyi, Shall I sell or shall I wait: Optimal liquidation under partial information with market impact, preprint (2017), Vienna University of Economics and Business. 10.2139/ssrn.2916154Suche in Google Scholar

[6] R. Cont, Statistical modeling of high-frequency financial data, IEEE Signal Process. Mag. 28 (2011), no. 5, 16–25. 10.1109/MSP.2011.941548Suche in Google Scholar

[7] A. Dembo and O. Zeitouni, Parameter estimation of partially observed continuous time stochastic processes via the EM algorithm, Stochastic Process. Appl. 23 (1986), no. 1, 91–113. 10.1016/0304-4149(86)90018-9Suche in Google Scholar

[8] A. P. Dempster, N. M. Laird and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Statist. Soc. Ser. B 39 (1977), no. 1, 1–38. 10.1111/j.2517-6161.1977.tb01600.xSuche in Google Scholar

[9] R. J. Elliott, New finite-dimensional filters and smoothers for noisily observed Markov chains, IEEE Trans. Inform. Theory 39 (1993), no. 1, 265–271. 10.1109/18.179372Suche in Google Scholar

[10] R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models. Estimation and Control, Appl. Math. (New York) 29, Springer, New York, 1995. Suche in Google Scholar

[11] R. J. Elliott and W. P. Malcolm, Discrete-time expectation maximization algorithms for Markov-modulated Poisson processes, IEEE Trans. Automat. Control 53 (2008), no. 1, 247–256. 10.1109/TAC.2007.914305Suche in Google Scholar

[12] R. Frey and W. J. Runggaldier, A nonlinear filtering approach to volatility estimation with a view towards high frequency data, Int. J. Theor. Appl. Finance 4 (2001), no. 2, 199–210. 10.1142/S021902490100095XSuche in Google Scholar

[13] R. Frey and T. Schmidt, Pricing and hedging of credit derivatives via the innovations approach to nonlinear filtering, Finance Stoch. 16 (2012), no. 1, 105–133. 10.1007/s00780-011-0153-0Suche in Google Scholar

[14] M. R. James, V. Krishnamurthy and F. Le Gland, Time discretization of continuous-time filters and smoothers for HMM parameter estimation, IEEE Trans. Inform. Theory 42 (1996), no. 2, 593–605. 10.1109/18.485727Suche in Google Scholar

[15] M. G. W. Korolkiewicz and R. J. Elliott, A hidden Markov model of credit quality, J. Econom. Dynam. Control 32 (2008), no. 12, 3807–3819. 10.1016/j.jedc.2008.03.006Suche in Google Scholar

[16] R. S. Mamon and R. J. Elliott, Hidden Markov Models in Finance, Internat. Ser. Oper. Res. Management Sci. 104, Springer, New York, 2007. 10.1007/0-387-71163-5Suche in Google Scholar

[17] R. S. Mamon and R. J. Elliott (eds.), Hidden Markov Models in Finance. Further Developments and Applications. Vol. II, Internat. Ser. Oper. Res. Management Sci. 209, Springer, New York, 2014. 10.1007/978-1-4899-7442-6Suche in Google Scholar

[18] A. J. McNeil, R. Frey and P. Embrechts, Quantitative Risk Management. Concepts, Techniques and Tools, revised ed., Princeton Ser. Finance, Princeton University Press, Princeton, 2015. Suche in Google Scholar

[19] P. Protter, Stochastic Integration and Differential Equations. A new Approach, Appl. Math. (New York) 21, Springer, Berlin, 1990. 10.1007/978-3-662-02619-9Suche in Google Scholar

[20] U. Rieder and N. Bäuerle, Portfolio optimization with unobservable Markov-modulated drift process, J. Appl. Probab. 42 (2005), no. 2, 362–378. 10.1017/S0021900200000401Suche in Google Scholar

[21] J. Sass and U. G. Haussmann, Optimizing the terminal wealth under partial information: The drift process as a continuous time Markov chain, Finance Stoch. 8 (2004), no. 4, 553–577. 10.1007/s00780-004-0132-9Suche in Google Scholar

[22] H. Schmidli, Cramér–Lundberg approximations for ruin probabilities of risk processes perturbed by diffusion, Insurance Math. Econom. 16 (1995), no. 2, 135–149. 10.1016/0167-6687(95)00003-BSuche in Google Scholar

Received: 2017-6-26
Revised: 2017-10-22
Accepted: 2017-10-23
Published Online: 2017-11-21
Published in Print: 2018-1-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/strm-2017-0021/pdf
Button zum nach oben scrollen