Startseite An implicit scheme for simulation of free surface non-Newtonian fluid flows on dynamically adapted grids
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An implicit scheme for simulation of free surface non-Newtonian fluid flows on dynamically adapted grids

  • Kirill Nikitin , Yuri Vassilevski und Ruslan Yanbarisov EMAIL logo
Veröffentlicht/Copyright: 22. Juni 2021

Abstract

This work presents a new approach to modelling of free surface non-Newtonian (viscoplastic or viscoelastic) fluid flows on dynamically adapted octree grids. The numerical model is based on the implicit formulation and the staggered location of governing variables. We verify our model by comparing simulations with experimental and numerical results known from the literature.

MSC 2010: 65M08; 76D27; 76A05

Funding statement: The development of the model of non-Newtonian viscoelastic flows in time-dependent domains was supported by the Russian Science Foundation through the grant 19-71-10094. The development of the implicit numerical scheme for the free surface flow on the dynamically adapted octree grids was supported by Moscow Center of Fundamental and Applied Mathematics (agreement with the Ministry of Education and Science of the Russian Federation No. 075-15-2019-1624).

Acknowledgment

The authors are grateful to Kirill Terekhov for his great contribution to the development of the original octree-CFD code.

References

[1] M. A. Alves, F. T. Pinho, and P. J. Oliveira, The flow of viscoelastic fluids past a cylinder: finite-volume high-resolution methods. J. Non-Newtonian Fluid Mechanics 97 (2001), No. 2-3, 207–232.10.1016/S0377-0257(00)00198-1Suche in Google Scholar

[2] M. A. Alves, P. J. Oliveira, and F. T. Pinho, Benchmark solutions for the flow of Oldroyd-B and PTT fluids in planar contractions. J. Non-Newtonian Fluid Mechanics 110 (2003), No. 1, 45–75.10.1016/S0377-0257(02)00191-XSuche in Google Scholar

[3] M. Bercovier and M. Engelman, A finite-element method for incompressible non-Newtonian flows. J. Computational Physics 36 (1980), No. 3, 313–326.10.1016/0021-9991(80)90163-1Suche in Google Scholar

[4] G. Brenn and S. Teichtmeister, Linear shape oscillations and polymeric time scales of viscoelastic drops. J. Fluid Mechanics 733 (2013), 504.10.1017/jfm.2013.452Suche in Google Scholar

[5] T. Shanwen and G. Brenn, Numerical study for shape oscillation of free viscoelastic drop using the arbitrary Lagrangian-Eulerian method. In: Int. Conf. on Applied Mechanics and Mechanical Engineering. 16 (2014), 1–21.10.21608/amme.2014.35538Suche in Google Scholar

[6] W. Cheng and M. A. Olshanskii, Finite stopping times for freely oscillating drop of a yield stress fluid. J. Non-Newtonian Fluid Mechanics 239 (2017), 73–84.10.1016/j.jnnfm.2016.12.001Suche in Google Scholar

[7] S. Cochard and C. Ancey, Experimental investigation of the spreading of viscoplastic fluids on inclined planes. J. Non-Newtonian Fluid Mechanics 158 (2009), No. 1-3, 73–84.10.1016/j.jnnfm.2008.08.007Suche in Google Scholar

[8] P. Coussot, Mudflow Rheology and Dynamics. Routledge, 2017.10.1201/9780203746349Suche in Google Scholar

[9] M. M. Denn, Issues in viscoelastic fluid mechanics. Annual Review of Fluid Mechanics 22 (1990), No. 1, 13–32.10.1146/annurev.fl.22.010190.000305Suche in Google Scholar

[10] R. A. Figueiredo, C. M. Oishi, J. A. Cuminato, J. C. Azevedo, A. M. Afonso, and M. A. Alves, Numerical investigation of three dimensional viscoelastic free surface flows: impacting drop problem. In: Proc. of 6th European conference on computational fluid dynamics (ECFD VI). 5 (2014), 5368–5380.Suche in Google Scholar

[11] R. W. Griffiths, The dynamics of lava flows. Annual Review of Fluid Mechanics 32 (2000), No. 1, 477–518.10.1146/annurev.fluid.32.1.477Suche in Google Scholar

[12] D. B. Khismatullin and A. Nadim, Shape oscillations of a viscoelastic drop. Physical Review E 63 (2001), No. 6, 061508.10.1103/PhysRevE.63.061508Suche in Google Scholar

[13] Y. Liang, A. Oztekin, and S. Neti, Dynamics of viscoelastic jets of polymeric liquid extrudate. J. Non-Newtonian Fluid Mechanics 81 (1999), No. 1-2, 105–132.10.1016/S0377-0257(98)00093-7Suche in Google Scholar

[14] B. Meulenbroek, C. Storm, V. Bertola, C. Wagner, D. Bonn, and W. van Saarloos, Intrinsic route to melt fracture in polymer extrusion: a weakly nonlinear subcritical instability of viscoelastic Poiseuille flow. Physical Review Letters 90 (2003), No. 2, 024502.10.1103/PhysRevLett.90.024502Suche in Google Scholar

[15] G. Mompean and M. Deville, Unsteady finite volume simulation of Oldroyd-B fluid through a three-dimensional planar contraction. J. Non-Newtonian Fluid Mechanics 72 (1997), No. 2-3, 253–279.10.1016/S0377-0257(97)00033-5Suche in Google Scholar

[16] K. D. Nikitin, M. A. Olshanskii, K. M. Terekhov, and Yu. V. Vassilevski, A numerical method for the simulation of free surface flows of viscoplastic fluid in 3D. J. Computational Mathematics 29 (2011), No. 6, 605–622.10.4208/jcm.1109-m11si01Suche in Google Scholar

[17] K. D. Nikitin, M. A. Olshanskii, K. M. Terekhov, and Yu. V. Vassilevski, A splitting method for numerical simulation of free surface flows of incompressible fluids with surface tension. Computational Methods in Applied Mathematics 15 (2015), No. 1, 59–77.10.1515/cmam-2014-0025Suche in Google Scholar

[18] K. D. Nikitin, M. A. Olshanskii, K. M. Terekhov, Yu. V. Vassilevski, and R. M. Yanbarisov, An adaptive numerical method for free surface flows passing rigidly mounted obstacles. Computers & Fluids 148 (2017), 56–68.10.1016/j.compfluid.2017.02.007Suche in Google Scholar

[19] K. D. Nikitin, M. A. Olshanskii, K. M. Terekhov, and Yu. V. Vassilevski, A splitting method for free surface flows over partially submerged obstacles. Russ. J. Numer. Anal. Math. Modelling 33 (2018), No. 2, 95–110.10.1515/rnam-2018-0009Suche in Google Scholar

[20] M. A. Olshanskii, K. M. Terekhov, and Yu. V. Vassilevski, An octree-based solver for the incompressible Navier–Stokes equations with enhanced stability and low dissipation. Computers & Fluids 84 2013), 231–246.10.1016/j.compfluid.2013.04.027Suche in Google Scholar

[21] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Vol. 153. Springer Science & Business Media, 2006.Suche in Google Scholar

[22] R. I. Tanner, A theory of die-swell revisited. J. Non-Newtonian Fluid Mechanics 129 (2005), No. 2, 85–87.10.1016/j.jnnfm.2005.05.010Suche in Google Scholar

[23] K. M. Terekhov, K. D. Nikitin, M. A. Olshanskii, and Yu. V. Vassilevski, A semi-Lagrangian method on dynamically adapted octree meshes. Russ. J. Numer. Anal. Math. Modelling 30 (2015), No. 6, 363–380.10.1515/rnam-2015-0033Suche in Google Scholar

[24] M. F. Tomé, N. Mangiavacchi, J. A. Cuminato, A. Castelo, and S. McKee, A finite difference technique for simulating unsteady viscoelastic free surface flows. J. Non-Newtonian Fluid Mechanics 106 (2002), No. 2-3, 61–106.10.1016/S0377-0257(02)00064-2Suche in Google Scholar

[25] C. Viezel, M. F. Tomé, F. T. Pinho, and S. McKee, An Oldroyd-B solver for vanishingly small values of the viscosity ratio: Application to unsteady free surface flows. J. Non-Newtonian Fluid Mechanics 285 (2020), 104338.10.1016/j.jnnfm.2020.104338Suche in Google Scholar

[26] X. Xu, J. Ouyang, T. Jiang, and Q. Li, Numerical simulation of 3D-unsteady viscoelastic free surface flows by improved smoothed particle hydrodynamics method. J. Non-Newtonian Fluid Mechanics 177 (2012), 109–120.10.1016/j.jnnfm.2012.04.006Suche in Google Scholar

Received: 2021-02-06
Accepted: 2021-03-23
Published Online: 2021-06-22
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rnam-2021-0014/pdf
Button zum nach oben scrollen