Startseite Monetary Policy and the Top 10%: A Time-Series Analysis Using ARDL and ECM
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Monetary Policy and the Top 10%: A Time-Series Analysis Using ARDL and ECM

  • Nadeen Omar ORCID logo EMAIL logo und Christian Richter
Veröffentlicht/Copyright: 17. November 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

For the past decades, income inequality has been on the rise, and so is the frequency of its mentions in recent speeches by central bankers. With the heightened importance of the topic, this research aims to study the impact of monetary policy on income inequality. The study used dynamic models for the analysis, namely; the Error-correction Model (ECM) and the Auto-regressive Distributed Lag (ARDL) model to determine the relationship in both the short- and long-run. The data used were the top 10% income share and the short-term interest rate. Our main hypothesis is that changes in the short-term interest rate have a significant impact on the top 10% income share. We draw time-series evidence from a sample of nine economies at different stages of development: United States, United Kingdom, Russia, Germany, France, Greece, China, South Africa and Chile. The findings support the hypothesis with interestingly varying effects across our sample. These results provide important implications that can contribute in bettering policy setting and add to the discussion of the role of central banks in reducing income inequality.


Corresponding author: Nadeen Omar, German University in Cairo, Cairo, Egypt, E-mail:

Appendix

Table 1:

A Review of empirical studies on monetary policy and income inequality.

Study Country Period Method Monetary policy change Impact on inequality
Contractionary monetary policy increases income inequality
Coibion et al. (2017) US 1980–2008 Local projections Contractionary Increases inequality
Guerello (2017) Euro area 2001–2015 VAR Expansionary and QE Decreases inequality
Mumtaz and Theophilopoulou (2017) U.K. 1969–2012 Structural VAR Contractionary Increases inequality
Furceri, Loungani, and Zdzienicka (2018) Thirty two advanced and emerging economies 1990–2013 IRF from local projections Contractionary Increases inequality
Casiraghi et al. (2018) Italy 2011–2013 Micro-simulation QE/UMP Decreases inequality
Lenza and Slacalek (2018) France, Germany, Italy, and Spain 1999Q1–2016Q4 BVAR and micro-simulation QE/UMP Decreases inequality
Contractionary monetary policy decreases income inequality
Saiki and Frost (2014) Japan 2008Q4–2013Q3 VAR UMP Increases inequality
Villarreal (2014) Mexico 2003–2012 Local projections Contractionary Decreases inequality
O’Farrell, Rawdanowicz, and Inaba (2017) Eight OECD countries 2007–2012 Micro-simulation Expansionary Decrease in U.S., Canada, and The Netherlands.

Increase in European economies.
Davtyan (2017) US 1983–2012 VECM Contractionary Decreases inequality
Inui, Sudou, and Yamada (2017) Japan 1981–2008 Local projections Expansionary Increases inequality
El Herradi and Leroy (2019) Twelve advanced economies 1920–2015 Panel VAR and a single-equation model with local projections Expansionary Increases inequality
Cloyne, Ferreira, and Surico (2020) U.S. and U.K. U.S.: 1981–2007 U.K.: 1975–2007 Romer and Romer (2004) procedure Expansionary Increases inequality
Dolado, Motyovszki, and Pappa (2021) U.S. 1979M1–2016M6 NK-SAM frictions Expansionary Increases inequality
Table 2:

Data sample (maximum no. of years obtained).

Country Short-term interest rate Top 10% income share
United States 1971Q1–2014Q1 1971Q1–2014Q1
United Kingdom 1986Q1–2016Q1 1986Q1–2016Q1
Germany 1980Q1–2016Q1 1980Q1–2016Q1
France 1980Q1–2016Q1 1980Q1–2014Q1
Russia 1997Q1–2015Q1 1997Q1–2015Q1
China 1997Q3–2015Q1 2000Q1–2015Q1
Greece 1994Q2–2016Q1 1994Q2–2016Q1
Chile 2004Q1–2015Q1 2004Q1–2015Q1
South Africa 1990Q1–2017Q1 1990Q1–2017Q1
Table 3:

ECM results.

Country United States United Kingdom France Russia South Africa
Sample (adjusted for lags)
1983Q2–2014Q1 (124 obs.)
1988Q4–2016Q1 (110 obs.)
1980Q2–2014Q1 (136 obs.)
1999Q4–2015Q1 (62 obs.)
1998Q2–2017Q1 (76 obs.)
Dependent variable
∆ TOP10 t
∆ TOP10 t
∆ TOP10 t
∆ TOP10 t
∆ TOP10 t
C 0.003484 (0.000626)
∆ TOP10t−1 3.069507 (0.027505) 2.850251 (0.077547) 2.687615 (0.048233) 2.216673 (0.044591) 2.607693 (0.100118)
∆ TOP10t − 2 −3.507040 (0.066480) −3.091203 (0.169356) −2.758519 (0.095373) −1.679066 (0.101785) −2.683514 (0.196039)
∆ TOP10t − 3 1.780913 (0.073060) 1.343358 (0.125373) 1.185464 (0.093372) 0.315829 (0.108222) 1.273684 (0.144435)
∆ TOP10t − 4 −1.416347 (0.066476) −1.027340 (0.086095) −0.844045 (0.110127) −0.924713 (0.109331) −1.046205 (0.144255)
∆ TOP10t − 5 3.167672 (0.077325) 2.731838 (0.188359) 1.971114 (0.159059) 2.264273 (0.129471) 2.272839 (0.360903)
∆ TOP10t − 6 −3.553632 (0.086904) −2.996910 (0.219878) −2.025221 (0.156287) −1.521462 (0.080852) −2.321162 (0.368091)
∆ TOP10t − 7 1.744711 (0.066798) 1.206523 (0.117157) 0.779942 (0.065758) 0.936600 (0.146428)
∆ TOP10t − 8 −0.314812 (0.024782)
∆ TOP10t − 9 0.561536 (0.040360)
∆ TOP10t−10 −0.077403 (0.019266) −0.030570 (0.009727) −0.342708 (0.031460) −0.052637 (0.015793)
∆ INTQt −0.006064 (0.002488) −0.001521 (0.000546) −0.003683 (0.001055) −0.005516 (0.002427)
∆ INTQt−1
∆ INTQt − 2
∆ INTQt − 3
∆ INTQt − 4 0.004123es (0.001333) 0.005475 (0.002181)
∆ INTQt − 5 −0.003070 (0.000980)
∆ INTQt − 6
∆ INTQt − 7
∆ INTQt − 8
∆ INTQt − 9
∆ INTQt−10
ECTt−1 −0.001209 (0.000378) −0.006665 (0.003142) −0.005405 (0.001560) −0.010685 (0.002640) −0.020039 (0.005204)
Dummy (structural break) 0.099635 (0.010137)
Dummy (positive outliers) 0.045437 (0.002122) 0.032248 (0.006218) 0.068294 (0.004460)
Dummy (negative outliers) −0.036881 (0.003007) −0.024497 (0.004016) −0.069292 (0.010583)
R 2 0.999428 0.996525 0.997652 0.998346 0.995790
Adjusted R 2 0.999366 0.996134 0.997423 0.997982 0.995216
DW statistic 1.717920 1.932719 1.722462 1.775729 2.038342
S.E. of regression 0.004759 0.019425 0.007491 0.021650 0.021622
LR coefficient −0.972296 −0.298378 −0.282019 −0.153883 −0.271646
  1. *All variables included are statistically significant at 5% and all models were checked for autocorrelation and heteroscedasticity; es, exponential smoothing; – = does not apply; () includes standard error of the coefficients.

Table 4:

ARDL results.

Country Germany Chile China Greece
Sample (adjusted for lags) 1982Q4–2016Q1 (134 obs.) 2006Q1–2013Q4 (32 obs.) 2001Q1–2015Q1 (57 obs.) 1996Q4–2016Q1 (78 obs.)
Dependent variable ∆ TOP10t TOP10t TOP10t TOP10t
C 0.073485 (0.013304) 2.788105 (0.718769) 0.477802 (0.176245) 0.110691 (0.035428)
∆ TOP10t − 1 TOP10t − 1 2.854849 (0.045755) −0.002075 (0.000385) 3.311579 (0.106029) 3.184963 (0.099578) 3.834818 (0.095365)
TOP10t − 2 −3.278517d (0.118984) −4.588927 (0.296774) −4.161875 (0.266475) −5.945079 (0.290375)
TOP10t − 3 1.854910d (0.148515) 3.244637 (0.318631) 2.774067 (0.267643) 4.609347 (0.351702)
TOP10t − 4 −1.370045d (0.132456) −1.969754 (0.262054) −1.810678 (0.243627) −2.588678 (0.216820)
TOP10t − 5 2.430210d (0.183737) 2.923204 (0.678437) 2.949491 (0.491562) 3.552954 (0.334263)
TOP10t − 6 −2.473322d (0.171131) −3.841791 (0.812115) −3.648765 (0.556677) −5.197256 (0.541891)
TOP10t − 7 1.012991d (0.072736) 2.578326 (0.496640) 2.284748 (0.337455) 3.975559 (0.441095)
TOP10t − 8 −0.709429 (0.132110) −0.583060 (0.090101) −1.320391 (0.166938)
TOP10t − 9
TOP10t − 10 −0.070621d (0.008695) 0.075064 (0.016402)
INTQt −0.028260es (0.006763)
INTQt − 1 0.027289es (0.008891)
INTQt − 2
INTQt − 3 −0.001538 (0.000316)
INTQt − 4 −0.036627es (0.015661)
INTQt − 5 0.041975es (0.018506)
INTQt − 6
INTQt − 7 0.009236 (0.002968) 0.003854 (0.001735)
INTQt − 8 0.004111 (0.001656)
INTQt − 9 −0.039254es (0.014066)
INTQt − 10 0.032643es (0.011380)
Dummy (structural break)
Dummy (positive outliers) 0.028010 (0.003339)
Dummy (negative outliers) −0.015255 (0.002494)
R 2 0.998605 0.999010 0.999934 0.999923
Adjusted R 2 0.998467 0.998605 0.999912 0.999911
DW statistic 1.901167 2.255174 2.077281 2.089316
S.E. of regression 0.007113 0.036217 0.013092 0.016293
Steady state −0.7412048 0.179557 −0.201098 0.07018
  1. *All variables included are statistically significant at 5% and all models were checked for autocorrelation and heteroscedasticity; d, differenced dependent variable lag; es, exponential smoothing; – = does not apply; () includes the standard error of the coefficients.

Figure 1: 
Methodological approach.
Figure 1:

Methodological approach.

References

Ajani, H. A. 1978. “Quarterly Interpolation of Constant Price Gross Domestic Product of Nigeria-1963/64-1972/73.” Economic and Financial Review 16 (2): 2.Suche in Google Scholar

Ajao, I. O., A. G. Ibraheem, and F. J. Ayoola. 2012. “Cubic Spline Interpolation: A Robust Method of Disaggregating Annual Data to Quarterly Series.” Journal of Physical Sciences and Environmental Safety 2 (1): 1–8.Suche in Google Scholar

Bernanke, B. S. 2015. Monetary Policy and Inequality. Economic Commentary (Federal Reserve Bank of Cleveland). Also available at https://www.brookings.edu/blog/ben-bernanke/2015/06/01/monetary-policy-and-inequality/.Suche in Google Scholar

Casiraghi, M., E. Gaiotti, L. Rodano, and A. Secchi. 2018. “A “Reverse Robin Hood”? The Distributional Implications of Non-Standard Monetary Policy for Italian Households.” Journal of International Money and Finance 85: 215–35, https://doi.org/10.1016/j.jimonfin.2017.11.006.Suche in Google Scholar

Cloyne, J., C. Ferreira, and P. Surico. 2020. “Monetary Policy when Households Have Debt: New Evidence on the Transmission Mechanism.” The Review of Economic Studies 87 (1): 102–29, https://doi.org/10.1093/restud/rdy074.Suche in Google Scholar

Coibion, O., Y. Gorodnichenko, L. Kueng, and J. Silvia. 2017. “Innocent Bystanders? Monetary Policy and Inequality.” Journal of Monetary Economics 88: 70–89, https://doi.org/10.1016/j.jmoneco.2017.05.005.Suche in Google Scholar

Davtyan, K. 2017. “The Distributive Effect of Monetary Policy: The Top One Percent Makes the Difference.” Economic Modelling 65: 106–18, https://doi.org/10.1016/j.econmod.2017.05.011.Suche in Google Scholar

Dolado, J. J., G. Motyovszki, and E. Pappa. 2021. “Monetary Policy and Inequality Under Labor Market Frictions and Capital-Skill Complementarity.” American Economic Journal: Macroeconomics 13 (2): 292–332, https://doi.org/10.1257/mac.20180242.Suche in Google Scholar

El Herradi, M., and A. Leroy. 2019. “Monetary Policy and the Top One Percent: Evidence from a Century of Modern Economic History.” De Nederlandsche Bank Working Paper (Issue 632), 1–40, https://doi.org/10.2139/ssrn.3379740.Suche in Google Scholar

Furceri, D., P. Loungani, and A. Zdzienicka. 2018. “The Effects of Monetary Policy Shocks on Inequality.” Journal of International Money and Finance 85: 168–86, https://doi.org/10.1016/j.jimonfin.2017.11.004.Suche in Google Scholar

Galli, R., and R. Van der Hoeven. 2001. Is Inflation Bad for Income Inequality: The Importance of the Initial Rate of Inflation. ILO Employment Paper. No. 2001/29. Suche in Google Scholar

Guerello, C. 2017. “Conventional and Unconventional Monetary Policy vs. Households Income Distribution: An Empirical Analysis for the Euro Area.” Journal of International Money and Finance 85: 187–214, https://doi.org/10.1016/j.jimonfin.2017.11.005.Suche in Google Scholar

Inui, M., N. Sudo, and T. Yamada. 2017. “The Effects of Monetary Policy Shocks on Inequality in Japan.” Bank of Japan Working Paper 17-E-3, Bank of Japan, Tokyo.Suche in Google Scholar

Lenza, M., and J. Slacalek. 2018. “How Does Monetary Policy Affect Income and Wealth Inequality? Evidence from Quantitative Easing in the Euro Area.” In ECB Working Paper Series (Issue 2190). Frankfurt a. M.: European Central Bank (ECB), http://dx.doi.org/10.2866/414435.10.2139/ssrn.3275976Suche in Google Scholar

Monnin, P. 2017. “Monetary Policy, Macroprudential Regulation and Inequality.” Council on Economic Policies Discussion Note, 12 April 2017, https://doi.org/10.2139/ssrn.2970459.Suche in Google Scholar

Mumtaz, H., and A. Theophilopoulou. 2017. “The Impact of Monetary Policy on Inequality in the UK. An Empirical Analysis.” European Economic Review 98: 410–23, https://doi.org/10.1016/j.euroecorev.2017.07.008.Suche in Google Scholar

O’Farrell, R., and L. Rawdanowicz. 2017. “Monetary Policy and Inequality: Financial Channels.” International Finance 20 (2): 174–88, https://doi.org/10.1111/infi.12108.Suche in Google Scholar

Romer, C. D., and D. H. Romer. 1989. “Does Monetary Policy Matter? A New Test in the Spirit of Friedman and Schwartz.” NBER Macroeconomics Annual 4: 121–70, https://doi.org/10.1086/654103.Suche in Google Scholar

Romer, C. D., and D. H. Romer. 2004. “A New Measure of Monetary Shocks: Derivation and Implications.” American Economic Review 94 (4): 1055–84, doi:https://doi.org/10.1257/0002828042002651.Suche in Google Scholar

Saiki, A., and J. Frost. 2014. “Does Unconventional Monetary Policy Affect Inequality? Evidence from Japan.” Applied Economics 46 (36): 4445–54, https://doi.org/10.1080/00036846.2014.962229.Suche in Google Scholar

Villarreal, F. G. 2014. Monetary Policy and Inequality in Mexico. MPRA Paper 57074. Online at http://mpra.ub.uni-muenchen.de/57074/.Suche in Google Scholar

Received: 2021-07-31
Accepted: 2021-10-22
Published Online: 2021-11-17
Published in Print: 2021-12-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/spp-2021-0019/html
Button zum nach oben scrollen