Startseite A novel individualized drug repositioning approach for predicting personalized candidate drugs for type 1 diabetes mellitus
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A novel individualized drug repositioning approach for predicting personalized candidate drugs for type 1 diabetes mellitus

  • Hong Zheng EMAIL logo
Veröffentlicht/Copyright: 9. Juli 2019

Abstract

The existence of high cost-consuming and high rate of drug failures suggests the promotion of drug repositioning in drug discovery. Existing drug repositioning techniques mainly focus on discovering candidate drugs for a kind of disease, and are not suitable for predicting candidate drugs for an individual sample. Type 1 diabetes mellitus (T1DM) is a disorder of glucose homeostasis caused by autoimmune destruction of the pancreatic β-cell. Here, we present a novel single sample drug repositioning approach for predicting personalized candidate drugs for T1DM. Our method is based on the observation of drug-disease associations by measuring the similarities of individualized pathway aberrance induced by disease and various drugs using a Kolmogorov-Smirnov weighted Enrichment Score algorithm. Using this method, we predicted several underlying candidate drugs for T1DM. Some of them have been reported for the treatment of diabetes mellitus, and some with a current indication to treat other diseases might be repurposed to treat T1DM. This study conducts drug discovery via detecting the functional connections among disease and drug action, on a personalized or customized basis. Our framework provides a rational way for systematic personalized drug discovery of complex diseases and contributes to the future application of custom therapeutic decisions.

  1. Conflict of interest statement: The authors declare that there is no conflict of interest that could be perceived as prejudicial to the impartiality of the reported research.

References

Ahn, T., E. Lee, N. Huh and T. Park (2014): “Personalized identification of altered pathways in cancer using accumulated normal tissue data,” Bioinformatics, 30, i422–429.10.1093/bioinformatics/btu449Suche in Google Scholar PubMed PubMed Central

Ashburn, T. T. and K. B. Thor (2004): “Drug repositioning: identifying and developing new uses for existing drugs,” Nat. Rev. Drug Discov, 3, 673–683.10.1038/nrd1468Suche in Google Scholar PubMed

Benjamini, Y. and Y. Hochberg (1995): “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” J. R. Stat. Soc. B, 57, 289–300.10.1111/j.2517-6161.1995.tb02031.xSuche in Google Scholar

Boguski, M. S., K. D. Mandl and V. P. Sukhatme (2009): “Drug discovery. Repurposing with a difference,” Science, 324, 1394–1395.10.1126/science.1169920Suche in Google Scholar PubMed

Cochrane, G., R. Akhtar, P. Aldebert, N. Althorpe, A. Baldwin, K. Bates, S. Bhattacharyya, J. Bonfield, L. Bower, P. Browne, M. Castro, T. Cox, F. Demiralp, R. Eberhardt, N. Faruque, G. Hoad, M. Jang, T. Kulikova, A. Labarga, R. Leinonen, S. Leonard, Q. Lin, R. Lopez, D. Lorenc, H. McWilliam, G. Mukherjee, F. Nardone, S. Plaister, S. Robinson, S. Sobhany, R. Vaughan, D. Wu, W. Zhu, R. Apweiler, T. Hubbard and E. Birney (2008): “Priorities for nucleotide trace, sequence and annotation data capture at the Ensembl Trace Archive and the EMBL Nucleotide Sequence Database,” Nucleic Acids Res., 36, D5–12.10.1093/nar/gkm1018Suche in Google Scholar PubMed PubMed Central

Comino-Mendez, I., F. J. Gracia-Aznarez, F. Schiavi, I. Landa, L. J. Leandro-Garcia, R. Leton, E. Honrado, R. Ramos-Medina, D. Caronia, G. Pita, A. Gomez-Grana, A. A. de Cubas, L. Inglada-Perez, A. Maliszewska, E. Taschin, S. Bobisse, G. Pica, P. Loli, R. Hernandez-Lavado, J. A. Diaz, M. Gomez-Morales, A. Gonzalez-Neira, G. Roncador, C. Rodriguez-Antona, J. Benitez, M. Mannelli, G. Opocher, M. Robledo and A. Cascon (2011): “Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma,” Nat. Genet., 43, 663–667.10.1038/ng.861Suche in Google Scholar PubMed

Dai, M., P. Wang, A. D. Boyd, G. Kostov, B. Athey, E. G. Jones, W. E. Bunney, R. M. Myers, T. P. Speed, H. Akil, S. J. Watson and F. Meng (2005): “Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data,” Nucleic Acids Res., 33, e175.10.1093/nar/gni179Suche in Google Scholar PubMed PubMed Central

Dopazo, J. (2014): “Genomics and transcriptomics in drug discovery,” Drug Discov. Today, 19, 126–132.10.1016/j.drudis.2013.06.003Suche in Google Scholar PubMed

Gautier, L., L. Cope, B. M. Bolstad and R. A. Irizarry (2004): “Affy–analysis of Affymetrix GeneChip data at the probe level,” Bioinformatics, 20, 307–315.10.1093/bioinformatics/btg405Suche in Google Scholar PubMed

Glazko, G. V. and F. Emmert-Streib (2009): “Unite and conquer: univariate and multivariate approaches for finding differentially expressed gene sets,” Bioinformatics, 25, 2348–2354.10.1093/bioinformatics/btp406Suche in Google Scholar PubMed PubMed Central

Hartwell, L. H., J. J. Hopfield, S. Leibler and A. W. Murray (1999): “From molecular to modular cell biology,” Nature, 402, C47–C52.10.1038/35011540Suche in Google Scholar PubMed

Herold, K. C., W. Hagopian, J. A. Auger, E. Poumian-Ruiz, L. Taylor, D. Donaldson, S. E. Gitelman, D. M. Harlan, D. Xu, R. A. Zivin and J. A. Bluestone (2002): “Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus,” N. Engl. J. Med., 346, 1692–1698.10.1056/NEJMoa012864Suche in Google Scholar PubMed

Kanehisa, M., Y. Sato, M. Kawashima, M. Furumichi and M. Tanabe (2016): “KEGG as a reference resource for gene and protein annotation,” Nucleic Acids Res., 44, D457–D462.10.1093/nar/gkv1070Suche in Google Scholar PubMed PubMed Central

Keiser, M. J., V. Setola, J. J. Irwin, C. Laggner, A. I. Abbas, S. J. Hufeisen, N. H. Jensen, M. B. Kuijer, R. C. Matos, T. B. Tran, R. Whaley, R. A. Glennon, J. Hert, K. L. Thomas, D. D. Edwards, B. K. Shoichet and B. L. Roth (2009): “Predicting new molecular targets for known drugs,” Nature, 462, 175–181.10.1038/nature08506Suche in Google Scholar PubMed PubMed Central

Kotelnikova, E., A. Yuryev, I. Mazo and N. Daraselia (2010): “Computational approaches for drug repositioning and combination therapy design,” J. Bioinform. Comput. Biol., 8, 593–606.10.1142/S0219720010004732Suche in Google Scholar PubMed

Lamb, J., E. D. Crawford, D. Peck, J. W. Modell, I. C. Blat, M. J. Wrobel, J. Lerner, J. P. Brunet, A. Subramanian, K. N. Ross, M. Reich, H. Hieronymus, G. Wei, S. A. Armstrong, S. J. Haggarty, P. A. Clemons, R. Wei, S. A. Carr, E. S. Lander and T. R. Golub (2006): “The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease,” Science, 313, 1929–1935.10.1126/science.1132939Suche in Google Scholar PubMed

Li, J., X. Zhu and J. Y. Chen (2009): “Building disease-specific drug-protein connectivity maps from molecular interaction networks and PubMed abstracts,” PLoS Comput. Biol., 5, e1000450.10.1371/journal.pcbi.1000450Suche in Google Scholar PubMed PubMed Central

Miller, S. A. and E. St Onge (2011): “Otelixizumab: a novel agent for the prevention of type 1 diabetes mellitus,” Expert Opin. Biol. Ther., 11, 1525–1532.10.1517/14712598.2011.610789Suche in Google Scholar PubMed

Napolitano, F., F. Sirci, D. Carrella and D. di Bernardo (2016): “Drug-set enrichment analysis: a novel tool to investigate drug mode of action,” Bioinformatics, 32, 235–241.10.1093/bioinformatics/btv536Suche in Google Scholar PubMed PubMed Central

Robinson, M. D. and A. Oshlack (2010): “A scaling normalization method for differential expression analysis of RNA-seq data,” Genome Biol., 11, R25.10.1186/gb-2010-11-3-r25Suche in Google Scholar PubMed PubMed Central

Robinson, M. D., D. J. McCarthy and G. K. Smyth (2010): “edgeR: a Bioconductor package for differential expression analysis of digital gene expression data,” Bioinformatics, 26, 139–140.10.1093/bioinformatics/btp616Suche in Google Scholar PubMed PubMed Central

Yang, L. and P. Agarwal (2011): “Systematic drug repositioning based on clinical side-effects,” PLoS One, 6, e28025.10.1371/journal.pone.0028025Suche in Google Scholar PubMed PubMed Central

Published Online: 2019-07-09

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/sagmb-2018-0052/pdf
Button zum nach oben scrollen