Startseite A Test for Time-Varying Smooth Transition Conditional Covariance Models in Multivariate Time Series
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Test for Time-Varying Smooth Transition Conditional Covariance Models in Multivariate Time Series

  • Bilel Sanhaji ORCID logo EMAIL logo
Veröffentlicht/Copyright: 15. April 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper introduces a novel test designed to assess the validity of time-varying smooth transition conditional covariance models. We develop a model driven by five scalar parameters in order to build the Lagrange Multiplier test within the framework of multivariate conditional heteroskedastic time series models with smooth transition functions. We detail the development of these tests, emphasizing their applicability. The methodology is scrutinized through Monte Carlo simulations, providing insights into its finite sample properties. Additionally, empirical illustrations underscore the practical relevance of the proposed tests, demonstrating their efficiency in capturing time-varying smooth transitions within financial datasets.

JEL Classification: C12; C32; C52; C58

Corresponding author: Bilel Sanhaji, Université Paris 8, LED, Saint-Denis, France, E-mail: 

References

Almeida, D. de, L. K. Hotta, and E. Ruiz. 2018. “MGARCH Models: Trade-Off between Feasibility and Flexibility.” International Journal of Forecasting 34 (1): 45–63. https://doi.org/10.1016/j.ijforecast.2017.08.003.Suche in Google Scholar

Amado, C., A. Silvennoinen, and T. Teräsvirta. 2019. “Models with Multiplicative Decomposition of Conditional Variances and Correlations.” In Financial Mathematics, Volatility and Covariance Modelling, 217–60. London: Routledge.10.4324/9781315162737-10Suche in Google Scholar

Amado, C., and T. Teräsvirta. 2013. “Modelling Volatility by Variance Decomposition.” Journal of Econometrics 175 (2): 142–53. https://doi.org/10.1016/j.jeconom.2013.03.006.Suche in Google Scholar

Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard. 2011. “Multivariate Realised Kernels: Consistent Positive Semi-definite Estimators of the Covariation of Equity Prices with Noise and Non-synchronous Trading.” Journal of Econometrics 162 (2): 149–69. https://doi.org/10.1016/j.jeconom.2010.07.009.Suche in Google Scholar

Bauwens, L., S. Laurent, and J. Rombouts. 2006. “Multivariate GARCH Models: A Survey.” Journal of Applied Econometrics 21: 79–109. https://doi.org/10.1002/jae.842.Suche in Google Scholar

Boudt, K., J. Danielsson, and S. Laurent. 2013. “Robust Forecasting of Dynamic Conditional Correlation GARCH Models.” International Journal of Forecasting 29 (2): 244–57. https://doi.org/10.1016/j.ijforecast.2012.06.003.Suche in Google Scholar

Boudt, K., A. Galanos, S. Payseur, and E. Zivot. 2019. “Multivariate GARCH Models for Large-Scale Applications: A Survey.” In Handbook of Statistics, Vol. 41, 193–242. Elsevier. https://doi.org/10.1016/bs.host.2019.01.001.Suche in Google Scholar

Campos-Martins, S., and C. Amado. 2021. “Modelling Time-Varying Volatility Interactions.” Working Paper, SSRN: https://ssrn.com/abstract=4573593.Suche in Google Scholar

Caporin, M., and M. McAleer. 2008. “Scalar BEKK and Indirect DCC.” Journal of Forecasting 27 (6): 537–49. https://doi.org/10.1002/for.1074.Suche in Google Scholar

Caporin, M., and M. McAleer. 2012. “Do We Really Need Both BEKK and DCC? A Tale of Two Multivariate GARCH Models.” Journal of Economic Surveys 26 (4): 736–51. https://doi.org/10.1111/j.1467-6419.2011.00683.x.Suche in Google Scholar

Chang, C.-L., C.-P. Liu, and M. McAleer. 2019. “Volatility Spillovers for Spot, Futures, and ETF Prices in Agriculture and Energy.” Energy Economics 81: 779–92. https://doi.org/10.1016/j.eneco.2019.04.017.Suche in Google Scholar

Chen, B., and Y. Hong. 2016. “Detecting for Smooth Structural Changes in GARCH Models.” Econometric Theory 32 (3): 740–91. https://doi.org/10.1017/s0266466614000942.Suche in Google Scholar

Christoffersen, P., V. Errunza, K. Jacobs, and X. Jin. 2014. “Correlation Dynamics and International Diversification Benefits.” International Journal of Forecasting 30 (3): 807–24. https://doi.org/10.1016/j.ijforecast.2014.01.001.Suche in Google Scholar

Comte, F., and O. Lieberman. 2003. “Asymptotic Theory for Multivariate GARCH Processes.” Journal of Multivariate Analysis 84: 61–84. https://doi.org/10.1016/s0047-259x(02)00009-x.Suche in Google Scholar

Ding, Z., and R. Engle. 2001. “Large Scale Conditional Covariance Matrix Modeling, Estimation and Testing.” Working Paper FIN-01-029, NYU Stern School of Business.Suche in Google Scholar

Engle, R. 2002. “Dynamic Conditional Correlation – a Simple Class of Multivariate GARCH Models.” Journal of Business & Economic Statistics 20: 339–50. https://doi.org/10.1198/073500102288618487.Suche in Google Scholar

Engle, R., and F. Kroner. 1995. “Multivariate Simultaneous Generalized ARCH.” Econometric Theory 11: 122–50. https://doi.org/10.1017/s0266466600009063.Suche in Google Scholar

Gao, J., B. Peng, W. B. Wu, and Y. Yan. 2024. “Time-varying Multivariate Causal Processes.” Journal of Econometrics 240 (1): 105671. https://doi.org/10.1016/j.jeconom.2024.105671.Suche in Google Scholar

Hafner, C., and A. Preminger. 2009. “On Asymptotic Theory for Multivariate GARCH Models.” Journal of Multivariate Analysis 100 (9): 2044–54. https://doi.org/10.1016/j.jmva.2009.03.011.Suche in Google Scholar

Hall, A. D., A. Silvennoinen, and T. Teräsvirta. 2023. “Building Multivariate Time-Varying Smooth Transition Correlation GARCH Models, with an Application to the Four Largest Australian Banks.” Econometrics 11 (1). https://doi.org/10.3390/econometrics11010005.Suche in Google Scholar

Lee, T.-H., and X. Long. 2009. “Copula-based Multivariate GARCH Model with Uncorrelated Dependent Errors.” Journal of Econometrics 150 (2): 207–18. https://doi.org/10.1016/j.jeconom.2008.12.008.Suche in Google Scholar

Luukkonen, R., P. Saikkonen, and T. Teräsvirta. 1988. “Testing Linearity against Smooth Transition Autoregressive Models.” Biometrika 75 (3): 491–9. https://doi.org/10.1093/biomet/75.3.491.Suche in Google Scholar

Noureldin, D., N. Shephard, and K. Sheppard. 2014. “Multivariate Rotated ARCH Models.” Journal of Econometrics 179 (1): 16–30. https://doi.org/10.1016/j.jeconom.2013.10.003.Suche in Google Scholar

Pakel, C., N. Shephard, K. Sheppard, and R. F. Engle. 2021. “Fitting Vast Dimensional Time-Varying Covariance Models.” Journal of Business & Economic Statistics 39 (3): 652–68. https://doi.org/10.1080/07350015.2020.1713795.Suche in Google Scholar

Pedersen, R. S., and A. Rahbek. 2014. “Multivariate Variance Targeting in the BEKK-GARCH Model.” The Econometrics Journal 17 (1): 24–55. https://doi.org/10.1111/ectj.12019.Suche in Google Scholar

Péguin-Feissolle, A., and B. Sanhaji. 2016. “Tests of the Constancy of Conditional Correlations of Unknown Functional Form in Multivariate GARCH Models.” Annals of Economics and Statistics 123/124: 77–101. https://doi.org/10.15609/annaeconstat2009.123-124.0077.Suche in Google Scholar

Phillips, P. C., D. Li, and J. Gao. 2017. “Estimating Smooth Structural Change in Cointegration Models.” Journal of Econometrics 196 (1): 180–95. https://doi.org/10.1016/j.jeconom.2016.09.013.Suche in Google Scholar

Sanhaji, B. 2017. “Testing for Nonlinearity in Conditional Covariances.” Journal of Time Series Econometrics 9 (2): 20160010. https://doi.org/10.1515/jtse-2016-0010.Suche in Google Scholar

Silvennoinen, A., and T. Teräsvirta. 2009a. “Modeling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH Model.” Journal of Financial Econometrics 7 (4): 373–411. https://doi.org/10.1093/jjfinec/nbp013.Suche in Google Scholar

Silvennoinen, A., and T. Teräsvirta. 2009b. “Multivariate GARCH Models.” In Handbook of Financial Time Series, 201–29. Springer.10.1007/978-3-540-71297-8_9Suche in Google Scholar

Silvennoinen, A., and T. Teräsvirta. 2015. “Modeling Conditional Correlations of Asset Returns: A Smooth Transition Approach.” Econometric Reviews 34 (1–2): 174–97. https://doi.org/10.1080/07474938.2014.945336.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/snde-2023-0109).


Received: 2023-12-03
Accepted: 2025-03-07
Published Online: 2025-04-15

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 12.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/snde-2023-0109/html
Button zum nach oben scrollen