Startseite Mathematik Quadratic forms of refined skew normal models based on stochastic representation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Quadratic forms of refined skew normal models based on stochastic representation

  • Weizhong Tian EMAIL logo und Tonghui Wang
Veröffentlicht/Copyright: 13. Oktober 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Wang, Li and Gupta [17] first introduced the skew chi-square distribution based on the multivariate skew normal distribution provided by Azzalini [2], and Ye, Wang and Gupta [18] extended this results into the skew Wishart distribution. Motivated by these results, we first study a new type of multivariate skew normal distribution introduced by Gupta and Chen [12], the moment generating function, independence and quadratic form are discussed, and also a new type of skew chi-square distribution was introduced. Later on, we defined a new type of skew Wishart distribution based on the matrix skew normal models introduced by Ning [15]. In the end, we will study the probabilistic representation of multivariate skew elliptical models.

MSC 2010: 60E05; 62H05

Communicated by Arjun Gupta


Acknowledgements

We gratefully acknowledge referees for their valuable comments and suggestions which greatly improve this paper.

References

[1] Arellano-Valle R., Ozan S., Bolfarine H. and Lachos V., Skew normal measurement error models, J. Multivariate Anal. 96 (2005), no. 2, 265–281. 10.1016/j.jmva.2004.11.002Suche in Google Scholar

[2] Azzalini A., A class of distributions which includes the normal ones, Scand. J. Stat. 12 (1985), 171–178. Suche in Google Scholar

[3] Azzalini A. and Capitanio A., Statistical applications of the multivariate skew normal distribution, J. R. Stat. Soc. Ser. B. Stat. Methodol. 61 (1999), no. 3, 579–602. 10.1111/1467-9868.00194Suche in Google Scholar

[4] Azzalini A. and Dalla A., The multivariate skew-normal distribution, Biometrika 83 (1996), no. 4, 715–726. 10.1017/CBO9781139248891.006Suche in Google Scholar

[5] Branco M. and Dey D., A general class of multivariate skew-elliptical distributions, J. Multivariate Anal. 79 (2001), no. 1, 99–113. 10.1006/jmva.2000.1960Suche in Google Scholar

[6] Chen J. and Gupta A., Matrix variate skew normal distributions, Statistics 39 (2005), no. 3, 247–253. 10.1080/02331880500108593Suche in Google Scholar

[7] Domínguez-Molina J. A., González-Farías G., Ramos-Quiroga R. and Gupta A. K., A matrix variate closed skew-normal distribution with applications to stochastic frontier analysis, Comm. Statist. Theory Methods 36 (2007), no. 9, 1691–1703. 10.1080/03610920601126126Suche in Google Scholar

[8] Fang K. and Zhang Y., Generalized Multivariate Analysis, Springer, New York, 1990. Suche in Google Scholar

[9] Genton M. G., Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality, CRC Press, Boca Raton, 2004. 10.1201/9780203492000Suche in Google Scholar

[10] Genton M., He L. and Liu X., Moments of skew-normal random vectors and their quadratic forms, Statist. Probab. Lett. 51 (2001), no. 4, 319–325. 10.1016/S0167-7152(00)00164-4Suche in Google Scholar

[11] Gupta A. and Huang W., Quadratic forms in skew normal variates, J. Math. Anal. Appl. 273 (2002), no. 2, 558–564. 10.1016/S0022-247X(02)00270-6Suche in Google Scholar

[12] Gupta A. K. and Chen J. T., A class of multivariate skew-normal models, Ann. Inst. Statist. Math. 56 (2004), no. 2, 305–315. 10.1007/BF02530547Suche in Google Scholar

[13] Harrar S. W. and Gupta A. K., On matrix variate skew-normal distributions, Statistics 42 (2008), no. 2, 179–194. 10.1080/02331880701597339Suche in Google Scholar

[14] Henze N., A probabilistic representation of the ‘skew-normal’ distribution, Scand. J. Stat. 13 (1986), 271–275. Suche in Google Scholar

[15] Ning W., Probabilistic representations of matrix variate skew normal models, Random Oper. Stoch. Equ. 23 (2015), no. 1, 21–29. 10.1515/rose-2014-0026Suche in Google Scholar

[16] Székely G. and Rizzo M., A new test for multivariate normality, J. Multivariate Anal. 93 (2005), no. 1, 58–80. 10.1016/j.jmva.2003.12.002Suche in Google Scholar

[17] Wang T., Li B. and Gupta A., Distribution of quadratic forms under skew normal settings, J. Multivariate Anal. 100 (2009), no. 3, 533–545. 10.1016/j.jmva.2008.06.003Suche in Google Scholar

[18] Ye R., Wang T. and Gupta A., Distribution of matrix quadratic forms under skew-normal settings, J. Multivariate Anal. 131 (2014), 229–239. 10.1016/j.jmva.2014.07.001Suche in Google Scholar

[19] Zacks S., Parametric Statistical Inference: Basic Theory and Modern Approaches, Elsevier, Amsterdam, 2014. Suche in Google Scholar

Received: 2016-9-9
Accepted: 2016-9-20
Published Online: 2016-10-13
Published in Print: 2016-12-1

© 2016 by De Gruyter

Heruntergeladen am 6.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/rose-2016-0016/html
Button zum nach oben scrollen