Abstract
Most of Alzheimer’s disease (AD) cases are sporadic and occur after age 65. With prolonged life expectancy and general population aging, AD is becoming a significant public health concern. The immune system supports brain development, plasticity, and homeostasis, yet it is particularly vulnerable to aging-related changes. Aging of the immune system, called immunosenescence, is the multifaceted remodeling of the immune system during aging. Immunosenescence is a contributing factor to various age-related diseases, including AD. Age-related changes in brain immune cell phenotype and function, crosstalk between immune cells and neural cells, and neuroinflammation work together to promote neurodegeneration and age-related cognitive impairment. Although numerous studies have confirmed the correlation between systemic immune changes and AD, few studies focus on the immune state of brain microenvironment in aging and AD. This review mainly addresses the changes of brain immune microenvironment in aging and AD. Specifically, we delineate how various aspects of the brain immune microenvironment, including immune gateways, immune cells, and molecules, and the interplay between immune cells and neural cells, accelerate AD pathogenesis during aging. We also propose a theoretical framework of therapeutic strategies selectively targeting the different mechanisms to restore brain immune homeostasis.
Funding source: the Fundamental Research Funds for the Central Universities of Central South University
Award Identifier / Grant number: 2021zzts0359
Funding source: Hunan Provincial Innovation Foundation For Postgraduate
Award Identifier / Grant number: CX20210128
-
Authors’ contributions: CHY collected the literature and wrote the manuscript. ZY conceived the idea and had been involved in manuscript conception and drafting. XYZ supervised the manuscript and directed the writing. All authors read and approved the final manuscript.
-
Research funding: This work was supported by the Fundamental Research Funds for the Central Universities of Central South University (No. 2021zzts0359); Hunan Provincial Innovation Foundation For Postgraduate (No. CX20210128).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Ahmed, R.M., Ke, Y.D., Vucic, S., Ittner, L.M., Seeley, W., Hodges, J.R., Piguet, O., Halliday, G., and Kiernan, M.C. (2018). Physiological changes in neurodegeneration—mechanistic insights and clinical utility. Nat. Rev. Neurol. 14: 259–271.10.1038/nrneurol.2018.23Suche in Google Scholar PubMed
Alcolado, R., Weller, R.O., Parrish, E.P., and Garrod, D. (1988). The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol. Appl. Neurobiol. 14: 1–17.10.1111/j.1365-2990.1988.tb00862.xSuche in Google Scholar PubMed
Alpert, A., Pickman, Y., Leipold, M., Rosenberg-Hasson, Y., Ji, X., Gaujoux, R., Rabani, H., Starosvetsky, E., Kveler, K., Schaffert, S., et al.. (2019). A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat. Med. 25: 487–495.10.1038/s41591-019-0381-ySuche in Google Scholar PubMed PubMed Central
Alvermann, S., Hennig, C., Stüve, O., Wiendl, H., and Stangel, M. (2014). Immunophenotyping of cerebrospinal fluid cells in multiple sclerosis: in search of biomarkers. JAMA Neurol. 71: 905–912.10.1001/jamaneurol.2014.395Suche in Google Scholar PubMed
Alves de Lima, K., Rustenhoven, J., and Kipnis, J. (2020). Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Annu. Rev. Immunol. 38: 597–620.10.1146/annurev-immunol-102319-103410Suche in Google Scholar PubMed
Anthony, I.C., Crawford, D.H., and Bell, J.E. (2003). B lymphocytes in the normal brain: contrasts with HIV-associated lymphoid infiltrates and lymphomas. Brain 126: 1058–1067.10.1093/brain/awg118Suche in Google Scholar PubMed
Baker, D.J., Wijshake, T., Tchkonia, T., LeBrasseur, N.K., Childs, B.G., van de Sluis, B., Kirkland, J.L., and van Deursen, J.M. (2011). Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479: 232–236.10.1038/nature10600Suche in Google Scholar PubMed PubMed Central
Baruch, K., Rosenzweig, N., Kertser, A., Deczkowska, A., Sharif, A.M., Spinrad, A., Tsitsou-Kampeli, A., Sarel, A., Cahalon, L., and Schwartz, M. (2015). Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer’s disease pathology. Nat. Commun. 6: 7967.10.1038/ncomms8967Suche in Google Scholar PubMed PubMed Central
Batterman, K.V., Cabrera, P.E., Moore, T.L., and Rosene, D.L. (2021). T cells actively infiltrate the white matter of the aging monkey brain in relation to increased microglial reactivity and cognitive decline. Front. Immunol. 12: 607691.10.3389/fimmu.2021.607691Suche in Google Scholar PubMed PubMed Central
Bernardini, G., Sciumè, G., Bosisio, D., Morrone, S., Sozzani, S., and Santoni, A. (2008). CCL3 and CXCL12 regulate trafficking of mouse bone marrow NK cell subsets. Blood 111: 3626–3634.10.1182/blood-2007-08-106203Suche in Google Scholar PubMed
Bialer, M., Johannessen, S.I., Levy, R.H., Perucca, E., Tomson, T., and White, H.S. (2013). Progress report on new antiepileptic drugs: a summary of the Eleventh Eilat Conference (EILAT XI). Epilepsy Res. 103: 2–30.10.1016/j.eplepsyres.2012.10.001Suche in Google Scholar PubMed
Boisvert, M.M., Erikson, G.A., Shokhirev, M.N., and Allen, N.J. (2018). The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep. 22: 269–285.10.1016/j.celrep.2017.12.039Suche in Google Scholar PubMed PubMed Central
Bouras, C., Riederer, B.M., Kövari, E., Hof, P.R., and Giannakopoulos, P. (2005). Humoral immunity in brain aging and Alzheimer’s disease. Brain Res. Brain Res. Rev. 48: 477–487.10.1016/j.brainresrev.2004.09.009Suche in Google Scholar PubMed
Britschgi, M., Olin, C.E., Johns, H.T., Takeda-Uchimura, Y., LeMieux, M.C., Rufibach, K., Rajadas, J., Zhang, H., Tomooka, B., Robinson, W.H., et al.. (2009). Neuroprotective natural antibodies to assemblies of amyloidogenic peptides decrease with normal aging and advancing Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 106: 12145–12150.10.1073/pnas.0904866106Suche in Google Scholar PubMed PubMed Central
Browne, T.C., McQuillan, K., McManus, R.M., O’Reilly, J.-A., Mills, K.H.G., and Lynch, M.A. (2013). IFN-gamma production by amyloid beta-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. J. Immunol. 190: 2241–2251.10.4049/jimmunol.1200947Suche in Google Scholar PubMed
Bussian, T.J., Aziz, A., Meyer, C.F., Swenson, B.L., van Deursen, J.M., and Baker, D.J. (2018). Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562: 578–582.10.1038/s41586-018-0543-ySuche in Google Scholar PubMed PubMed Central
Caldeira, C., Cunha, C., Vaz, A.R., Falcão, A.S., Barateiro, A., Seixas, E., Fernandes, A., and Brites, D. (2017). Key aging-associated alterations in primary microglia response to β- amyloid stimulation. Front. Aging Neurosci. 9: 277.10.3389/fnagi.2017.00277Suche in Google Scholar PubMed PubMed Central
Cao, M., Li, H., Zhao, J., Cui, J., and Hu, G. (2019). Identification of age- and gender-associated long noncoding RNAs in the human brain with Alzheimer’s disease. Neurobiol. Aging 81: 116–126.10.1016/j.neurobiolaging.2019.05.023Suche in Google Scholar PubMed PubMed Central
Carson, M.J., Doose, J.M., Melchior, B., Schmid, C.D., and Ploix, C.C. (2006). CNS immune privilege: hiding in plain sight. Immunol. Rev. 213: 48–65.10.1111/j.1600-065X.2006.00441.xSuche in Google Scholar PubMed PubMed Central
Clarke, L.E., Liddelow, S.A., Chakraborty, C., Münch, A.E., Heiman, M., and Barres, B.A. (2018). Normal aging induces A1-like astrocyte reactivity. Proc. Natl. Acad. Sci. USA 115: E1896–E1905.10.1073/pnas.1800165115Suche in Google Scholar PubMed PubMed Central
Cornelis, S., Kersse, K., Festjens, N., Lamkanfi, M., and Vandenabeele, P. (2007). Inflammatory caspases: targets for novel therapies. Curr. Pharm. Des. 13: 367–385.10.2174/138161207780163006Suche in Google Scholar PubMed
Croese, T., Castellani, G., and Schwartz, M. (2021). Immune cell compartmentalization for brain surveillance and protection. Nat. Immunol. 22: 1083–1092.10.1038/s41590-021-00994-2Suche in Google Scholar PubMed
Cruz Hernández, J.C., Bracko, O., Kersbergen, C.J., Muse, V., Haft-Javaherian, M., Berg, M., Park, L., Vinarcsik, L.K., Ivasyk, I., Rivera, D.A., et al.. (2019). Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer’s disease mouse models. Nat. Neurosci. 22: 413–420.10.1038/s41593-018-0329-4Suche in Google Scholar PubMed PubMed Central
Cummings, J., Lee, G., Ritter, A., Sabbagh, M., and Zhong, K. (2019). Alzheimer’s disease drug development pipeline: 2019. Alzheimer’s Dement. (N Y). 5: 272–293.10.1016/j.trci.2019.05.008Suche in Google Scholar PubMed PubMed Central
Da Mesquita, S., Louveau, A., Vaccari, A., Smirnov, I., Cornelison, R.C., Kingsmore, K.M., Contarino, C., Onengut-Gumuscu, S., Farber, E., Raper, D., et al.. (2018). Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560: 185–191.10.1038/s41586-018-0368-8Suche in Google Scholar PubMed PubMed Central
Da Mesquita, S., Papadopoulos, Z., Dykstra, T., Brase, L., Farias, F.G., Wall, M., Jiang, H., Kodira, C.D., de Lima, K.A., Herz, J., et al.. (2021). Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. Nature 593: 255–260.10.1038/s41586-021-03489-0Suche in Google Scholar PubMed PubMed Central
Dagher, N.N., Najafi, A.R., Kayala, K.M., Elmore, M.R., White, T.E., Medeiros, R., West, B.L., and Green, K.N. (2015). Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J. Neuroinflamm. 12: 139.10.1186/s12974-015-0366-9Suche in Google Scholar PubMed PubMed Central
Dani, N., Herbst, R.H., McCabe, C., Green, G.S., Kaiser, K., Head, J.P., Cui, J., Shipley, F.B., Jang, A., Dionne, D., et al.. (2021). A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184: 3056–3074.10.1016/j.cell.2021.04.003Suche in Google Scholar PubMed PubMed Central
Dansokho, C., Ait Ahmed, D., Aid, S., Toly-Ndour, C., Chaigneau, T., Calle, V., Cagnard, N., Holzenberger, M., Piaggio, E., Aucouturier, P., et al.. (2016). Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain 139: 1237–1251.10.1093/brain/awv408Suche in Google Scholar PubMed
DiStasi, M.R. and Ley, K. (2009). Opening the flood-gates: how neutrophil-endothelial interactions regulate permeability. Trends Immunol. 30: 547–556.10.1016/j.it.2009.07.012Suche in Google Scholar PubMed PubMed Central
Drummond, E. and Wisniewski, T. (2017). Alzheimer’s disease: experimental models and reality. Acta Neuropathol. 133: 155–175.10.1007/s00401-016-1662-xSuche in Google Scholar PubMed PubMed Central
Ekdahl, C.T., Claasen, J.-H., Bonde, S., Kokaia, Z., and Lindvall, O. (2003). Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl. Acad. Sci. USA 100: 13632–13637.10.1073/pnas.2234031100Suche in Google Scholar PubMed PubMed Central
Elmore, M.R., Najafi, A.R., Koike, M.A., Dagher, N.N., Spangenberg, E.E., Rice, R.A., Kitazawa, M., Matusow, B., Nguyen, H., West, B.L., et al.. (2014). Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82: 380–397.10.1016/j.neuron.2014.02.040Suche in Google Scholar PubMed PubMed Central
Elmore, M.R.P., Hohsfield, L.A., Kramár, E.A., Soreq, L., Lee, R.J., Pham, S.T., Najafi, A.R., Spangenberg, E.E., Wood, M.A., West, B.L., et al.. (2018). Replacement of microglia in the aged brain reverses cognitive, synaptic, and neuronal deficits in mice. Aging Cell 17: e12832.10.1111/acel.12832Suche in Google Scholar PubMed PubMed Central
Engelhardt, B., Carare, R.O., Bechmann, I., Flügel, A., Laman, J.D., and Weller, R.O. (2016). Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol. 132: 317–338.10.1007/s00401-016-1606-5Suche in Google Scholar PubMed PubMed Central
Ferrari, C.C., Depino, A.M., Prada, F., Muraro, N., Campbell, S., Podhajcer, O., Perry, V.H., Anthony, D.C., and Pitossi, F.J. (2004). Reversible demyelination, blood–brain barrier breakdown, and pronounced neutrophil recruitment induced by chronic IL-1 expression in the brain. Am. J. Pathol. 165: 1827–1837.10.1016/S0002-9440(10)63438-4Suche in Google Scholar PubMed PubMed Central
Ferretti, M.T., Merlini, M., Späni, C., Gericke, C., Schweizer, N., Enzmann, G., Engelhardt, B., Kulic, L., Suter, T., and Nitsch, R.M. (2016). T-cell brain infiltration and immature antigen-presenting cells in transgenic models of Alzheimer’s disease-like cerebral amyloidosis. Brain Behav. Immun. 54: 211–225.10.1016/j.bbi.2016.02.009Suche in Google Scholar PubMed
Flanary, B.E. and Streit, W.J. (2004). Progressive telomere shortening occurs in cultured rat microglia, but not astrocytes. Glia 45: 75–88.10.1002/glia.10301Suche in Google Scholar PubMed
Floden, A.M. and Combs, C.K. (2011). Microglia demonstrate age-dependent interaction with amyloid-β fibrils. J. Alzheimers Dis. 25: 279–293.10.3233/JAD-2011-101014Suche in Google Scholar PubMed PubMed Central
Flores, J., Noël, A., Foveau, B., Beauchet, O., and LeBlanc, A.C. (2020). Pre-symptomatic Caspase-1 inhibitor delays cognitive decline in a mouse model of Alzheimer disease and aging. Nat. Commun. 11: 4571.10.1038/s41467-020-18405-9Suche in Google Scholar PubMed PubMed Central
Flores, J., Noël, A., Foveau, B., Lynham, J., Lecrux, C., and LeBlanc, A.C. (2018a). Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer’s disease mouse model. Nat. Commun. 9: 3916.10.1038/s41467-018-06449-xSuche in Google Scholar PubMed PubMed Central
Flores, J., Noël, A., Foveau, B., Lynham, J., Lecrux, C., and LeBlanc, A.C. (2018b). Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer’s disease mouse model. Nat. Commun. 9: 3916.10.1038/s41467-018-06449-xSuche in Google Scholar
Fuller, J.P., Stavenhagen, J.B., and Teeling, J.L. (2014). New roles for Fc receptors in neurodegeneration-the impact on immunotherapy for Alzheimer’s disease. Front. Neurosci. 8: 235.10.3389/fnins.2014.00235Suche in Google Scholar PubMed PubMed Central
Fung, I.T.H., Sankar, P., Zhang, Y., Robison, L.S., Zhao, X., D’Souza, S.S., Salinero, A.E., Wang, Y., Qian, J., Kuentzel, M.L., et al.. (2020). Activation of group 2 innate lymphoid cells alleviates aging-associated cognitive decline. J. Exp. Med. 217: e20190915.10.1084/jem.20190915Suche in Google Scholar PubMed PubMed Central
Gallizioli, M., Miró-Mur, F., Otxoa-de-Amezaga, A., Cugota, R., Salas-Perdomo, A., Justicia, C., Brait, V.H., Ruiz-Jaén, F., Arbaizar-Rovirosa, M., Pedragosa, J., et al.. (2020). Dendritic cells and microglia have non-redundant functions in the inflamed brain with protective effects of type 1 cDCs. Cell Rep. 33: 108291.10.1016/j.celrep.2020.108291Suche in Google Scholar
Gelderblom, M., Gallizioli, M., Ludewig, P., Thom, V., Arunachalam, P., Rissiek, B., Bernreuther, C., Glatzel, M., Korn, T., Arumugam, T.V., et al.. (2018). IL-23 (interleukin-23)-Producing conventional dendritic cells control the detrimental IL-17 (interleukin-17) response in stroke. Stroke 49: 155–164.10.1161/STROKEAHA.117.019101Suche in Google Scholar PubMed
Gold, M., Mengel, D., Röskam, S., Dodel, R., and Bach, J.-P. (2013). Mechanisms of action of naturally occurring antibodies against beta-amyloid on microglia. J. Neuroinflamm. 10: 5.10.1186/1742-2094-10-5Suche in Google Scholar
Gomi, M., Aoki, T., Takagi, Y., Nishimura, M., Ohsugi, Y., Mihara, M., Nozaki, K., Hashimoto, N., Miyamoto, S., and Takahashi, J. (2011). Single and local blockade of interleukin-6 signaling promotes neuronal differentiation from transplanted embryonic stem cell-derived neural precursor cells. J. Neurosci. Res. 89: 1388–1399.10.1002/jnr.22667Suche in Google Scholar PubMed
Gonzales, M.M., Garbarino, V.R., Zilli, E.M., and Petersen, R.C. (2020). Senolytic therapy to modulate progression of Alzheimer’s disease. J. Prev. Alzheimers Dis. 9: 22–29.Suche in Google Scholar
Grabert, K., Michoel, T., Karavolos, M.H., Clohisey, S., Baillie, J.K., Stevens, M.P., Freeman, T.C., Summers, K.M., and McColl, B.W. (2016). Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19: 504–516.10.1038/nn.4222Suche in Google Scholar PubMed PubMed Central
Griñán-Ferré, C., Bellver-Sanchis, A., Izquierdo, V., Corpas, R., Roig-Soriano, J., Chillón, M., Andres-Lacueva, C., Somogyvári, M., Sőti, C., Sanfeliu, C., et al.. (2021). The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: from antioxidant to epigenetic therapy. Ageing Res. Rev. 67: 101271.10.1016/j.arr.2021.101271Suche in Google Scholar PubMed
Guerrero, A., De Strooper, B., and Arancibia-Cárcamo, I.L. (2021). Cellular senescence at the crossroads of inflammation and Alzheimer’s disease. Trends Neurosci. 44: 714–727.10.1016/j.tins.2021.06.007Suche in Google Scholar PubMed
Guillot-Sestier, M.-V., Doty, K.R., and Town, T. (2015). Innate immunity fights Alzheimer’s disease. Trends Neurosci. 38: 674–681.10.1016/j.tins.2015.08.008Suche in Google Scholar PubMed PubMed Central
Han, S., Lin, Y.C., Wu, T., Salgado, A.D., Mexhitaj, I., Wuest, S.C., Romm, E., Ohayon, J., Goldbach-Mansky, R., Vanderver, A., et al.. (2014). Comprehensive immunophenotyping of cerebrospinal fluid cells in patients with neuroimmunological diseases. J. Immunol. 192: 2551–2563.10.4049/jimmunol.1302884Suche in Google Scholar PubMed PubMed Central
Hatterer, E., Davoust, N., Didier-Bazes, M., Vuaillat, C., Malcus, C., Belin, M.-F., and Nataf, S. (2006). How to drain without lymphatics? Dendritic cells migrate from the cerebrospinal fluid to the B-cell follicles of cervical lymph nodes. Blood 107: 806–812.10.1182/blood-2005-01-0154Suche in Google Scholar PubMed
Haynes, L., Eaton, S.M., Burns, E.M., Randall, T.D., and Swain, S.L. (2003). CD4 T cell memory derived from young naive cells functions well into old age, but memory generated from aged naive cells functions poorly. Proc. Natl. Acad. Sci. USA 100: 15053–15058.10.1073/pnas.2433717100Suche in Google Scholar PubMed PubMed Central
Heneka, M.T., Carson, M.J., El Khoury, J., Landreth, G.E., Brosseron, F., Feinstein, D.L., Jacobs, A.H., Wyss-Coray, T., Vitorica, J., Ransohoff, R.M., et al.. (2015). Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14: 388–405.10.1016/S1474-4422(15)70016-5Suche in Google Scholar PubMed PubMed Central
Heneka, M.T., Kummer, M.P., and Latz, E. (2014). Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 14: 463–477.10.1038/nri3705Suche in Google Scholar PubMed
Herisson, F., Frodermann, V., Courties, G., Rohde, D., Sun, Y., Vandoorne, K., Wojtkiewicz, G.R., Masson, G.S., Vinegoni, C., Kim, J., et al.. (2018). Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat. Neurosci. 21: 1209–1217.10.1038/s41593-018-0213-2Suche in Google Scholar PubMed PubMed Central
Hong, S., Beja-Glasser, V.F., Nfonoyim, B.M., Frouin, A., Li, S., Ramakrishnan, S., Merry, K.M., Shi, Q., Rosenthal, A., Barres, B.A., et al.. (2016). Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352: 712–716.10.1126/science.aad8373Suche in Google Scholar PubMed PubMed Central
Hu, Y., Fryatt, G.L., Ghorbani, M., Obst, J., Menassa, D.A., Martin-Estebane, M., Muntslag, T.A.O., Olmos-Alonso, A., Guerrero-Carrasco, M., Thomas, D., et al.. (2021). Replicative senescence dictates the emergence of disease-associated microglia and contributes to Aβ pathology. Cell Rep. 35: 109228.10.1016/j.celrep.2021.109228Suche in Google Scholar PubMed PubMed Central
Huang, L.K., Chao, S.P., and Hu, C.J. (2020). Clinical trials of new drugs for Alzheimer disease. J. Biomed. Sci. 27: 18.10.1186/s12929-019-0609-7Suche in Google Scholar PubMed PubMed Central
Hur, J.-Y., Frost, G.R., Wu, X., Crump, C., Pan, S.J., Wong, E., Barros, M., Li, T., Nie, P., Zhai, Y., et al.. (2020). The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer’s disease. Nature 586: 735–740.10.1038/s41586-020-2681-2Suche in Google Scholar PubMed PubMed Central
Hye, A., Riddoch-Contreras, J., Baird, A.L., Ashton, N.J., Bazenet, C., Leung, R., Westman, E., Simmons, A., Dobson, R., Sattlecker, M., et al.. (2014). Plasma proteins predict conversion to dementia from prodromal disease. Alzheimers Dement 10: 799–807, e792.10.1016/j.jalz.2014.05.1749Suche in Google Scholar PubMed PubMed Central
Jevtic, S., Sengar, A.S., Salter, M.W., and McLaurin, J. (2017). The role of the immune system in Alzheimer disease: etiology and treatment. Ageing Res. Rev. 40: 84–94.10.1016/j.arr.2017.08.005Suche in Google Scholar PubMed
Jin, W.-N., Shi, K., He, W., Sun, J.-H., Van Kaer, L., Shi, F.-D., and Liu, Q. (2021). Neuroblast senescence in the aged brain augments natural kill cell cytotoxicity leading to impaired neurogenesis and cognition. Nat. Neurosci. 24: 61–73.10.1038/s41593-020-00745-wSuche in Google Scholar PubMed
Jordão, M.J.C., Sankowski, R., Brendecke, S.M., SagarLocatelli, G., Tai, Y.-H., Tay, T.L., Schramm, E., Armbruster, S., Hagemeyer, N., Groß, O., et al.. (2019). Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363: eaat7554.10.1126/science.aat7554Suche in Google Scholar PubMed
Kaminski, M., Bechmann, I., Pohland, M., Kiwit, J., Nitsch, R., and Glumm, J. (2012). Migration of monocytes after intracerebral injection at entorhinal cortex lesion site. J. Leukoc. Biol. 92: 31–39.10.1189/jlb.0511241Suche in Google Scholar PubMed
Karman, J., Ling, C., Sandor, M., and Fabry, Z. (2004). Initiation of immune responses in brain is promoted by local dendritic cells. J. Immunol. 173: 2353–2361.10.4049/jimmunol.173.4.2353Suche in Google Scholar PubMed
Kida, S., Pantazis, A., and Weller, R.O. (1993). CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol. Appl. Neurobiol. 19: 480–488.10.1111/j.1365-2990.1993.tb00476.xSuche in Google Scholar PubMed
Kim, K., Wang, X., Ragonnaud, E., Bodogai, M., Illouz, T., DeLuca, M., McDevitt, R.A., Gusev, F., Okun, E., Rogaev, E., et al.. (2021). Therapeutic B-cell depletion reverses progression of Alzheimer’s disease. Nat. Commun. 12: 2185.10.1038/s41467-021-22479-4Suche in Google Scholar PubMed PubMed Central
Kolaczkowska, E. and Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13: 159–175.10.1038/nri3399Suche in Google Scholar PubMed
Korin, B., Ben-Shaanan, T.L., Schiller, M., Dubovik, T., Azulay-Debby, H., Boshnak, N.T., Koren, T., and Rolls, A. (2017). High-dimensional, single-cell characterization of the brain’s immune compartment. Nat. Neurosci. 20: 1300–1309.10.1038/nn.4610Suche in Google Scholar PubMed
Koyama, A., O’Brien, J., Weuve, J., Blacker, D., Metti, A.L., and Yaffe, K. (2013). The role of peripheral inflammatory markers in dementia and Alzheimer’s disease: a meta-analysis. J. Gerontol A Biol. Sci. Med. Sci. 68: 433–440.10.1093/gerona/gls187Suche in Google Scholar PubMed PubMed Central
Lagoumtzi, S.M. and Chondrogianni, N. (2021). Senolytics and senomorphics: natural and synthetic therapeutics in the treatment of aging and chronic disease. Free Radic. Biol. Med. 171: 169–190.10.1016/j.freeradbiomed.2021.05.003Suche in Google Scholar PubMed
Lai, K.S.P., Liu, C.S., Rau, A., Lanctôt, K.L., Köhler, C.A., Pakosh, M., Carvalho, A.F., and Herrmann, N. (2017). Peripheral inflammatory markers in Alzheimer’s disease: a systematic review and meta-analysis of 175 studies. J. Neurol. Neurosurg. Psychiatry 88: 862–882.10.1136/jnnp-2017-316201Suche in Google Scholar PubMed
Laman, J.D. and Weller, R.O. (2013). Drainage of cells and soluble antigen from the CNS to regional lymph nodes. J. Neuroimmune Pharmacol. 8: 840–856.10.1007/s11481-013-9470-8Suche in Google Scholar PubMed PubMed Central
LeBlanc, A.C. (2013). Caspase-6 as a novel early target in the treatment of Alzheimer’s disease. Eur. J. Neurosci. 37: 2005–2018.10.1111/ejn.12250Suche in Google Scholar PubMed
Li, Z., Moniruzzaman, M., Dastgheyb, R.M., Yoo, S.-W., Wang, M., Hao, H., Liu, J., Casaccia, P., Nogueras-Ortiz, C., Kapogiannis, D., et al.. (2020). Astrocytes deliver CK1 to neurons via extracellular vesicles in response to inflammation promoting the translation and amyloidogenic processing of APP. J. Extracell. Vesicles 10: e12035.10.1002/jev2.12035Suche in Google Scholar PubMed PubMed Central
Linton, P.-J. and Thoman, M.L. (2014). Immunosenescence in monocytes, macrophages, and dendritic cells: lessons learned from the lung and heart. Immunol. Lett. 162: 290–297.10.1016/j.imlet.2014.06.017Suche in Google Scholar PubMed PubMed Central
Lisak, R.P., Benjamins, J.A., Nedelkoska, L., Barger, J.L., Ragheb, S., Fan, B., Ouamara, N., Johnson, T.A., Rajasekharan, S., and Bar-Or, A. (2012). Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro. J. Neuroimmunol. 246: 85–95.10.1016/j.jneuroim.2012.02.015Suche in Google Scholar PubMed
Litvinchuk, A., Wan, Y.-W., Swartzlander, D.B., Chen, F., Cole, A., Propson, N.E., Wang, Q., Zhang, B., Liu, Z., and Zheng, H. (2018). Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer’s disease. Neuron 100: 1337–1353.10.1016/j.neuron.2018.10.031Suche in Google Scholar PubMed PubMed Central
Long, J.M. and Holtzman, D.M. (2019). Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179: 312–339.10.1016/j.cell.2019.09.001Suche in Google Scholar PubMed PubMed Central
López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153: 1194–1217.10.1016/j.cell.2013.05.039Suche in Google Scholar PubMed PubMed Central
Louveau, A., Herz, J., Alme, M.N., Salvador, A.F., Dong, M.Q., Viar, K.E., Herod, S.G., Knopp, J., Setliff, J.C., Lupi, A.L., et al.. (2018). CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci. 21: 1380–1391.10.1038/s41593-018-0227-9Suche in Google Scholar PubMed PubMed Central
Lucchinetti, C., Brück, W., Parisi, J., Scheithauer, B., Rodriguez, M., and Lassmann, H. (2000). Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47: 707–717.10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-QSuche in Google Scholar
Luchena, C., Zuazo-Ibarra, J., Alberdi, E., Matute, C., and Capetillo-Zarate, E. (2018). Contribution of neurons and glial cells to complement-mediated synapse removal during development, aging and in Alzheimer’s disease. Mediators Inflamm: 2530414.10.1155/2018/2530414Suche in Google Scholar
Ma, A., Koka, R., and Burkett, P. (2006). Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu. Rev. Immunol. 24: 657–679.10.1146/annurev.immunol.24.021605.090727Suche in Google Scholar
Makin, S. (2018). The amyloid hypothesis on trial. Nature 559: S4–S7.10.1038/d41586-018-05719-4Suche in Google Scholar
Marsh, S.E., Abud, E.M., Lakatos, A., Karimzadeh, A., Yeung, S.T., Davtyan, H., Fote, G.M., Lau, L., Weinger, J.G., Lane, T.E., et al.. (2016). The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function. Proc. Natl. Acad. Sci. USA 113: E1316–E1325.10.1073/pnas.1525466113Suche in Google Scholar
Meyer, P.-F., Tremblay-Mercier, J., Leoutsakos, J., Madjar, C., Lafaille-Maignan, M.-É., Savard, M., Rosa-Neto, P., Poirier, J., Etienne, P., and Breitner, J. (2019). INTREPAD: a randomized trial of naproxen to slow progress of presymptomatic Alzheimer disease. Neurology 92: e2070–e2080.10.1212/WNL.0000000000007232Suche in Google Scholar
Millán, J., Hewlett, L., Glyn, M., Toomre, D., Clark, P., and Ridley, A.J. (2006). Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains. Nat. Cell Biol. 8: 113–123.10.1038/ncb1356Suche in Google Scholar
Miller, S.D., McMahon, E.J., Schreiner, B., and Bailey, S.L. (2007). Antigen presentation in the CNS by myeloid dendritic cells drives progression of relapsing experimental autoimmune encephalomyelitis. Ann. N. Y. Acad. Sci. 1103: 179–191.10.1196/annals.1394.023Suche in Google Scholar
Mills, E.L., Kelly, B., and O’Neill, L.A.J. (2017). Mitochondria are the powerhouses of immunity. Nat. Immunol. 18: 488–498.10.1038/ni.3704Suche in Google Scholar PubMed
Minhas, P.S., Latif-Hernandez, A., McReynolds, M.R., Durairaj, A.S., Wang, Q., Rubin, A., Joshi, A.U., He, J.Q., Gauba, E., Liu, L., et al.. (2021). Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature 590: 122–128.10.1038/s41586-020-03160-0Suche in Google Scholar PubMed PubMed Central
Minhas, P.S., Liu, L., Moon, P.K., Joshi, A.U., Dove, C., Mhatre, S., Contrepois, K., Wang, Q., Lee, B.A., Coronado, M., et al.. (2019). Macrophage de novo NAD+ synthesis specifies immune function in aging and inflammation. Nat. Immunol. 20: 50–63.10.1038/s41590-018-0255-3Suche in Google Scholar PubMed PubMed Central
Monsonego, A., Maron, R., Zota, V., Selkoe, D.J., and Weiner, H.L. (2001). Immune hyporesponsiveness to amyloid beta-peptide in amyloid precursor protein transgenic mice: implications for the pathogenesis and treatment of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 98: 10273–10278.10.1073/pnas.191118298Suche in Google Scholar PubMed PubMed Central
Moussa, C., Hebron, M., Huang, X., Ahn, J., Rissman, R.A., Aisen, P.S., and Turner, R.S. (2017). Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J. Neuroinflamm. 14: 1.10.1186/s12974-016-0779-0Suche in Google Scholar PubMed PubMed Central
Mrdjen, D., Pavlovic, A., Hartmann, F.J., Schreiner, B., Utz, S.G., Leung, B.P., Lelios, I., Heppner, F.L., Kipnis, J., Merkler, D., et al.. (2018). High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48: 380–395.10.1016/j.immuni.2018.01.011Suche in Google Scholar PubMed
Murphy, A.C., Lalor, S.J., Lynch, M.A., and Mills, K.H.G. (2010). Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav. Immun. 24: 641–651.10.1016/j.bbi.2010.01.014Suche in Google Scholar PubMed
Musi, N., Valentine, J.M., Sickora, K.R., Baeuerle, E., Thompson, C.S., Shen, Q., and Orr, M.E. (2018). Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 17: e12840.10.1111/acel.12840Suche in Google Scholar PubMed PubMed Central
Nicoll, J.A.R., Wilkinson, D., Holmes, C., Steart, P., Markham, H., and Weller, R.O. (2003). Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat. Med. 9: 448–452.10.1038/nm840Suche in Google Scholar PubMed
Oddo, S., Vasilevko, V., Caccamo, A., Kitazawa, M., Cribbs, D.H., and LaFerla, F.M. (2006). Reduction of soluble Abeta and tau, but not soluble Abeta alone, ameliorates cognitive decline in transgenic mice with plaques and tangles. J. Biol. Chem. 281: 39413–39423.10.1074/jbc.M608485200Suche in Google Scholar PubMed
Olmos-Alonso, A., Schetters, S.T.T., Sri, S., Askew, K., Mancuso, R., Vargas-Caballero, M., Holscher, C., Perry, V.H., and Gomez-Nicola, D. (2016). Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology. Brain 139: 891–907.10.1093/brain/awv379Suche in Google Scholar PubMed PubMed Central
Orgogozo, J.M., Gilman, S., Dartigues, J.F., Laurent, B., Puel, M., Kirby, L.C., Jouanny, P., Dubois, B., Eisner, L., Flitman, S., et al.. (2003). Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61: 46–54.10.1212/01.WNL.0000073623.84147.A8Suche in Google Scholar PubMed
Ortega, S.B., Torres, V.O., Latchney, S.E., Whoolery, C.W., Noorbhai, I.Z., Poinsatte, K., Selvaraj, U.M., Benson, M.A., Meeuwissen, A.J.M., Plautz, E.J., et al.. (2020). B cells migrate into remote brain areas and support neurogenesis and functional recovery after focal stroke in mice. Proc. Natl. Acad. Sci. USA 117: 4983–4993.10.1073/pnas.1913292117Suche in Google Scholar PubMed PubMed Central
Ownby, R.L. (2010). Neuroinflammation and cognitive aging. Curr. Psychiatry Rep. 12: 39–45.10.1007/s11920-009-0082-1Suche in Google Scholar PubMed
Palmer, D.B. (2013). The effect of age on thymic function. Front. Immunol. 4: 316.10.3389/fimmu.2013.00316Suche in Google Scholar PubMed PubMed Central
Pasciuto, E., Burton, O.T., Roca, C.P., Lagou, V., Rajan, W.D., Theys, T., Mancuso, R., Tito, R.Y., Kouser, L., Callaerts-Vegh, Z., et al.. (2020). Microglia require CD4 T cells to complete the fetal-to-adult transition. Cell 182: 625–640.10.1016/j.cell.2020.06.026Suche in Google Scholar PubMed PubMed Central
Peferoen, L., Kipp, M., van der Valk, P., van Noort, J.M., and Amor, S. (2014). Oligodendrocyte–microglia cross-talk in the central nervous system. Immunology 141: 302–313.10.1111/imm.12163Suche in Google Scholar PubMed PubMed Central
Perez-Alcazar, M., Daborg, J., Stokowska, A., Wasling, P., Björefeldt, A., Kalm, M., Zetterberg, H., Carlström, K.E., Blomgren, K., Ekdahl, C.T., et al.. (2014). Altered cognitive performance and synaptic function in the hippocampus of mice lacking C3. Exp. Neurol. 253: 154–164.10.1016/j.expneurol.2013.12.013Suche in Google Scholar PubMed
Perry, V.H. and Holmes, C. (2014). Microglial priming in neurodegenerative disease. Nat. Rev. Neurol. 10: 217–224.10.1038/nrneurol.2014.38Suche in Google Scholar PubMed
Petrushina, I., Davtyan, H., Hovakimyan, A., Davtyan, A., Passos, G.F., Cribbs, D.H., Ghochikyan, A., and Agadjanyan, M.G. (2017). Comparison of efficacy of preventive and therapeutic vaccines targeting the N terminus of β-amyloid in an animal model of Alzheimer’s disease. Mol. Ther. 25: 153–164.10.1016/j.ymthe.2016.10.002Suche in Google Scholar PubMed PubMed Central
Phillips, M.J., Needham, M., and Weller, R.O. (1997). Role of cervical lymph nodes in autoimmune encephalomyelitis in the Lewis rat. J. Pathol. 182: 457–464.10.1002/(SICI)1096-9896(199708)182:4<457::AID-PATH870>3.0.CO;2-YSuche in Google Scholar
Propson, N.E., Roy, E.R., Litvinchuk, A., Köhl, J., and Zheng, H. (2021). Endothelial C3a receptor mediates vascular inflammation and blood-brain barrier permeability during aging. J. Clin. Invest. 131: e140966.10.1172/JCI140966Suche in Google Scholar
Qu, B.-X., Gong, Y., Moore, C., Fu, M., German, D.C., Chang, L.-Y., Rosenberg, R., and Diaz-Arrastia, R. (2014). Beta-amyloid auto-antibodies are reduced in Alzheimer’s disease. J. Neuroimmunol. 274: 168–173.10.1016/j.jneuroim.2014.06.017Suche in Google Scholar
Quintana, E., Fernández, A., Velasco, P., de Andrés, B., Liste, I., Sancho, D., Gaspar, M.L., and Cano, E. (2015). DNGR-1+ dendritic cells are located in meningeal membrane and choroid plexus of the noninjured brain. Glia 63: 2231–2248.10.1002/glia.22889Suche in Google Scholar
Reed-Geaghan, E.G., Savage, J.C., Hise, A.G., and Landreth, G.E. (2009). CD14 and toll-like receptors 2 and 4 are required for fibrillar Abeta-stimulated microglial activation. J. Neurosci. 29: 11982–11992.10.1523/JNEUROSCI.3158-09.2009Suche in Google Scholar
Ruscetti, M., Leibold, J., Bott, M.J., Fennell, M., Kulick, A., Salgado, N.R., Chen, C.-C., Ho, Y.-J., Sanchez-Rivera, F.J., Feucht, J., et al.. (2018). NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science 362: 1416–1422.10.1126/science.aas9090Suche in Google Scholar
Ryan, D.A., Mastrangelo, M.A., Narrow, W.C., Sullivan, M.A., Federoff, H.J., and Bowers, W.J. (2010). Abeta-directed single-chain antibody delivery via a serotype-1 AAV vector improves learning behavior and pathology in Alzheimer’s disease mice. Mol. Ther. 18: 1471–1481.10.1038/mt.2010.111Suche in Google Scholar
Saez-Atienzar, S. and Masliah, E. (2020). Cellular senescence and Alzheimer disease: the egg and the chicken scenario. Nat. Rev. Neurosci. 21: 433–444.10.1038/s41583-020-0325-zSuche in Google Scholar
Salminen, A., Ojala, J., Kaarniranta, K., Haapasalo, A., Hiltunen, M., and Soininen, H. (2011). Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur. J. Neurosci. 34: 3–11.10.1111/j.1460-9568.2011.07738.xSuche in Google Scholar
Saresella, M., Calabrese, E., Marventano, I., Piancone, F., Gatti, A., Calvo, M.G., Nemni, R., and Clerici, M. (2010). PD1 negative and PD1 positive CD4+ T regulatory cells in mild cognitive impairment and Alzheimer’s disease. J. Alzheimers Dis. 21: 927–938.10.3233/JAD-2010-091696Suche in Google Scholar
Saresella, M., Marventano, I., Calabrese, E., Piancone, F., Rainone, V., Gatti, A., Alberoni, M., Nemni, R., and Clerici, M. (2014). A complex proinflammatory role for peripheral monocytes in Alzheimer’s disease. J. Alzheimers Dis. 38: 403–413.10.3233/JAD-131160Suche in Google Scholar PubMed
Saule, P., Trauet, J., Dutriez, V., Lekeux, V., Dessaint, J.-P., and Labalette, M. (2006). Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4+ versus effector memory and terminally differentiated memory cells in CD8+ compartment. Mech. Ageing Dev. 127: 274–281.10.1016/j.mad.2005.11.001Suche in Google Scholar PubMed
Scheinert, R.B., Asokan, A., Rani, A., Kumar, A., Foster, T.C., and Ormerod, B.K. (2015). Some hormone, cytokine and chemokine levels that change across lifespan vary by cognitive status in male Fischer 344 rats. Brain Behav. Immun. 49: 216–232.10.1016/j.bbi.2015.06.005Suche in Google Scholar PubMed PubMed Central
Schwartz, M. and Deczkowska, A. (2016). Neurological disease as a failure of brain-immune crosstalk: the multiple faces of neuroinflammation. Trends Immunol. 37: 668–679.10.1016/j.it.2016.08.001Suche in Google Scholar PubMed
Selkoe, D.J. and Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8: 595–608.10.15252/emmm.201606210Suche in Google Scholar PubMed PubMed Central
Serot, J.-M., Béné, M.-C., and Faure, G.C. (2003). Choroid plexus, aging of the brain, and Alzheimer’s disease. Front. Biosci. 8: s515–s521.10.2741/1085Suche in Google Scholar PubMed
Shechter, R., Miller, O., Yovel, G., Rosenzweig, N., London, A., Ruckh, J., Kim, K.-W., Klein, E., Kalchenko, V., Bendel, P., et al.. (2013). Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38: 555–569.10.1016/j.immuni.2013.02.012Suche in Google Scholar PubMed PubMed Central
Shi, Q., Chowdhury, S., Ma, R., Le, K.X., Hong, S., Caldarone, B.J., Stevens, B., and Lemere, C.A. (2017). Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci. Transl. Med. 9: eaaf6295.10.1126/scitranslmed.aaf6295Suche in Google Scholar PubMed PubMed Central
Shobin, E., Bowley, M.P., Estrada, L.I., Heyworth, N.C., Orczykowski, M.E., Eldridge, S.A., Calderazzo, S.M., Mortazavi, F., Moore, T.L., and Rosene, D.L. (2017). Microglia activation and phagocytosis: relationship with aging and cognitive impairment in the rhesus monkey. GeroScience 39: 199–220.10.1007/s11357-017-9965-ySuche in Google Scholar PubMed PubMed Central
Simard, A.R., Soulet, D., Gowing, G., Julien, J.-P., and Rivest, S. (2006). Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49: 489–502.10.1016/j.neuron.2006.01.022Suche in Google Scholar PubMed
Spangenberg, E., Severson, P.L., Hohsfield, L.A., Crapser, J., Zhang, J., Burton, E.A., Zhang, Y., Spevak, W., Lin, J., Phan, N.Y., et al.. (2019). Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model. Nat. Commun. 10: 3758.10.1038/s41467-019-11674-zSuche in Google Scholar PubMed PubMed Central
Stephan, A.H., Madison, D.V., Mateos, J.M., Fraser, D.A., Lovelett, E.A., Coutellier, L., Kim, L., Tsai, H.-H., Huang, E.J., Rowitch, D.H., et al.. (2013). A dramatic increase of C1q protein in the CNS during normal aging. J. Neurosci. 33: 13460–13474.10.1523/JNEUROSCI.1333-13.2013Suche in Google Scholar PubMed PubMed Central
Stoltzner, S.E., Grenfell, T.J., Mori, C., Wisniewski, K.E., Wisniewski, T.M., Selkoe, D.J., and Lemere, C.A. (2000). Temporal accrual of complement proteins in amyloid plaques in Down’s syndrome with Alzheimer’s disease. Am. J. Pathol. 156: 489–499.10.1016/S0002-9440(10)64753-0Suche in Google Scholar PubMed PubMed Central
Sulzer, D., Alcalay, R.N., Garretti, F., Cote, L., Kanter, E., Agin-Liebes, J., Liong, C., McMurtrey, C., Hildebrand, W.H., Mao, X., et al.. (2017). T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 546: 656–661.10.1038/nature22815Suche in Google Scholar PubMed PubMed Central
Swardfager, W., Lanctôt, K., Rothenburg, L., Wong, A., Cappell, J., and Herrmann, N. (2010). A meta-analysis of cytokines in Alzheimer’s disease. Biol. Psychiatry. 68: 930–941.10.1016/j.biopsych.2010.06.012Suche in Google Scholar PubMed
Sweeney, M.D., Zhao, Z., Montagne, A., Nelson, A.R., and Zlokovic, B.V. (2019). Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99: 21–78.10.1152/physrev.00050.2017Suche in Google Scholar PubMed PubMed Central
Titman, P., Pink, E., Skucek, E., O’Hanlon, K., Cole, T.J., Gaspar, J., Xu-Bayford, J., Jones, A., Thrasher, A.J., Davies, E.G., et al.. (2008). Cognitive and behavioral abnormalities in children after hematopoietic stem cell transplantation for severe congenital immunodeficiencies. Blood 112: 3907–3913.10.1182/blood-2008-04-151332Suche in Google Scholar PubMed
Tremblay, M.-È., Zettel, M.L., Ison, J.R., Allen, P.D., and Majewska, A.K. (2012). Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 60: 541–558.10.1002/glia.22287Suche in Google Scholar PubMed PubMed Central
Trieb, K., Ransmayr, G., Sgonc, R., Lassmann, H., and Grubeck-Loebenstein, B. (1996). APP peptides stimulate lymphocyte proliferation in normals, but not in patients with Alzheimer’s disease. Neurobiol. Aging 17: 541–547.10.1016/0197-4580(96)00068-1Suche in Google Scholar PubMed
Tsukamoto, H., Kouwaki, T., and Oshiumi, H. (2020). Aging-associated extracellular vesicles contain immune regulatory microRNAs alleviating hyperinflammatory state and immune dysfunction in the elderly. iScience 23: 101520.10.1016/j.isci.2020.101520Suche in Google Scholar PubMed PubMed Central
Utz, S.G., See, P., Mildenberger, W., Thion, M.S., Silvin, A., Lutz, M., Ingelfinger, F., Rayan, N.A., Lelios, I., Buttgereit, A., et al.. (2020). Early fate defines microglia and non-parenchymal brain macrophage development. Cell 181: 557–573.10.1016/j.cell.2020.03.021Suche in Google Scholar PubMed
Van Hove, H., Martens, L., Scheyltjens, I., De Vlaminck, K., Pombo Antunes, A.R., De Prijck, S., Vandamme, N., De Schepper, S., Van Isterdael, G., Scott, C.L., et al.. (2019). A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22: 1021–1035.10.1038/s41593-019-0393-4Suche in Google Scholar PubMed
Wolf, S.A., Steiner, B., Akpinarli, A., Kammertoens, T., Nassenstein, C., Braun, A., Blankenstein, T., and Kempermann, G. (2009). CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J. Immunol. 182: 3979–3984.10.4049/jimmunol.0801218Suche in Google Scholar PubMed
Yager, E.J., Ahmed, M., Lanzer, K., Randall, T.D., Woodland, D.L., and Blackman, M.A. (2008). Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J. Exp. Med. 205: 711–723.10.1084/jem.20071140Suche in Google Scholar PubMed PubMed Central
Yan, S.S., Wu, Z.Y., Zhang, H.P., Furtado, G., Chen, X., Yan, S.F., Schmidt, A.M., Brown, C., Stern, A., LaFaille, J., et al.. (2003). Suppression of experimental autoimmune encephalomyelitis by selective blockade of encephalitogenic T-cell infiltration of the central nervous system. Nat. Med. 9: 287–293.10.1038/nm831Suche in Google Scholar PubMed
Yau, S.-y., Li, A., and So, K.-F. (2015). Involvement of adult hippocampal neurogenesis in learning and forgetting. Neural Plast.: 717958.10.1155/2015/717958Suche in Google Scholar PubMed PubMed Central
Yoshiyama, Y., Higuchi, M., Zhang, B., Huang, S.-M., Iwata, N., Saido, T.C., Maeda, J., Suhara, T., Trojanowski, J.Q., and Lee, V.M.Y. (2007). Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53: 337–351.10.1016/j.neuron.2007.01.010Suche in Google Scholar PubMed
Yousef, H., Czupalla, C.J., Lee, D., Chen, M.B., Burke, A.N., Zera, K.A., Zandstra, J., Berber, E., Lehallier, B., Mathur, V., et al.. (2019). Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nat. Med. 25: 988–1000.10.1038/s41591-019-0440-4Suche in Google Scholar PubMed PubMed Central
Yousefzadeh, M.J., Flores, R.R., Zhu, Y., Schmiechen, Z.C., Brooks, R.W., Trussoni, C.E., Cui, Y., Angelini, L., Lee, K.-A., McGowan, S.J., et al.. (2021). An aged immune system drives senescence and ageing of solid organs. Nature 594: 100–105.10.1038/s41586-021-03547-7Suche in Google Scholar PubMed PubMed Central
Zenaro, E., Pietronigro, E., Della Bianca, V., Piacentino, G., Marongiu, L., Budui, S., Turano, E., Rossi, B., Angiari, S., Dusi, S., et al.. (2015). Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat. Med. 21: 880–886.10.1038/nm.3913Suche in Google Scholar PubMed
Zhang, B., Gaiteri, C., Bodea, L.-G., Wang, Z., McElwee, J., Podtelezhnikov, A.A., Zhang, C., Xie, T., Tran, L., Dobrin, R., et al.. (2013). Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 153: 707–720.10.1016/j.cell.2013.03.030Suche in Google Scholar PubMed PubMed Central
Zhang, P., Kishimoto, Y., Grammatikakis, I., Gottimukkala, K., Cutler, R.G., Zhang, S., Abdelmohsen, K., Bohr, V.A., Misra Sen, J., Gorospe, M., et al.. (2019). Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci. 22: 719–728.10.1038/s41593-019-0372-9Suche in Google Scholar PubMed PubMed Central
Zhao, Y., Zeng, C.-Y., Li, X.-H., Yang, T.-T., Kuang, X., and Du, J.-R. (2020). Klotho overexpression improves amyloid‐β clearance and cognition in the APP/PS1 mouse model of Alzheimer’s disease. Aging Cell 19: e13239.10.1111/acel.13239Suche in Google Scholar PubMed PubMed Central
Zhou, J., Fonseca, M.I., Kayed, R., Hernandez, I., Webster, S.D., Yazan, O., Cribbs, D.H., Glabe, C.G., and Tenner, A.J. (2005). Novel Abeta peptide immunogens modulate plaque pathology and inflammation in a murine model of Alzheimer’s disease. J. Neuroinflamm. 2: 28.10.1186/1742-2094-2-28Suche in Google Scholar PubMed PubMed Central
Zinger, A., Cho, W.C., and Ben-Yehuda, A. (2017). Cancer and aging - the inflammatory connection. Aging Dis 8: 611–627.10.14336/AD.2016.1230Suche in Google Scholar PubMed PubMed Central
Zou, Y., Yoon, S., Jung, K.J., Kim, C.H., Son, T.G., Kim, M.-S., Kim, Y.J., Lee, J., Yu, B.P., and Chung, H.Y. (2006). Upregulation of aortic adhesion molecules during aging. J. Gerontol. A Biol. Sci. Med. Sci. 61: 232–244.10.1093/gerona/61.3.232Suche in Google Scholar PubMed
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- The many facets of CD26/dipeptidyl peptidase 4 and its inhibitors in disorders of the CNS – a critical overview
- Functional changes in brain oscillations in dementia: a review
- The role of microRNA-485 in neurodegenerative diseases
- Predictive models for the incidence of Parkinson’s disease: systematic review and critical appraisal
- Involvement of nerve growth factor (NGF) in chronic neuropathic pain – a systematic review
- Immunosenescence of brain accelerates Alzheimer’s disease progression
- Pathophysiological aspects of complex PTSD – a neurobiological account in comparison to classic posttraumatic stress disorder and borderline personality disorder
Artikel in diesem Heft
- Frontmatter
- The many facets of CD26/dipeptidyl peptidase 4 and its inhibitors in disorders of the CNS – a critical overview
- Functional changes in brain oscillations in dementia: a review
- The role of microRNA-485 in neurodegenerative diseases
- Predictive models for the incidence of Parkinson’s disease: systematic review and critical appraisal
- Involvement of nerve growth factor (NGF) in chronic neuropathic pain – a systematic review
- Immunosenescence of brain accelerates Alzheimer’s disease progression
- Pathophysiological aspects of complex PTSD – a neurobiological account in comparison to classic posttraumatic stress disorder and borderline personality disorder