Startseite Optogenetic and chemogenetic modulation of astroglial secretory phenotype
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Optogenetic and chemogenetic modulation of astroglial secretory phenotype

  • Alla B. Salmina , Yana V. Gorina , Alexander I. Erofeev , Pavel M. Balaban , Ilya B. Bezprozvanny und Olga L. Vlasova
Veröffentlicht/Copyright: 8. Februar 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Astrocytes play a major role in brain function and alterations in astrocyte function that contribute to the pathogenesis of many brain disorders. The astrocytes are attractive cellular targets for neuroprotection and brain tissue regeneration. Development of novel approaches to monitor and to control astroglial function is of great importance for further progress in basic neurobiology and in clinical neurology, as well as psychiatry. Recently developed advanced optogenetic and chemogenetic techniques enable precise stimulation of astrocytes in vitro and in vivo, which can be achieved by the expression of light-sensitive channels and receptors, or by expression of receptors exclusively activated by designer drugs. Optogenetic stimulation of astrocytes leads to dramatic changes in intracellular calcium concentrations and causes the release of gliotransmitters. Optogenetic and chemogenetic protocols for astrocyte activation aid in extracting novel information regarding the function of brain’s neurovascular unit. This review summarizes current data obtained by this approach and discusses a potential mechanistic connection between astrocyte stimulation and changes in brain physiology.


Corresponding author: Alla B. Salmina, Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; and Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zheleznyaka str., 1, Krasnoyarsk, 660022, Russia, E-mail:

Award Identifier / Grant number: 20-65-46004

Acknowledgement

The authors thank A. Olsen for English language editing.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The work is supported by a grant from the Russian Science Foundation 20-65-46004 (to A.B.S., Y.V.G., A.I.E., P.M.B., I.B.B., O.L.V.).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abbink, M.R., van Deijk, A.-L.F., Heine, V.M., Verheijen, M.H., and Korosi, A. (2019). The involvement of astrocytes in early-life adversity induced programming of the brain. Glia 67: 1637–1653.10.1002/glia.23625Suche in Google Scholar PubMed PubMed Central

Acosta-Ruiz, A., Gutzeit, V.A., Skelly, M.J., Meadows, S., Lee, J., Parekh, P., Orr, A.G., Liston, C., Pleil, K.E., Broichhagen, J., et al.. (2020). Branched photoswitchable tethered ligands enable ultra-efficient optical control and detection of G protein-coupled receptors in vivo. Neuron 105: 446–463, e413.10.1016/j.neuron.2019.10.036Suche in Google Scholar PubMed PubMed Central

Adamsky, A. and Goshen, I. (2018). Astrocytes in memory function: pioneering findings and future directions. Neuroscience 370: 14–26.10.1016/j.neuroscience.2017.05.033Suche in Google Scholar PubMed

Adamsky, A., Kol, A., Kreisel, T., Doron, A., Ozeri-Engelhard, N., Melcer, T., Refaeli, R., Horn, H., Regev, L., Groysman, M., et al.. (2018b). Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell 174: 59–71, e14.10.1016/j.cell.2018.05.002Suche in Google Scholar PubMed

Allen, N.J. and Eroglu, C. (2017). Cell biology of astrocyte-synapse interactions. Neuron 96: 697–708.10.1016/j.neuron.2017.09.056Suche in Google Scholar PubMed PubMed Central

Araque, A., Li, N., Doyle, R.T., and Haydon, P.G. (2000). SNARE protein-dependent glutamate release from astrocytes. J. Neurosci. 20: 666–673.10.1523/JNEUROSCI.20-02-00666.2000Suche in Google Scholar

Asano, T., Igarashi, H., Ishizuka, T., and Yawo, H. (2018). Organelle optogenetics: direct manipulation of intracellular Ca2+ dynamics by light. Front. Neurosci. 12.10.3389/fnins.2018.00561Suche in Google Scholar PubMed PubMed Central

Bang, J., Kim, H.Y., and Lee, H. (2016). Optogenetic and chemogenetic approaches for studying astrocytes and gliotransmitters. Exp. Neurobiol. 25: 205–221.10.5607/en.2016.25.5.205Suche in Google Scholar PubMed PubMed Central

Barros, L.F. and Weber, B. (2018). CrossTalk proposal: an important astrocyte-to-neuron lactate shuttle couples neuronal activity to glucose utilisation in the brain. J. Physiol. 596: 347–350.10.1113/JP274944Suche in Google Scholar PubMed PubMed Central

Beck, S., Yu-Strzelczyk, J., Pauls, D., Constantin, O.M., Gee, C.E., Ehmann, N., Kittel, R.J., Nagel, G., and Gao, S. (2018). Synthetic light-activated ion channels for optogenetic activation and inhibition. Front. Neurosci. 12.10.3389/fnins.2018.00643Suche in Google Scholar PubMed PubMed Central

Bélanger, M., Allaman, I., and Magistretti, P.J. (2011). Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 14: 724–738.10.1016/j.cmet.2011.08.016Suche in Google Scholar PubMed

Bellot-Saez, A., Kékesi, O., Morley, J.W., and Buskila, Y. (2017). Astrocytic modulation of neuronal excitability through K+ spatial buffering. Neurosci. Biobehav. Rev. 77: 87–97.10.1016/j.neubiorev.2017.03.002Suche in Google Scholar PubMed

Boitsova, E.B., Morgun, A.V., Osipova, E.D., Pozhilenkova, E.A., Martinova, G.P., Frolova, O.V., Olovannikova, R.Y., Tohidpour, A., Gorina, Y.V., Panina, Y.A., et al.. (2018). The inhibitory effect of LPS on the expression of GPR81 lactate receptor in blood-brain barrier model in vitro. J. Neuroinflammation 15: 196.10.1186/s12974-018-1233-2Suche in Google Scholar PubMed PubMed Central

Brambilla, L., Martorana, F., and Rossi, D. (2013). Astrocyte signaling and neurodegeneration: new insights into CNS disorders. Prion 7: 28–36.10.4161/pri.22512Suche in Google Scholar PubMed PubMed Central

Breslin, K., Wade, J.J., Wong-Lin, K., Harkin, J., Flanagan, B., Van Zalinge, H., Hall, S., Walker, M., Verkhratsky, A., and McDaid, L. (2018). Potassium and sodium microdomains in thin astroglial processes: a computational model study. PLoS Comput. Biol. 14: e1006151.10.1371/journal.pcbi.1006151Suche in Google Scholar PubMed PubMed Central

Brockett, A.T., Kane, G.A., Monari, P.K., Briones, B.A., Vigneron, P.-A., Barber, G.A., Bermudez, A., Dieffenbach, U., Kloth, A.D., Buschman, T.J., et al.. (2018). Evidence supporting a role for astrocytes in the regulation of cognitive flexibility and neuronal oscillations through the Ca2+ binding protein S100β. PLoS One 13: e0195726.10.1371/journal.pone.0195726Suche in Google Scholar PubMed PubMed Central

Bronzuoli, M.R., Facchinetti, R., Steardo, L.Jr., Romano, A., Stecca, C., Passarella, S., Steardo, L., Cassano, T., and Scuderi, C. (2018). Palmitoylethanolamide dampens reactive astrogliosis and improves neuronal trophic support in a triple transgenic model of Alzheimer’s disease: in vitro and in vivo evidence. Oxid. Med. Cell Longev.: 4720532.10.1155/2018/4720532Suche in Google Scholar PubMed PubMed Central

Bull, C., Freitas, K.C.C., Zou, S., Poland, R.S., Syed, W.A., Urban, D.J., Minter, S.C., Shelton, K.L., Hauser, K.F., Negus, S.S., et al.. (2014). Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence. Neuropsychopharmacology 39: 2835–2845.10.1038/npp.2014.135Suche in Google Scholar PubMed PubMed Central

Capecchi, P.L., Pasini, F.L., Quartarolo, E., and Perri, T.D. (1997). Carnitines increase plasma levels of adenosine and ATP in humans. Vasc. Med. 2: 77–81.10.1177/1358863X9700200201Suche in Google Scholar PubMed

Cardozo, T., Shmelkov, E., Felsovalyi, K., Swetnam, J., Butler, T., Malaspina, D., and Shmelkov, S.V. (2017). Chemistry-based molecular signature underlying the atypia of clozapine. Transl. Psychiatry 7: e1036.10.1038/tp.2017.6Suche in Google Scholar PubMed PubMed Central

Cavaccini, A., Durkee, C., Kofuji, P., Tonini, R., and Araque, A. (2020). Astrocyte signaling gates long-term depression at corticostriatal synapses of the direct pathway. J. Neurosci JN-RM-2369-2319.10.1523/JNEUROSCI.2369-19.2020Suche in Google Scholar PubMed PubMed Central

Cheli, V.T., Santiago González, D.A., Smith, J., Spreuer, V., Murphy, G.G., and Paez, P.M. (2016). L-type voltage-operated calcium channels contribute to astrocyte activation in vitro. Glia 64: 1396–1415.10.1002/glia.23013Suche in Google Scholar PubMed PubMed Central

Chen, L.-F., Lin, Y.T., Gallegos, D.A., Hazlett, M.F., Gómez-Schiavon, M., Yang, M.G., Kalmeta, B., Zhou, A.S., Holtzman, L., Gersbach, C.A., et al.. (2019). Enhancer histone acetylation modulates transcriptional bursting dynamics of neuronal activity-inducible genes. Cell Rep. 26: 1174–1188, e1175.10.1016/j.celrep.2019.01.032Suche in Google Scholar PubMed PubMed Central

Chen, X.-S., Huang, N., Michael, N., and Xiao, L. (2015). Advancements in the underlying pathogenesis of schizophrenia: implications of DNA methylation in glial cells. Front. Cell. Neurosci. 9: 451.10.3389/fncel.2015.00451Suche in Google Scholar PubMed PubMed Central

Chiechio, S., Canonico, P.L., and Grilli, M. (2017). l-Acetylcarnitine: a mechanistically distinctive and potentially rapid-acting antidepressant drug. Int. J. Mol. Sci. 19: 11.10.3390/ijms19010011Suche in Google Scholar PubMed PubMed Central

Chisolm, D.A. and Weinmann, A.S. (2018). Connections between metabolism and epigenetics in programming cellular differentiation. Annu. Rev. Immunol. 36: 221–246.10.1146/annurev-immunol-042617-053127Suche in Google Scholar PubMed

Cho, W.-H., Barcelon, E., and Lee, S.J. (2016). Optogenetic glia manipulation: possibilities and future prospects. Exp. Neurobiol. 25: 197–204.10.5607/en.2016.25.5.197Suche in Google Scholar PubMed PubMed Central

Choi, S.S., Lee, H.J., Lim, I., Satoh, J.-I., and Kim, S.U. (2014). Human astrocytes: secretome profiles of cytokines and chemokines. PLoS One 9: e92325.10.1371/journal.pone.0092325Suche in Google Scholar PubMed PubMed Central

Corkrum, M., Covelo, A., Lines, J., Bellocchio, L., Pisansky, M., Loke, K., Quintana, R., Rothwell, P.E., Lujan, R., Marsicano, G., et al.. (2020). Dopamine-evoked synaptic regulation in the nucleus accumbens requires astrocyte activity. Neuron 105: 1036–1047, e1035.10.1016/j.neuron.2019.12.026Suche in Google Scholar PubMed PubMed Central

Cosentino, C., Alberio, L., Gazzarrini, S., Aquila, M., Romano, E., Cermenati, S., Zuccolini, P., Petersen, J., Beltrame, M., Van Etten, J.L., et al.. (2015). Optogenetics. Engineering of a light-gated potassium channel. Science 348: 707–710.10.1126/science.aaa2787Suche in Google Scholar PubMed

Davila, D., Thibault, K., Fiacco, T.A., and Agulhon, C. (2013). Recent molecular approaches to understanding astrocyte function in vivo. Front. Cell. Neurosci. 7: 272.10.3389/fncel.2013.00272Suche in Google Scholar PubMed PubMed Central

De Bock, M., Decrock, E., Wang, N., Bol, M., Vinken, M., Bultynck, G., and Leybaert, L. (2014). The dual face of connexin-based astroglial Ca2+ communication: a key player in brain physiology and a prime target in pathology. Biochim. Biophys. Acta Mol. Cell Res. 1843: 2211–2232.10.1016/j.bbamcr.2014.04.016Suche in Google Scholar PubMed

de Castro Abrantes, H., Briquet, M., Schmuziger, C., Restivo, L., Puyal, J., Rosenberg, N., Rocher, A.-B., Offermanns, S., and Chatton, J.-Y. (2019). The lactate receptor HCAR1 modulates neuronal network activity through the activation of Gα and Gβγ subunits. J. Neurosci. 39: 4422–4433.10.1523/JNEUROSCI.2092-18.2019Suche in Google Scholar PubMed PubMed Central

Deemyad, T., Lüthi, J., and Spruston, N. (2018). Astrocytes integrate and drive action potential firing in inhibitory subnetworks. Nat. Commun. 9: 4336.10.1038/s41467-018-06338-3Suche in Google Scholar PubMed PubMed Central

Denizot, A., Arizono, M., Nägerl, U.V., Soula, H., and Berry, H. (2019). Simulation of calcium signaling in fine astrocytic processes: effect of spatial properties on spontaneous activity. PLoS Comput. Biol. 15: e1006795.10.1371/journal.pcbi.1006795Suche in Google Scholar PubMed PubMed Central

Descalzi, G., Gao, V., Steinman, M.Q., Suzuki, A., and Alberini, C.M. (2019). Lactate from astrocytes fuels learning-induced mRNA translation in excitatory and inhibitory neurons. Commun. Biol. 2: 247.10.1038/s42003-019-0495-2Suche in Google Scholar PubMed PubMed Central

Dhitavat, S., Ortiz, D., Shea, T.B., and Rivera, E.R. (2002). Acetyl-l-carnitine protects against amyloid-β neurotoxicity: roles of oxidative buffering and ATP levels. Neurochem. Res. 27: 501–505.10.1023/A:1019800703683Suche in Google Scholar

Díaz-García, C.M., Mongeon, R., Lahmann, C., Koveal, D., Zucker, H., and Yellen, G. (2017). Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metab. 26: 361–374, e364.10.1016/j.cmet.2017.06.021Suche in Google Scholar PubMed PubMed Central

Divakaruni, A.S., Wallace, M., Buren, C., Martyniuk, K., Andreyev, A.Y., Li, E., Fields, J.A., Cordes, T., Reynolds, I.J., Bloodgood, B.L., et al.. (2017). Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death. J. Cell Biol. 216: 1091–1105.10.1083/jcb.201612067Suche in Google Scholar PubMed PubMed Central

Dolgikh, D.A., Malyshev, A.Y., Roshchin, M.V., Smirnova, G.R., Nekrasova, O.V., Petrovskaya, L.E., Feldman, T.B., Balaban, P.M., Kirpichnikov, M.P., and Ostrovsky, M.A. (2016). Comparative characteristics of two anion-channel rhodopsins and prospects of their use in optogenetics. Dokl. Biochem. Biophys. 471: 440–442.10.1134/S160767291606017XSuche in Google Scholar PubMed

Dombeck, D.A., Khabbaz, A.N., Collman, F., Adelman, T.L., and Tank, D.W. (2007). Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56: 43–57.10.1016/j.neuron.2007.08.003Suche in Google Scholar PubMed PubMed Central

Durkee, C.A., Covelo, A., Lines, J., Kofuji, P., Aguilar, J., and Araque, A. (2019). Gi/o protein-coupled receptors inhibit neurons but activate astrocytes and stimulate gliotransmission. Glia 67: 1076–1093.10.1002/glia.23589Suche in Google Scholar PubMed PubMed Central

Durnin, L., Dai, Y., Aiba, I., Shuttleworth, C.W., Yamboliev, I.A., and Mutafova-Yambolieva, V.N. (2012). Release, neuronal effects and removal of extracellular β-nicotinamide adenine dinucleotide (β-NAD⁺) in the rat brain. Eur. J. Neurosci. 35: 423–435.10.1111/j.1460-9568.2011.07957.xSuche in Google Scholar PubMed PubMed Central

Edling, Y., Ingelman-Sundberg, M., and Simi, A. (2007). Glutamate activates c-fos in glial cells via a novel mechanism involving the glutamate receptor subtype mGlu5 and the transcriptional repressor DREAM. Glia 55: 328–340.10.1002/glia.20464Suche in Google Scholar PubMed

Erlichman, J.S., Hewitt, A., Damon, T.L., Hart, M., Kurascz, J., Li, A., and Leiter, J.C. (2008). Inhibition of monocarboxylate transporter 2 in the retrotrapezoid nucleus in rats: a test of the astrocyte-neuron lactate-shuttle hypothesis. J. Neurosci. 28: 4888–4896.10.1523/JNEUROSCI.5430-07.2008Suche in Google Scholar PubMed PubMed Central

Ermakova, Y.G., Lanin, A.A., Fedotov, I.V., Roshchin, M., Kelmanson, I.V., Kulik, D., Bogdanova, Y.A., Shokhina, A.G., Bilan, D.S., Staroverov, D.B., et al.. (2017). Thermogenetic neurostimulation with single-cell resolution. Nat. Commun. 8: 15362.10.1038/ncomms15362Suche in Google Scholar PubMed PubMed Central

Erofeev, A.I., Matveev, M.V., Terekhin, S.G., Zakharova, O.A., Plotnikova, P.V., and Vlasova, O.L. (2015). The new method for studying neuronal activity: optogenetics. Petersburg Polytechnical Univ. J. Phys. Math. 1: 256–263.10.1016/j.spjpm.2015.12.001Suche in Google Scholar

Fellin, T., Pozzan, T., and Carmignoto, G. (2006). Purinergic receptors mediate two distinct glutamate release pathways in hippocampal astrocytes. J. Biol. Chem. 281: 4274–4284.10.1074/jbc.M510679200Suche in Google Scholar PubMed

Fernández-Moncada, I., Ruminot, I., Robles-Maldonado, D., Alegría, K., Deitmer, J.W., and Barros, L.F. (2018). Neuronal control of astrocytic respiration through a variant of the Crabtree effect. Proc. Natl. Acad. Sci. U. S. A. 115: 1623–1628.10.1073/pnas.1716469115Suche in Google Scholar PubMed PubMed Central

Ferreira, G.C. and McKenna, M.C. (2017). L-carnitine and acetyl-L-carnitine roles and neuroprotection in developing brain. Neurochem. Res. 42: 1661–1675.10.1007/s11064-017-2288-7Suche in Google Scholar PubMed PubMed Central

Ferrer, I. (2017). Diversity of astroglial responses across human neurodegenerative disorders and brain aging. Brain Pathol. 27: 645–674.10.1111/bpa.12538Suche in Google Scholar PubMed PubMed Central

Figueiredo, M., Lane, S., Stout, R.F., Liu, B., Parpura, V., Teschemacher, A.G., and Kasparov, S. (2014). Comparative analysis of optogenetic actuators in cultured astrocytes. Cell Calcium 56: 208–214.10.1016/j.ceca.2014.07.007Suche in Google Scholar PubMed PubMed Central

Figueiredo, M., Lane, S., Tang, F., Liu, B.H., Hewinson, J., Marina, N., Kasymov, V., Souslova, E.A., Chudakov, D.M., Gourine, A.V., et al.. (2011). Optogenetic experimentation on astrocytes. Exp. Physiol. 96: 40–50.10.1113/expphysiol.2010.052597Suche in Google Scholar PubMed

Gomez, J.L., Bonaventura, J., Lesniak, W., Mathews, W.B., Sysa-Shah, P., Rodriguez, L.A., Ellis, R.J., Richie, C.T., Harvey, B.K., Dannals, R.F., et al.. (2017). Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357: 503–507.10.1126/science.aan2475Suche in Google Scholar PubMed PubMed Central

Gomez-Ramirez, M., More, A.I., Friedman, N.G., Hochgeschwender, U., and Moore, C.I. (2020). The BioLuminescent-OptoGenetic in vivo response to coelenterazine is proportional, sensitive, and specific in neocortex. J. Neurosci. Res. 98: 471–480.10.1002/jnr.24498Suche in Google Scholar PubMed PubMed Central

Gonçalves, C.-A., Rodrigues, L., Bobermin, L.D., Zanotto, C., Vizuete, A., Quincozes-Santos, A., Souza, D.O., and Leite, M.C. (2019). Glycolysis-derived compounds from astrocytes that modulate synaptic communication. Front. Neurosci. 12.10.3389/fnins.2018.01035Suche in Google Scholar PubMed PubMed Central

Gordon, G.R.J., Choi, H.B., Rungta, R.L., Ellis-Davies, G.C.R., and MacVicar, B.A. (2008). Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456: 745–749.10.1038/nature07525Suche in Google Scholar PubMed PubMed Central

Gourine, A.V., Kasymov, V., Marina, N., Tang, F., Figueiredo, M.F., Lane, S., Teschemacher, A.G., Spyer, K.M., Deisseroth, K., and Kasparov, S. (2010). Astrocytes control breathing through pH-dependent release of ATP. Science 329: 571–575.10.1126/science.1190721Suche in Google Scholar PubMed PubMed Central

Grimm, C., Silapetere, A., Vogt, A., Bernal Sierra, Y.A., and Hegemann, P. (2018). Electrical properties, substrate specificity and optogenetic potential of the engineered light-driven sodium pump eKR2. Sci. Rep. 8: 9316.10.1038/s41598-018-27690-wSuche in Google Scholar PubMed PubMed Central

Guerra-Gomes, S., Sousa, N., Pinto, L., and Oliveira, J.F. (2018). Functional roles of astrocyte calcium elevations: from synapses to behavior. Front. Cell. Neurosci. 11.10.3389/fncel.2017.00427Suche in Google Scholar PubMed PubMed Central

Halim, N.D., McFate, T., Mohyeldin, A., Okagaki, P., Korotchkina, L.G., Patel, M.S., Jeoung, N.H., Harris, R.A., Schell, M.J., and Verma, A. (2010). Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons. Glia 58: 1168–1176.10.1002/glia.20996Suche in Google Scholar PubMed PubMed Central

Harada, K., Kamiya, T., and Tsuboi, T. (2016). Gliotransmitter Release from astrocytes: functional, developmental, and pathological implications in the brain. Front. Neurosci. 9: 499.10.3389/fnins.2015.00499Suche in Google Scholar PubMed PubMed Central

Hasel, P., Dando, O., Jiwaji, Z., Baxter, P., Todd, A.C., Heron, S., Márkus, N.M., McQueen, J., Hampton, D.W., Torvell, M., et al.. (2017). Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism. Nat. Commun. 8: 15132.10.1038/ncomms15132Suche in Google Scholar PubMed PubMed Central

Higashida, H., Salmina, A.B., Olovyannikova, R.Y., Hashii, M., Yokoyama, S., Koizumi, K., Jin, D., Liu, H.X., Lopatina, O., Amina, S., et al.. (2007). Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system. Neurochem. Int. 51: 192–199.10.1016/j.neuint.2007.06.023Suche in Google Scholar PubMed

Hirase, H., Qian, L., Barthó, P., and Buzsáki, G. (2004). Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol. 2: e96.10.1371/journal.pbio.0020096Suche in Google Scholar PubMed PubMed Central

Hohnholt, M.C., Andersen, V.H., Andersen, J.V., Christensen, S.K., Karaca, M., Maechler, P., and Waagepetersen, H.S. (2018). Glutamate dehydrogenase is essential to sustain neuronal oxidative energy metabolism during stimulation. J. Cerebr. Blood Flow Metabol. 38: 1754–1768.10.1177/0271678X17714680Suche in Google Scholar PubMed PubMed Central

Hollnagel, J.-O., Cesetti, T., Schneider, J., Vazetdinova, A., Valiullina-Rakhmatullina, F., Lewen, A., Rozov, A., and Kann, O. (2020). Lactate attenuates synaptic transmission and affects brain rhythms featuring high energy expenditure. iScience 23: 101316.10.1016/j.isci.2020.101316Suche in Google Scholar PubMed PubMed Central

Horenstein, A.L., Bracci, C., Morandi, F., and Malavasi, F. (2019). CD38 in adenosinergic pathways and metabolic re-programming in human multiple myeloma cells: in-tandem insights from basic science to therapy. Front. Immunol. 10.10.3389/fimmu.2019.00760Suche in Google Scholar PubMed PubMed Central

Horenstein, A.L., Chillemi, A., Zaccarello, G., Bruzzone, S., Quarona, V., Zito, A., Serra, S., and Malavasi, F. (2013). A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes. OncoImmunology 2: e26246.10.4161/onci.26246Suche in Google Scholar PubMed PubMed Central

Huang, T., Zhou, X., Mao, X., Yu, C., Zhang, Z., Yang, J., Zhang, Y., Su, T., Chen, C., Cao, Y., et al.. (2020). Lactate-fueled oxidative metabolism drives DNA methyltransferase 1-mediated transcriptional co-activator with PDZ binding domain protein activation. Cancer Sci. 111: 186–199.10.1111/cas.14246Suche in Google Scholar PubMed PubMed Central

Inazu, M., Takeda, H., Maehara, K., Miyashita, K., Tomoda, A., and Matsumiya, T. (2006). Functional expression of the organic cation/carnitine transporter 2 in rat astrocytes. J. Neurochem. 97: 424–434.10.1111/j.1471-4159.2006.03757.xSuche in Google Scholar PubMed

Inoue, K., Ono, H., Abe-Yoshizumi, R., Yoshizawa, S., Ito, H., Kogure, K., and Kandori, H. (2013). A light-driven sodium ion pump in marine bacteria. Nat. Commun. 4: 1678.10.1038/ncomms2689Suche in Google Scholar PubMed

Ioannou, M.S., Jackson, J., Sheu, S.-H., Chang, C.-L., Weigel, A.V., Liu, H., Pasolli, H.A., Xu, C.S., Pang, S., Matthies, D., et al.. (2019). Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell 177: 1522–1535, e1514.10.1016/j.cell.2019.04.001Suche in Google Scholar PubMed

Jessen, N.A., Munk, A.S.F., Lundgaard, I., and Nedergaard, M. (2015). The glymphatic system: a beginner’s guide. Neurochem. Res. 40: 2583–2599.10.1007/s11064-015-1581-6Suche in Google Scholar PubMed PubMed Central

Jha, M.K., Jeon, S., and Suk, K. (2012). Pyruvate dehydrogenase kinases in the nervous system: their principal functions in neuronal-glial metabolic interaction and neuro-metabolic disorders. Curr. Neuropharmacol. 10: 393–403.10.2174/157015912804499528Suche in Google Scholar

Ji, Z.-g. and Wang, H. (2014). Optogenetic control of astrocytes: is it possible to treat astrocyte-related epilepsy? Brain Res. Bull. 110.10.1016/j.brainresbull.2014.10.013Suche in Google Scholar PubMed

Kang, S., Hong, S.-I., Lee, J., Peyton, L., Baker, M., Choi, S., Kim, H., Chang, S.-Y., and Choi, D.-S. (2020). Activation of astrocytes in the dorsomedial striatum facilitates transition from habitual to goal-directed reward-seeking behavior. Biol. Psychiatr.10.1016/j.biopsych.2020.04.023Suche in Google Scholar PubMed PubMed Central

Kanski, R., Sneeboer, M.A., van Bodegraven, E.J., Sluijs, J.A., Kropff, W., Vermunt, M.W., Creyghton, M.P., De Filippis, L., Vescovi, A., Aronica, E., et al.. (2014). Histone acetylation in astrocytes suppresses GFAP and stimulates a reorganization of the intermediate filament network. J. Cell Sci. 127: 4368–4380.10.1242/dev.118489Suche in Google Scholar

Kery, R., Chen, A., and Kirschen, G. (2020). Genetic targeting of astrocytes to combat neurodegenerative disease. Neural. Regen. Res. 15: 199–211.10.4103/1673-5374.265541Suche in Google Scholar PubMed PubMed Central

Kim, S., Kyung, T., Chung, J.-H., Kim, N., Keum, S., Lee, J., Park, H., Kim, H.M., Lee, S., Shin, H.-S., et al.. (2020). Non-invasive optical control of endogenous Ca2+ channels in awake mice. Nat. Commun. 11: 210.10.1038/s41467-019-14005-4Suche in Google Scholar PubMed PubMed Central

Kol, A., Adamsky, A., Groysman, M., Kreisel, T., London, M., and Goshen, I. (2020). Astrocytes contribute to remote memory formation by modulating hippocampal–cortical communication during learning. Nat. Neurosci.10.1038/s41593-020-0679-6Suche in Google Scholar PubMed PubMed Central

Kovalev, K., Polovinkin, V., Gushchin, I., Alekseev, A., Shevchenko, V., Borshchevskiy, V., Astashkin, R., Balandin, T., Bratanov, D., Vaganova, S., et al.. (2019). Structure and mechanisms of sodium-pumping KR2 rhodopsin. Sci. Adv. 5: eaav2671.10.1126/sciadv.aav2671Suche in Google Scholar PubMed PubMed Central

Kozai, T.D. and Vazquez, A.L. (2015). Photoelectric artefact from optogenetics and imaging on microelectrodes and bioelectronics: new challenges and opportunities. J. Mater. Chem. B 3: 4965–4978.10.1039/C5TB00108KSuche in Google Scholar PubMed PubMed Central

Kulijewicz-Nawrot, M., Verkhratsky, A., Chvátal, A., Syková, E., and Rodríguez, J.J. (2012). Astrocytic cytoskeletal atrophy in the medial prefrontal cortex of a triple transgenic mouse model of Alzheimer’s disease. J. Anat. 221: 252–262.10.1111/j.1469-7580.2012.01536.xSuche in Google Scholar PubMed PubMed Central

Langer, J. and Rose, C.R. (2009). Synaptically induced sodium signals in hippocampal astrocytes in situ. J. Physiol. 587: 5859–5877.10.1113/jphysiol.2009.182279Suche in Google Scholar PubMed PubMed Central

Larsen, B.R. and MacAulay, N. (2014). Kir4.1-mediated spatial buffering of K+: experimental challenges in determination of its temporal and quantitative contribution to K+ clearance in the brain. Channels 8: 544–550.10.4161/19336950.2014.970448Suche in Google Scholar PubMed PubMed Central

Latham, T., Mackay, L., Sproul, D., Karim, M., Culley, J., Harrison, D.J., Hayward, L., Langridge-Smith, P., Gilbert, N., and Ramsahoye, B.H. (2012). Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression. Nucleic Acids Res. 40: 4794–4803.10.1093/nar/gks066Suche in Google Scholar PubMed PubMed Central

Liddelow, S., Guttenplan, K.A., Clarke, L., Bennett, F.C., Bohlen, C.J., Schirmer, L., Bennett, M., Munch, A., Chung, W.-S., Peterson, T., et al.. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541: 481–487.10.1038/nature21029Suche in Google Scholar PubMed PubMed Central

Lin, J.Y. (2011). A user’s guide to channelrhodopsin variants: features, limitations and future developments. Exp. Physiol. 96: 19–25.10.1113/expphysiol.2009.051961Suche in Google Scholar PubMed PubMed Central

Liu, X., Cooper, D.E., Cluntun, A.A., Warmoes, M.O., Zhao, S., Reid, M.A., Liu, J., Lund, P.J., Lopes, M., Garcia, B.A., et al.. (2018). Acetate production from glucose and coupling to mitochondrial metabolism in mammals. Cell 175: 502–513, e513.10.1016/j.cell.2018.08.040Suche in Google Scholar PubMed PubMed Central

Liu, X., Lu, Y., Iseri, E., Shi, Y., and Kuzum, D. (2018b). A compact closed-loop optogenetics system based on artifact-free transparent graphene electrodes. Front. Neurosci. 12: 132.10.3389/fnins.2018.00132Suche in Google Scholar PubMed PubMed Central

Losi, G., Mariotti, L., Sessolo, M., and Carmignoto, G. (2017). New tools to study astrocyte Ca2+ signal dynamics in brain networks in vivo. Front. Cell. Neurosci. 11.10.3389/fncel.2017.00134Suche in Google Scholar PubMed PubMed Central

MacDonald, A.J., Holmes, F.E., Beall, C., Pickering, A.E., and Ellacott, K.L.J. (2020). Regulation of food intake by astrocytes in the brainstem dorsal vagal complex. Glia 68: 1241–1254.10.1002/glia.23774Suche in Google Scholar PubMed PubMed Central

MacVicar, B.A., Crichton, S.A., Burnard, D.M., and Tse, F.W.Y. (1987). Membrane conductance oscillations in astrocytes induced by phorbol ester. Nature 329: 242–243.10.1038/329242a0Suche in Google Scholar PubMed

Malarkey, E.B. and Parpura, V. (2008). Mechanisms of glutamate release from astrocytes. Neurochem. Int. 52: 142–154.10.1016/j.neuint.2007.06.005Suche in Google Scholar PubMed PubMed Central

Mangia, S., Simpson, I.A., Vannucci, S.J., and Carruthers, A. (2009). The in vivo neuron-to-astrocyte lactate shuttle in human brain: evidence from modeling of measured lactate levels during visual stimulation. J. Neurochem. 109(Suppl. 1): 55–62.10.1111/j.1471-4159.2009.06003.xSuche in Google Scholar PubMed PubMed Central

Marcelino, H., Nogueira, V.C., Santos, C.R.A., Quelhas, P., Carvalho, T.M.A., Fonseca-Gomes, J., Tomás, J., Diógenes, M.J., Sebastião, A.M., and Cascalheira, J.F. (2020). Adenosine inhibits human astrocyte proliferation independently of adenosine receptor activation. J. Neurochem. 153: 455–467.10.1111/jnc.14937Suche in Google Scholar PubMed

Margineanu, M.B., Mahmood, H., Fiumelli, H., and Magistretti, P.J. (2018). L-lactate regulates the expression of synaptic plasticity and neuroprotection genes in cortical neurons: a transcriptome analysis. Front. Mol. Neurosci. 11: 375.10.3389/fnmol.2018.00375Suche in Google Scholar PubMed PubMed Central

Martin-Fernandez, M., Jamison, S., Robin, L.M., Zhao, Z., Martin, E.D., Aguilar, J., Benneyworth, M.A., Marsicano, G., and Araque, A. (2017). Synapse-specific astrocyte gating of amygdala-related behavior. Nat. Neurosci. 20: 1540–1548.10.1038/nn.4649Suche in Google Scholar PubMed PubMed Central

Masamoto, K., Unekawa, M., Watanabe, T., Toriumi, H., Takuwa, H., Kawaguchi, H., Kanno, I., Matsui, K., Tanaka, K.F., Tomita, Y., et al.. (2015). Unveiling astrocytic control of cerebral blood flow with optogenetics. Sci. Rep. 5: 11455.10.1038/srep11455Suche in Google Scholar PubMed PubMed Central

Mayorquin, L.C., Rodriguez, A.V., Sutachan, J.-J., and Albarracín, S.L. (2018). Connexin-mediated functional and metabolic coupling between astrocytes and neurons. Front. Mol. Neurosci. 11.10.3389/fnmol.2018.00118Suche in Google Scholar PubMed PubMed Central

Mederos, S., González-Arias, C., and Perea, G. (2018). Astrocyte–neuron networks: a multilane highway of signaling for homeostatic brain function. Front. Synaptic Neurosci. 10.10.3389/fnsyn.2018.00045Suche in Google Scholar PubMed PubMed Central

Mederos, S., Hernández-Vivanco, A., Ramírez-Franco, J., Martín-Fernández, M., Navarrete, M., Yang, A., Boyden, E.S., and Perea, G. (2019). Melanopsin for precise optogenetic activation of astrocyte-neuron networks. Glia 67: 915–934.10.1002/glia.23580Suche in Google Scholar PubMed

Mishima, T., Sakatani, S., and Hirase, H. (2007). Intracellular labeling of single cortical astrocytes in vivo. J. Neurosci. Methods 166: 32–40.10.1016/j.jneumeth.2007.06.021Suche in Google Scholar PubMed

Montana, V., Malarkey, E.B., Verderio, C., Matteoli, M., and Parpura, V. (2006). Vesicular transmitter release from astrocytes. Glia 54: 700–715.10.1002/glia.20367Suche in Google Scholar PubMed

Mu, Y., Bennett, D.V., Rubinov, M., Narayan, S., Yang, C.-T., Tanimoto, M., Mensh, B.D., Looger, L.L., and Ahrens, M.B. (2019). Glia accumulate evidence that actions are futile and suppress unsuccessful behavior. Cell 178: 27–43, e19.10.1016/j.cell.2019.05.050Suche in Google Scholar PubMed

Muir, J., Lopez, J., and Bagot, R.C. (2019). Wiring the depressed brain: optogenetic and chemogenetic circuit interrogation in animal models of depression. Neuropsychopharmacology 44: 1013–1026.10.1038/s41386-018-0291-6Suche in Google Scholar PubMed PubMed Central

Nagai, J., Rajbhandari, A.K., Gangwani, M.R., Hachisuka, A., Coppola, G., Masmanidis, S.C., Fanselow, M.S., and Khakh, B.S. (2019). Hyperactivity with disrupted attention by activation of an astrocyte synaptogenic cue. Cell 177: 1280–1292, e1220.10.1016/j.cell.2019.03.019Suche in Google Scholar PubMed PubMed Central

Nagel, G., Brauner, M., Liewald, J.F., Adeishvili, N., Bamberg, E., and Gottschalk, A. (2005). Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15: 2279–2284.10.1016/j.cub.2005.11.032Suche in Google Scholar PubMed

Nakamichi, N. and Kato, Y. (2017). Physiological roles of carnitine/organic cation transporter OCTN1/SLC22A4 in neural cells. Biol. Pharm. Bull. 40: 1146–1152.10.1248/bpb.b17-00099Suche in Google Scholar PubMed

Nam, M.-H., Han, K.-S., Lee, J., Won, W., Koh, W., Bae, J.Y., Woo, J., Kim, J., Kwong, E., Choi, T.-Y., et al.. (2019). Activation of astrocytic μ-opioid receptor causes conditioned place preference. Cell Rep. 28: 1154–1166, e1155.10.1016/j.celrep.2019.06.071Suche in Google Scholar PubMed

Nasca, C., Xenos, D., Barone, Y., Caruso, A., Scaccianoce, S., Matrisciano, F., Battaglia, G., Mathé, A.A., Pittaluga, A., Lionetto, L., et al.. (2013). L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. Proc. Natl. Acad. Sci. U. S. A. 110: 4804–4809.10.1073/pnas.1216100110Suche in Google Scholar PubMed PubMed Central

Neal, M. and Richardson, J.R. (2018). Epigenetic regulation of astrocyte function in neuroinflammation and neurodegeneration. Biochim. Biophys. Acta (BBA) - Mol. Basis Dis. 1864: 432–443.10.1016/j.bbadis.2017.11.004Suche in Google Scholar PubMed PubMed Central

Nguyen, N.T., Ma, G., Lin, E., D’Souza, B., Jing, J., He, L., Huang, Y., and Zhou, Y. (2018). CRAC channel-based optogenetics. Cell Calcium 75: 79–88.10.1016/j.ceca.2018.08.007Suche in Google Scholar PubMed PubMed Central

Nizar, K., Uhlirova, H., Tian, P., Saisan, P.A., Cheng, Q., Reznichenko, L., Weldy, K.L., Steed, T.C., Sridhar, V.B., MacDonald, C.L., et al.. (2013). In vivo stimulus-induced vasodilation occurs without IP3 receptor activation and may precede astrocytic calcium increase. J. Neurosci. 33: 8411–8422.10.1523/JNEUROSCI.3285-12.2013Suche in Google Scholar PubMed PubMed Central

Noguchi, H., Murao, N., Kimura, A., Matsuda, T., Namihira, M., and Nakashima, K. (2016). DNA methyltransferase 1 is indispensable for development of the hippocampal dentate gyrus. J. Neurosci. 36: 6050–6068.10.1523/JNEUROSCI.0512-16.2016Suche in Google Scholar PubMed PubMed Central

Octeau, J.C., Gangwani, M.R., Allam, S.L., Tran, D., Huang, S., Hoang-Trong, T.M., Golshani, P., Rumbell, T.H., Kozloski, J.R., and Khakh, B.S. (2019). Transient, consequential increases in extracellular potassium ions accompany channelrhodopsin2 excitation. Cell Rep. 27: 2249–2261, e2247.10.1016/j.celrep.2019.04.078Suche in Google Scholar PubMed PubMed Central

Oheim, M., Schmidt, E., and Hirrlinger, J. (2018). Local energy on demand: are ‘spontaneous’ astrocytic Ca2+-microdomains the regulatory unit for astrocyte-neuron metabolic cooperation? Brain Res. Bull. 136: 54–64.10.1016/j.brainresbull.2017.04.011Suche in Google Scholar PubMed

Orkand, R.K., Nicholls, J.G., and Kuffler, S.W. (1966). Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29: 788–806.10.1152/jn.1966.29.4.788Suche in Google Scholar PubMed

Osipova, E.D., Semyachkina-Glushkovskaya, O.V., Morgun, A.V., Pisareva, N.V., Malinovskaya, N.A., Boitsova, E.B., Pozhilenkova, E.A., Belova, O.A., Salmin, V.V., Taranushenko, T.E., et al.. (2018). Gliotransmitters and cytokines in the control of blood-brain barrier permeability. Rev. Neurosci.10.1515/revneuro-2017-0092Suche in Google Scholar PubMed

Pannasch, U. and Rouach, N. (2013). Emerging role for astroglial networks in information processing: from synapse to behavior. Trends Neurosci. 36: 405–417.10.1016/j.tins.2013.04.004Suche in Google Scholar PubMed

Park, K. and Lee, S.J. (2020). Deciphering the star codings: astrocyte manipulation alters mouse behavior. Exp. Mol. Med.10.1038/s12276-020-0468-zSuche in Google Scholar PubMed PubMed Central

Parpura, V., Grubišić, V., and Verkhratsky, A. (2011). Ca2+ sources for the exocytotic release of glutamate from astrocytes. Biochim. Biophys. Acta Mol. Cell Res. 1813: 984–991.10.1016/j.bbamcr.2010.11.006Suche in Google Scholar PubMed

Peedicayil, J. (2018). l-Acetylcarnitine as a histone acetylation modulator in psychiatric disorders. Psychopharmacology 235: 3361–3362.10.1007/s00213-018-5043-0Suche in Google Scholar PubMed

Pellerin, L. and Magistretti, P.J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci. U. S. A. 91: 10625, 10629.10.1073/pnas.91.22.10625Suche in Google Scholar PubMed PubMed Central

Pelluru, D., Konadhode, R.R., Bhat, N.R., and Shiromani, P.J. (2016). Optogenetic stimulation of astrocytes in the posterior hypothalamus increases sleep at night in C57BL/6J mice. Eur. J. Neurosci. 43: 1298–1306.10.1111/ejn.13074Suche in Google Scholar PubMed PubMed Central

Perea, G. and Araque, A. (2010). GLIA modulates synaptic transmission. Brain Res. Rev. 63: 93–102.10.1016/j.brainresrev.2009.10.005Suche in Google Scholar PubMed

Perea, G., Yang, A., Boyden, E.S., and Sur, M. (2014). Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nat. Commun. 5: 3262.10.1038/ncomms4262Suche in Google Scholar PubMed PubMed Central

Petravicz, J., Boyt, K.M., and McCarthy, K.D. (2014). Astrocyte IP3R2-dependent Ca2+ signaling is not a major modulator of neuronal pathways governing behavior. Front. Behav. Neurosci. 8: 384.10.3389/fnbeh.2014.00384Suche in Google Scholar PubMed PubMed Central

Pettegrew, J.W., Levine, J., and McClure, R.J. (2000). Acetyl-L-carnitine physical-chemical, metabolic, and therapeutic properties: relevance for its mode of action in Alzheimer’s disease and geriatric depression. Mol. Psychiatr. 5: 616–632.10.1038/sj.mp.4000805Suche in Google Scholar PubMed

Petzold, G.C. and Murthy, V.N. (2011). Role of astrocytes in neurovascular coupling. Neuron 71: 782–797.10.1016/j.neuron.2011.08.009Suche in Google Scholar PubMed

Philtjens, S., Turnbull, M.T., Thedy, B.P., Moon, Y., and Kim, J. (2020). Chemogenetic activation of astrocytes in the hippocampus and cortex changes the transcriptome of microglia and other cell types. bioRxiv, https://doi.org/10.1101/2020.04.27.064881.Suche in Google Scholar

Popugaeva, E., Vlasova, O.L., and Bezprozvanny, I. (2015). Restoring calcium homeostasis to treat Alzheimer’s disease: a future perspective. Neurodegener. Dis. Manag. 5: 395–398.10.2217/nmt.15.36Suche in Google Scholar PubMed PubMed Central

Poskanzer, K.E. and Yuste, R. (2016). Astrocytes regulate cortical state switching in vivo. Proc. Natl. Acad. Sci. U. S. A. 113: E2675–2684.10.1073/pnas.1520759113Suche in Google Scholar PubMed PubMed Central

Rein, M.L. and Deussing, J.M. (2012). The optogenetic (r)evolution. Mol. Genet. Genom. 287: 95–109.10.1007/s00438-011-0663-7Suche in Google Scholar PubMed PubMed Central

Reyes, R.C. and Parpura, V. (2008). Models of astrocytic Ca dynamics and epilepsy. Drug Discov. Today Dis. Model. 5: 13–18.10.1016/j.ddmod.2008.07.002Suche in Google Scholar PubMed PubMed Central

Robertson, J.M. (2018). The gliocentric brain. Int. J. Mol. Sci. 19: 3033.10.3390/ijms19103033Suche in Google Scholar PubMed PubMed Central

Roth, B.L. (2016). DREADDs for neuroscientists. Neuron 89: 683–694.10.1016/j.neuron.2016.01.040Suche in Google Scholar PubMed PubMed Central

Rowlands, B.D., Klugmann, M., and Rae, C.D. (2017). Acetate metabolism does not reflect astrocytic activity, contributes directly to GABA synthesis, and is increased by silent information regulator 1 activation. J. Neurochem. 140: 903–918.10.1111/jnc.13916Suche in Google Scholar PubMed

Rungta, R.L., Osmanski, B.-F., Boido, D., Tanter, M., and Charpak, S. (2017). Light controls cerebral blood flow in naive animals. Nat. Commun. 8: 14191.10.1038/ncomms14191Suche in Google Scholar PubMed PubMed Central

Ruzaeva, V.A., Morgun, A.V., Khilazheva, E.D., Kuvacheva, N.V., Pozhilenkova, E.A., Boitsova, E.B., Martynova, G.P., Taranushenko, T.E., and Salmina, A.B. (2016). [Development of blood-brain barrier under the modulation of HIF activity in astroglialand neuronal cells in vitro]. Biomed Khim 62: 664–669.10.18097/PBMC20166206664Suche in Google Scholar PubMed

Ryoo, K. and Park, J.Y. (2016). Two-pore domain potassium channels in astrocytes. Exp. Neurobiol. 25: 222–232.10.5607/en.2016.25.5.222Suche in Google Scholar PubMed PubMed Central

Sahlender, D.A., Savtchouk, I., and Volterra, A. (2014). What do we know about gliotransmitter release from astrocytes? Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 369: 20130592.10.1098/rstb.2013.0592Suche in Google Scholar PubMed PubMed Central

Salmina, A.B., Kuvacheva, N.V., Morgun, A.V., Komleva, Y.K., Pozhilenkova, E.A., Lopatina, O.L., Gorina, Y.V., Taranushenko, T.E., and Petrova, L.L. (2015). Glycolysis-mediated control of blood-brain barrier development and function. Int. J. Biochem. Cell Biol. 64: 174–184.10.1016/j.biocel.2015.04.005Suche in Google Scholar PubMed

Salmina, A.B., Malinovskaya, N.A., Okuneva, O.S., Taranushenko, T.E., Fursov, A.A., Mikhutkina, S.V., Morgun, A.V., Prokopenko, S.V., and Zykova, L.D. (2008). Perinatal hypoxic and ischemic damage to the central nervous system causes changes in the expression of connexin 43 and CD38 and ADP-ribosyl cyclase activity in brain cells. Bull. Exp. Biol. Med. 146: 733–736.10.1007/s10517-009-0385-6Suche in Google Scholar PubMed

Salmina, A.B., Olovyannikova, R.Ya., Noda, M., and Higashida, H. (2006). ADR-ribosyl cyclase as a therapeutic target for central nervous system diseases. Cent. Nerv. Syst. Agents Med. Chem. 6: 193–210.10.2174/187152406778226699Suche in Google Scholar

Santello, M., Bezzi, P., and Volterra, A. (2011). TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron 69: 988–1001.10.1016/j.neuron.2011.02.003Suche in Google Scholar PubMed

Sasaki, T., Beppu, K., Tanaka, K.F., Fukazawa, Y., Shigemoto, R., and Matsui, K. (2012). Application of an optogenetic byway for perturbing neuronal activity via glial photostimulation. Proc. Natl. Acad. Sci. U. S. A. 109: 20720–20725.10.1073/pnas.1213458109Suche in Google Scholar PubMed PubMed Central

Schummers, J., Yu, H., and Sur, M. (2008). Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320: 1638–1643.10.1126/science.1156120Suche in Google Scholar PubMed

Scofield, M.D. (2018). Exploring the role of astroglial glutamate release and association with synapses in neuronal function and behavior. Biol. Psychiatr. 84: 778–786.10.1016/j.biopsych.2017.10.029Suche in Google Scholar PubMed PubMed Central

Scofield, M.D., Boger, H.A., Smith, R.J., Li, H., Haydon, P.G., and Kalivas, P.W. (2015). Gq-DREADD selectively initiates glial glutamate release and inhibits cue-induced cocaine seeking. Biol. Psychiatr. 78: 441–451.10.1016/j.biopsych.2015.02.016Suche in Google Scholar PubMed PubMed Central

Shen, W., Nikolic, L., Meunier, C., Pfrieger, F., and Audinat, E. (2017). An autocrine purinergic signaling controls astrocyte-induced neuronal excitation. Sci. Rep. 7: 11280.10.1038/s41598-017-11793-xSuche in Google Scholar PubMed PubMed Central

Shigetomi, E., Hirayama, Y.J., Ikenaka, K., Tanaka, K.F., and Koizumi, S. (2018). Role of purinergic receptor P2Y1 in spatiotemporal Ca2+ dynamics in astrocytes. J. Neurosci. 38: 1383–1395.10.1523/JNEUROSCI.2625-17.2017Suche in Google Scholar PubMed PubMed Central

Shigetomi, E., Jackson-Weaver, O., Huckstepp, R.T., O’Dell, T.J., and Khakh, B.S. (2013). TRPA1 channels are regulators of astrocyte basal calcium levels and long-term potentiation via constitutive D-serine release. J. Neurosci. 33: 10143–10153.10.1523/JNEUROSCI.5779-12.2013Suche in Google Scholar PubMed PubMed Central

Siuda, E.R., McCall, J.G., Al-Hasani, R., Shin, G., Il Park, S., Schmidt, M.J., Anderson, S.L., Planer, W.J., Rogers, J.A., and Bruchas, M.R. (2015). Optodynamic simulation of β-adrenergic receptor signalling. Nat. Commun. 6: 8480.10.1038/ncomms9480Suche in Google Scholar PubMed PubMed Central

Sotelo-Hitschfeld, T., Niemeyer, M.I., Mächler, P., Ruminot, I., Lerchundi, R., Wyss, M.T., Stobart, J., Fernández-Moncada, I., Valdebenito, R., Garrido-Gerter, P., et al.. (2015). Channel-mediated lactate release by K⁺-stimulated astrocytes. J. Neurosci. 35: 4168–4178.10.1523/JNEUROSCI.5036-14.2015Suche in Google Scholar PubMed PubMed Central

Sun, L., Shay, J., McLoed, M., Roodhouse, K., Chung, S.H., Clark, C.M., Pirri, J.K., Alkema, M.J., and Gabel, C.V. (2014). Neuronal regeneration in C. elegans requires subcellular calcium release by ryanodine receptor channels and can be enhanced by optogenetic stimulation. J. Neurosci. 34: 15947–15956.10.1523/JNEUROSCI.4238-13.2014Suche in Google Scholar PubMed PubMed Central

Takata, N., Nagai, T., Ozawa, K., Oe, Y., Mikoshiba, K., and Hirase, H. (2013). Cerebral blood flow modulation by basal forebrain or whisker stimulation can occur independently of large cytosolic Ca2+ signaling in astrocytes. PLoS One 8: e66525.10.1371/journal.pone.0066525Suche in Google Scholar PubMed PubMed Central

Takata, N., Sugiura, Y., Yoshida, K., Koizumi, M., Hiroshi, N., Honda, K., Yano, R., Komaki, Y., Matsui, K., Suematsu, M., et al.. (2018). Optogenetic astrocyte activation evokes BOLD fMRI response with oxygen consumption without neuronal activity modulation. Glia 66: 2013–2023.10.1002/glia.23454Suche in Google Scholar PubMed

Tang, F., Lane, S., Korsak, A., Paton, J.F.R., Gourine, A.V., Kasparov, S., and Teschemacher, A.G. (2014). Lactate-mediated glia-neuronal signalling in the mammalian brain. Nat. Commun. 5: 3284.10.1038/ncomms4284Suche in Google Scholar PubMed PubMed Central

Teschemacher, A.G., Gourine, A.V., and Kasparov, S. (2015). A role for astrocytes in sensing the brain microenvironment and neuro-metabolic integration. Neurochem. Res. 40: 2386–2393.10.1007/s11064-015-1562-9Suche in Google Scholar PubMed

Tochitsky, I., Banghart, M.R., Mourot, A., Yao, J.Z., Gaub, B., Kramer, R.H., and Trauner, D. (2012). Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors. Nat. Chem. 4: 105–111.10.1038/nchem.1234Suche in Google Scholar PubMed PubMed Central

Toth, A.B., Hori, K., Novakovic, M.M., Bernstein, N.G., Lambot, L., and Prakriya, M. (2019). CRAC channels regulate astrocyte Ca2+ signaling and gliotransmitter release to modulate hippocampal GABAergic transmission. Sci. Signal. 12.10.1126/scisignal.aaw5450Suche in Google Scholar

Traina, G. (2016). The neurobiology of acetyl-L-carnitine. Front. Biosci. 21: 1314–1329.10.2741/4459Suche in Google Scholar PubMed

Tran, C.H.T., Peringod, G., and Gordon, G.R. (2018). Astrocytes integrate behavioral state and vascular signals during functional hyperemia. Neuron 100: 1133–1148, e1133.10.1016/j.neuron.2018.09.045Suche in Google Scholar PubMed

Vardjan, N., Chowdhury, H.H., Horvat, A., Velebit, J., Malnar, M., Muhič, M., Kreft, M., Krivec, Š.G., Bobnar, S.T., Miš, K., et al.. (2018). Enhancement of astroglial aerobic glycolysis by extracellular lactate-mediated increase in cAMP. Front. Mol. Neurosci. 11: 148.10.3389/fnmol.2018.00148Suche in Google Scholar PubMed PubMed Central

Verderio, C., Bruzzone, S., Zocchi, E., Fedele, E., Schenk, U., De Flora, A., and Matteoli, M. (2001). Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes. J. Neurochem. 78: 646–657.10.1046/j.1471-4159.2001.00455.xSuche in Google Scholar PubMed

Verkhratsky, A., Steardo, L., Parpura, V., and Montana, V. (2016). Translational potential of astrocytes in brain disorders. Prog. Neurobiol. 144: 188–205.10.1016/j.pneurobio.2015.09.003Suche in Google Scholar PubMed PubMed Central

Wang, F., Smith, N.A., Xu, Q., Fujita, T., Baba, A., Matsuda, T., Takano, T., Bekar, L., and Nedergaard, M. (2012). Astrocytes modulate neural network activity by Ca2+-dependent uptake of extracellular K+. Sci. Signal. 5: ra26.10.1126/scisignal.2002334Suche in Google Scholar

Wang, J., Tu, J., Cao, B., Mu, L., Yang, X., Cong, M., Ramkrishnan, A.S., Chan, R.H.M., Wang, L., and Li, Y. (2017). Astrocytic L-lactate signaling facilitates amygdala-anterior cingulate cortex synchrony and decision making in rats. Cell Rep. 21: 2407–2418.10.1016/j.celrep.2017.11.012Suche in Google Scholar PubMed

Wei, L., Sheng, H., Chen, L., Hao, B., Shi, X., and Chen, Y. (2016). Effect of pannexin-1 on the release of glutamate and cytokines in astrocytes. J. Clin. Neurosci. 23: 135–141.10.1016/j.jocn.2015.05.043Suche in Google Scholar PubMed

Winkler, U., Seim, P., Enzbrenner, Y., Köhler, S., Sicker, M., and Hirrlinger, J. (2017). Activity-dependent modulation of intracellular ATP in cultured cortical astrocytes. J. Neurosci. Res. 95: 2172–2181.10.1002/jnr.24020Suche in Google Scholar PubMed

Witthoft, A., Filosa, J.A., and Karniadakis, G.E. (2013). Potassium buffering in the neurovascular unit: models and sensitivity analysis. Biophys. J. 105: 2046–2054.10.1016/j.bpj.2013.09.012Suche in Google Scholar PubMed PubMed Central

Xie, A.X., Madayag, A., Minton, S.K., McCarthy, K.D., and Malykhina, A.P. (2020a). Sensory satellite glial Gq-GPCR activation alleviates inflammatory pain via peripheral adenosine 1 receptor activation. Sci. Rep. 10: 14181.10.1038/s41598-020-71073-zSuche in Google Scholar PubMed PubMed Central

Xie, A.X., Petravicz, J., and McCarthy, K.D. (2015). Molecular approaches for manipulating astrocytic signaling in vivo. Front. Cell. Neurosci. 9: 144.10.3389/fncel.2015.00144Suche in Google Scholar PubMed PubMed Central

Xie, Z., Yang, Q., Song, D., Quan, Z., and Qing, H. (2020b). Optogenetic manipulation of astrocytes from synapses to neuronal networks: a potential therapeutic strategy for neurodegenerative diseases. Glia 68: 215–226.10.1002/glia.23693Suche in Google Scholar PubMed

Yang, L., Qi, Y., and Yang, Y. (2015). Astrocytes control food intake by inhibiting AGRP neuron activity via adenosine A1 receptors. Cell Rep. 11: 798–807.10.1016/j.celrep.2015.04.002Suche in Google Scholar PubMed

Yang, Y., Pacia, C.P., Ye, D., Zhu, L., Baek, H., Yue, Y., Yuan, J., Miller, M.J., Cui, J., Culver, J.P., et al.. (2020). Sonogenetics for noninvasive and cellular-level neuromodulation in rodent brain. bioRxiv.10.1101/2020.01.28.919910Suche in Google Scholar

Yoichi, S., Shibata, K., Yoshida, K., Shigetomi, E., Gachet, C., Ikenaka, K., Tanaka, K., and Koizumi, S. (2017). Transformation of astrocytes to a neuroprotective phenotype by microglia via P2Y 1 receptor downregulation. Cell Rep. 19: 1151–1164.10.1016/j.celrep.2017.04.047Suche in Google Scholar PubMed

Zamora, N.N., Cheli, V.T., Santiago González, D.A., Wan, R., and Paez, P.M. (2020). Deletion of voltage-gated calcium channels in astrocytes during demyelination reduces brain inflammation and promotes myelin regeneration in mice. J. Neurosci. 40: 3332–3347.10.1523/JNEUROSCI.1644-19.2020Suche in Google Scholar PubMed PubMed Central

Zanelli, S.A., Solenski, N.J., Rosenthal, R.E., and Fiskum, G. (2005). Mechanisms of ischemic neuroprotection by acetyl-L-carnitine. Ann. N. Y. Acad. Sci. 1053: 153–161.10.1196/annals.1344.013Suche in Google Scholar PubMed PubMed Central

Zdzisińska, B., Żurek, A., and Kandefer-Szerszeń, M. (2017). Alpha-Ketoglutarate as a molecule with pleiotropic activity: well-known and novel possibilities of therapeutic use. Arch. Immunol. Ther. Exp. 65: 21–36.10.1007/s00005-016-0406-xSuche in Google Scholar PubMed PubMed Central

Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., Weng, Y., Liu, W., Kim, S., Lee, S., Perez-Neut, M., et al.. (2019). Metabolic regulation of gene expression by histone lactylation. Nature 574: 575–580.10.1038/s41586-019-1678-1Suche in Google Scholar

Zhang, J.M., Wang, H.K., Ye, C.Q., Ge, W., Chen, Y., Jiang, Z.L., Wu, C.P., Poo, M.M., and Duan, S. (2003). ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40: 971–982.10.1016/S0896-6273(03)00717-7Suche in Google Scholar

Zorec, R., Araque, A., Carmignoto, G., Haydon, P.G., Verkhratsky, A., and Parpura, V. (2012). Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route. ASN Neuro 4.10.1042/AN20110061Suche in Google Scholar PubMed PubMed Central

Zuend, M., Saab, A.S., Wyss, M.T., Ferrari, K.D., Hösli, L., Looser, Z.J., Stobart, J.L., Duran, J., Guinovart, J.J., Barros, L.F., et al.. (2020). Arousal-induced cortical activity triggers lactate release from astrocytes. Nat. Metab. 2: 179–191.10.1038/s42255-020-0170-4Suche in Google Scholar PubMed

Received: 2020-10-18
Accepted: 2020-11-28
Published Online: 2021-02-08
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 5.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2020-0119/html
Button zum nach oben scrollen