Psychedelic drugs and perception: a narrative review of the first era of research
-
Jacob S. Aday
, Julia R. Wood , Emily K. Bloesch und Christopher C. Davoli
Abstract
Psychedelic drugs are well-known for transiently altering perception, and in particular, for their visual effects. Although scientific interest into the substances’ effects on perception increased during the first era of psychedelic research during the early to mid-20th century, there is currently no source where these findings have been synthesized. In addressing this gap, the current narrative review found that psychedelics were examined for their influences across all levels of the visual system (e.g., retinal, cortical, subcortical, simple visual processing, complex imagery, hallucinations). Psychedelics were also shown to affect auditory discrimination/generalization, neural correlates of auditory processing, and led to auditory hallucinations in subsets of participants. Several studies demonstrated that psychedelics can distort representations of body schema and time perception. Concerns regarding methodological standards of this era are a limitation to the findings and are discussed. Collectively, this review preserves and increases the accessibility of the work done by pioneering psychedelic/perception researchers, synthesizes findings, and critically analyzes areas of discrepancy to inform future studies.
Acknowledgments
We would like to thank Nathan H. Houle, D. J. Marcel Jacobs, Katarina L. I. Woodman, Romualdo R. Ancog, and Melanie J. Piedra for assistance with the literature review.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abramson, H.A., Jarvik, M.E., and Hirsch, M.W. (1955a). Lysergic acid diethylamide (LSD-25): X. Effect on reaction time to auditory and visual stimuli. J. Psychol. 40: 39–52, https://doi.org/10.1080/00223980.1955.9712962.Suche in Google Scholar
Abramson, H.A., Kornetsky, C., Jarvik, M.E., Kaufman, M.R., and Ferguson, M.W. (1955b). Lysergic acid diethylamide (LSD-25): XI. Content analysis of clinical reactions. J. Psychol. 40: 53–60, https://doi.org/10.1080/00223980.1955.9712963.Suche in Google Scholar
Aday, J.S., Bloesch, E.K., and Davoli, C.C. (2020a). 2019: a year of expansion in psychedelic research, industry, and deregulation. Drug Sci. Policy Law 6: 1–6, https://doi.org/10.1177/2050324520974484.Suche in Google Scholar
Aday, J.S., Bloesch, E.K., and Davoli, C.C. (2020b). Can psychedelic drugs attenuate age-related changes in cognition and affect? J. Cogn. Enhanc. 4: 219–227, https://doi.org/10.1007/s41465-019-00151-6.Suche in Google Scholar
Aday, J.S., Davoli, C.C., and Bloesch, E.K. (2019). Slowhand: does time perception change in peri-hand space? Psychon. Bull. Rev. 26: 1289–1294, https://doi.org/10.3758/s13423-019-01609-6.Suche in Google Scholar
Aday, J.S., Mitzkovitz, C.M., Bloesch, E.K., Davoli, C.C., and Davis, A.K. (2020c). Long-term effects of psychedelic drugs: a systematic review. Neurosci. Biobehav. Rev. 113: 179–189, https://doi.org/10.1016/j.neubiorev.2020.03.017.Suche in Google Scholar
Anderson, E.W. and Rawnsley, K. (1954). Clinical studies of lysergic acid diethylamide. Monatsschr. Psychiatr. Neurol. 128: 38–55, https://doi.org/10.1159/000139775.Suche in Google Scholar
Apter, J.T. and Pfeiffer, C.C. (1956). Effect of hallucinogenic drugs on the electroretinogram. Am. J. Ophthalmol. 42: 206–211, https://doi.org/10.1016/0002-9394(56)90372-5.Suche in Google Scholar
Arnold, O.H., Burian, K., Gestring, G.F., Presslich, O., and Saletu, B. (1971). The effect of DMT and LSD on acoustic evoked potentials. Electroencephalogr. Clin. Neurophysiol. 30: 170.Suche in Google Scholar
Aronson, H., Silverstein, A.B., and Klee, G.D. (1959). Influence of lysergic acid diethylamide (LSD-25) on subjective time. AMA Arch. Gen. Psychiatry 1: 37–40, https://doi.org/10.1001/archpsyc.1959.03590050037003.Suche in Google Scholar
Bachini, O., Villar, J.I., Prieto, S., and Garcia, E. (1965). Effects of psychodrugs upon sensory inflow: I. Changes provoked by LSD-25 on the averaged visual evoked responses in man. Acta Neurol. Latinoam. 11: 383–390.Suche in Google Scholar
Barber, T.X. (1971). Imagery and “hallucinations”: effects of LSD contrasted with the effects of “hypnotic” suggestions. In: Segal, S.J. (Ed.). Imagery: current cognitive approaches. Academic Press, Cambridge, pp. 101–129.10.1016/B978-0-12-635450-8.50012-1Suche in Google Scholar
Barrett, F.S., Bradstreet, M.P., Leoutsakos, J.M.S., Johnson, M.W., and Griffiths, R.R. (2016). The Challenging Experience Questionnaire: characterization of challenging experiences with psilocybin mushrooms. J. Psychopharmacol. 30: 1279–1295, https://doi.org/10.1177/0269881116678781.Suche in Google Scholar
Barrett, F.S., Carbonaro, T.M., Hurwitz, E., Johnson, M.W., and Griffiths, R.R. (2018a). Double-blind comparison of the two hallucinogens psilocybin and dextromethorphan: effects on cognition. Psychopharmacology 235: 2915–2927, https://doi.org/10.1007/s00213-018-4981-x.Suche in Google Scholar
Barrett, F.S., Preller, K.H., and Kaelen, M. (2018b). Psychedelics and music: neuroscience and therapeutic implications. Int. Rev. Psychiatry 30: 350–362, https://doi.org/10.1080/09540261.2018.1484342.Suche in Google Scholar
Beliveau, V., Ganz, M., Feng, L., Ozenne, B., Højgaard, L., Fisher, P.M., Svarer, C., Greve, D.N., and Knudsen, G.M. (2017). A high-resolution in vivo atlas of the human brain’s serotonin system. J. Neurosci. 37: 120–128, https://doi.org/10.1523/jneurosci.2830-16.2017.Suche in Google Scholar
Berkovich-Ohana, A., Dor-Ziderman, Y., Glicksohn, J., and Goldstein, A. (2013). Alterations in the sense of time, space, and body in the mindfulness-trained brain: a neurophenomenologically-guided MEG study.Front. Psychol. 4, https://doi.org/10.3389/fpsyg.2013.00912.Suche in Google Scholar
Bertino, J.R., Klee, G.D., Collier, D., and Weintraub, W. (1960). Clinical studies with dibenzyline and lysergic acid diethylamide. J. Clin. Exp. Psychopathol. 21: 293–299.Suche in Google Scholar
Blough, D.S. (1957). Effect of lysergic acid diethylamide on absolute visual threshold of the pigeon. Science 126: 304–305, https://doi.org/10.1126/science.126.3268.304.Suche in Google Scholar
Boardman, W.K., Goldstone, S., and Lhamon, T. (1957). Effects of lysergic acid diethylamide (LSD) on the time sense of normals. AMA Arch. Neurol. Psychiatry 78: 321–324, https://doi.org/10.1001/archneurpsyc.1957.02330390103013.Suche in Google Scholar
Brogaard, B. (2013). Serotonergic hyperactivity as a potential factor in developmental, acquired and drug-induced synesthesia. Front. Hum. Neurosci. 7, https://doi.org/10.3389/fnhum.2013.00657.Suche in Google Scholar
Brown, B.B. (1966). Specificity of LEG photic flicker responses to color as related to visual imagery ability. Psychophysiology 2: 197–207, https://doi.org/10.1111/j.1469-8986.1966.tb02643.x.Suche in Google Scholar
Brown, B.B. (1968). Subjective and EEG responses to LSD in visualizer and non-visualizer subjects. Electroencephalogr. Clin. Neurophysiol. 25: 372–379, https://doi.org/10.1016/0013-4694(68)90179-x.Suche in Google Scholar
Brown, D.J. (2007). Psychedelic healing? Sci. Am. Mind 18: 66–71, https://doi.org/10.1038/scientificamericanmind1207-66.Suche in Google Scholar
Brown, K. and Cooper, S.J. (1975). Effects of lysergic acid diethylamide on auditory and visual discrimination in the rat. Br. J. Pharmacol. 54: 234.Suche in Google Scholar
Buno, W., Villar, J.I., Tejerina, W., and Garcia-Austt, E. (1970). Effect of LSD-25, chloropromazine and metedrine upon visual evoked response in cats. Acta Neurol. Latinoam. 16: 64–73.Suche in Google Scholar
Caldwell, D.F. and Domino, E.F. (1967). Effect of LSD-25 in the rat on operant approach to a visual or auditory conditioned stimulus. Psychol. Rep. 20: 199–205, https://doi.org/10.2466/pr0.1967.20.1.199.Suche in Google Scholar
Carhart-Harris, R.L. and Friston, K.J. (2019). REBUS and the anarchic brain: toward a unified model of the brain action of psychedelics. Pharmacol. Rev. 71: 316–344, https://doi.org/10.1124/pr.118.017160.Suche in Google Scholar
Carhart-Harris, R.L., Muthukumaraswamy, S., Roseman, L., Kaelen, M., Droog, W., Murphy, K., Tagliazucchi, E., Schenberg, E.E., Nest, T., Orban, C., et al.. (2016). Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc. Natl. Acad. Sci. U.S.A. 113: 4853–4858, https://doi.org/10.1073/pnas.1518377113.Suche in Google Scholar
Carhart-Harris, R.L., Roseman, L., Bolstridge, M., Demetriou, L., Pannekoek, J.N., Wall, M.B. et al.. (2017). Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms. Sci. Rep. 7: 13187, https://doi.org/10.1038/s41598-017-13282-7.Suche in Google Scholar
Carlson, V.R. (1958). Effect of lysergic acid diethylamide (LSD-25) on the absolute visual threshold. J. Comp. Physiol. Psychol. 51: 528–531, https://doi.org/10.1037/h0044098.Suche in Google Scholar
Carter, O.L., Hasler, F., Pettigrew, J.D., Wallis, G.M., Liu, G.B., and Vollenweider, F.X. (2007). Psilocybin links binocular rivalry switch rate to attention and subjective arousal levels in humans. Psychopharmacology 195: 415–424, https://doi.org/10.1007/s00213-007-0930-9.Suche in Google Scholar
Carter, O.L., Pettigrew, J.D., Hasler, F., Wallis, G.M., Liu, G.B., Hell, D., and Vollenweider, F.X. (2005). Modulating the rate and rhythmicity of perceptual rivalry alternations with the mixed 5-HT 2A and 5-HT 1A agonist psilocybin. Neuropsychopharmacology 30: 1154–1162, https://doi.org/10.1038/sj.npp.1300621.Suche in Google Scholar
Coyle, J.R., Presti, D.E., and Baggott, M.J. (2012). Quantitative analysis of narrative reports of psychedelic drugs. arXiv preprint arXiv:1206.0312.Suche in Google Scholar
Da Fonesca, J.S., Fialho, M.L., and Gil, M.T. (1965). Evoked potentials and visual information processing under the action of psilocybin in the cat. Neuropsychopharmacology 4: 309–315.Suche in Google Scholar
Deshon, H.J., Rinkel, M.D., and Solomon, H.C. (1952). Mental changes experimentally produced by LSD (d-lysergic acid diethylamide tartrate). Psychiatr. Q. 26: 33–53, https://doi.org/10.1007/bf01568448.Suche in Google Scholar
Dubansky, B. and Vyhnankova, M. (1966). Visual effects of psilocybin in healthy subjects and in patients with lesions of visual system. Act. Nerv. Super. 8: 166.Suche in Google Scholar
Dykstra, L.A. and Appel, J.B. (1970). Effects of LSD on auditory generalization. Psychonomic Sci. 2: 272–274, https://doi.org/10.3758/bf03330711.Suche in Google Scholar
Dykstra, L.A. and Appel, J.B. (1972). Lysergic acid diethylamide and stimulus generalization: rate-dependent effects. Science 177: 720–722, https://doi.org/10.1126/science.177.4050.720.Suche in Google Scholar
Dykstra, L.A. and Appel, J.B. (1974). Effects of LSD on auditory perception: a signal detection analysis. Psychopharmacologia 34: 289–307, https://doi.org/10.1007/bf00422553.Suche in Google Scholar
Eagle, C.T. (1972). Music and LSD: an empirical study. J. Music Ther. 9: 23–38, https://doi.org/10.1093/jmt/9.1.23.Suche in Google Scholar
Etevenon, P. and Boissier, J.R. (1972). LSD effects on signal-to-noise ratio and lateralization of visual cortex and lateral geniculate during photic stimulation. Experientia 28: 1338–1340, https://doi.org/10.1007/bf01965332.Suche in Google Scholar
Evarts, E.V. (1958). Neurophysiological correlates of pharmacologically-induced behavioral disturbances. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 36: 347–380.Suche in Google Scholar
Evarts, E.V. and Hughes, J.R. (1955). Effects of physiological subnormality and LSD on post-tetanic potentiation potentials. Am. J. Physiol. 183: 614.Suche in Google Scholar
Evarts, E.V. and Marshall, W.H. (1955). The effects of lysergic acid diethylamide on the excitability cycle of the lateral geniculate. Trans. Am. Neurol. Assoc. 80: 58–60.Suche in Google Scholar
Eveloff, H.H. (1968). The LSD syndrome: a review. Calif. Med. 109: 368–372.Suche in Google Scholar
Fernández-Guardiola, A., Roldán, E., Fanjul, M.L., and Castells, C. (1961). Role of the pupillary mechanism in the process of habituation of the visual pathways. Electroencephalogr. Clin. Neurophysiol. 13: 564–576, https://doi.org/10.1016/0013-4694(61)90170-5.Suche in Google Scholar
Fernberger, S.W. (1923). Observations on taking peyote “(anhalonium lewinii)”. Am. J. Psychol. 34: 267–270, https://doi.org/10.2307/1413578.Suche in Google Scholar
Fischer, R. (1969). Psychotomimetic drug-induced changes in space and time. In: Processions 4th International Congress on Pharmacology, Vol. 3, pp. 51–52.Suche in Google Scholar
Fischer, R. and Mead, E.L. (1966). Time contraction and psychomotor performance produced by ‘Psilocybin’. Nature 209: 433–434, https://doi.org/10.1038/209433a0.Suche in Google Scholar
Fischer, R., England, S.M., Archer, R.C., Dean, R.K. (1966). Psilocybin reactivity and time contraction as measured by psychomotor performance. Arzneimittelforschung 16: 180–185.Suche in Google Scholar
Fischer, R., Hill, R., Thatcher, K., and Scheib, J. (1970). Psilocybin-induced contraction of nearby visual space. Agents Actions 1: 190–197, https://doi.org/10.1007/bf01965761.Suche in Google Scholar
Fischer, R., Thatcher, K., Kappeler, T., and Wisecup, P. (1969). Perceptual variability: a predictor of psychotomimentic drug-induced behavior. Arzneimittelforschung 19: 1941–1945.Suche in Google Scholar
Forrer, G.R. and Goldner, R.D. (1951). Experimental physiological studies with lysergic acid diethylamide (LSD-25). AMA Arch. Neurol. Psychiatry 65: 581–588, https://doi.org/10.1001/archneurpsyc.1951.02320050038004.Suche in Google Scholar
Fox, S.S. (1960). LSD alteration of optic potentials (cat lateral geniculate)-block by schizophrenic serum. Fed. Proc. 19: 262.Suche in Google Scholar
Frecska, E., Móré, C.E., Vargha, A., and Luna, L.E. (2012). Enhancement of creative expression and entoptic phenomena as after-effects of repeated ayahuasca ceremonies. J. Psychoact. Drugs 44: 191–199, https://doi.org/10.1080/02791072.2012.703099.Suche in Google Scholar
Friedman, S.M. and Fischer, C. (1960). Further observations on primary modes of perception: the use of a masking technique for subliminal visual stimulation. J. Am. Psychoanal. Assoc. 8: 100–129, https://doi.org/10.1177/000306516000800105.Suche in Google Scholar
George, J.R., Michaels, T.I., Sevelius, J., & Williams, M.T. (2020). The psychedelic renaissance and the limitations of a White-dominant medical framework: a call for indigenous and ethnic minority inclusion. J. Psychedelic Stud. 4: 4–15.10.1556/2054.2019.015Suche in Google Scholar
Greiner, T., Burch, N.R., and Edelberg, R. (1958). Psychopathology and psychophysiology of minimal LSD-25 dosage. AMA Arch. Neurol. Psychiatry 79: 208–210, https://doi.org/10.1001/archneurpsyc.1958.02340020088016.Suche in Google Scholar
Griffiths, R.R., Johnson, M.W., Carducci, M.A., Umbricht, A., Richards, W.A., Richards, B.D., Cosimano, M.P., and Klinedinst, M.A. (2016). Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: a randomized double-blind trial. J. Psychopharmacol. 30: 1181–1197, https://doi.org/10.1177/0269881116675513.Suche in Google Scholar
Grob, C.S., Bossis, A.P., and Griffiths, R.R. (2013). Use of the classic hallucinogen psilocybin for treatment of existential distress associated with cancer. In: Carr, B.I. and Steele, J. (Eds.). Psychological aspects of cancer. Springer, Boston, MA, pp. 291–308.10.1007/978-1-4614-4866-2_17Suche in Google Scholar
Guha, D. and Pradhan, S.N. (1974). Effects of mescaline, tetrahydrocannabinal and pentobarbital on the auditory evoked responses in the cat. Neuropharmacology 13: 755–762, https://doi.org/10.1016/0028-3908(74)90022-7.Suche in Google Scholar
Guttmann, E. (1936). Artificial psychoses produced by mescaline. J. Ment. Sci. 82: 203–221, https://doi.org/10.1192/bjp.82.338.203.Suche in Google Scholar
Halasz, M.F., Formanek, J., and Marrazzi, A.S. (1969). Hallucinogen-tranquilizer interaction: its nature. Am. Assoc. Adv. Sci. 164: 569–571, https://doi.org/10.1126/science.164.3879.569.Suche in Google Scholar
Halpern, J.H., Lerner, A.G., and Passie, T. (2016). A review of hallucinogen persisting perception disorder (HPPD) and an exploratory study of subjects claiming symptoms of HPPD. In: Halberstadt, A.L., Vollenweider, F.X., and Nichols, D.E. (Eds.). Behavioral neurobiology of psychedelic drugs. Springer, Berlin, Heidelberg.10.1007/7854_2016_457Suche in Google Scholar
Hartman, A.M. and Hollister, L.E. (1962). Effect of mescaline, lysergic acid diethylamide and psilocybin on color perception. Psychopharmacologia 4: 441–451.10.1007/BF00403349Suche in Google Scholar PubMed
Hoch, P.H., Cattell, J.P., and Pennes, H.H. (1952). Effects of mescaline and lysergic acid (d-LSD-25). Am. J. Psychiatry 108: 579–584, https://doi.org/10.1176/ajp.108.8.579.Suche in Google Scholar
Hollister, L.E. and Hartman, A.M. (1962). Mescaline, lysergic acid diethylamide and psilocybin: comparison of clinical syndromes, effects on color perception and biochemical measures. Compr. Psychiatry 3: 235–241, https://doi.org/10.1016/s0010-440x(62)80024-8.Suche in Google Scholar
Horn, G. and McKay, J.M. (1973). Effects of lysergic acid diethylamide on the spontaneous activity and visual receptive fields of cells in the lateral geniculate nucleus of the cat. Exp. Brain Res. 17: 271–284, https://doi.org/10.1007/bf00234666.Suche in Google Scholar
Joshi, S., Li, Y., Kalwani, R.M., and Gold, J.I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89: 221–234, https://doi.org/10.1016/j.neuron.2015.11.028.Suche in Google Scholar
Kaelen, M., Barrett, F.S., Roseman, L., Lorenz, R., Family, N., Bolstridge, M., Curran, H.V., Feilding, A., Nutt, D.J., and Carhart-Harris, R.L. (2015). LSD enhances the emotional response to music Psychopharmacology 232: 3607–3614, https://doi.org/10.1007/s00213-015-4014-y.Suche in Google Scholar
Kaelen, M., Giribaldi, B., Raine, J., Evans, L., Timmerman, C., Rodriguez, N., Roseman, L., Feilding, A., Nutt, D., and Carhart-Harris, R. (2018). The hidden therapist: evidence for a central role of music in psychedelic therapy. Psychopharmacology 235: 505–519.10.1007/s00213-017-4820-5Suche in Google Scholar PubMed PubMed Central
Kaelen, M., Roseman, L., Kahan, J., Santos-Ribeiro, A., Orban, C., Lorenz, R., Barrett, F.S., Bolstridge, M., Williams, T., Williams, L., et al.. (2016). LSD modulates music-induced imagery via changes in parahippocampal connectivity. Eur. Neuropsychopharmacol. 26: 1099–1109, https://doi.org/10.1016/j.euroneuro.2016.03.018.Suche in Google Scholar
Keeler, M.H. (1970). Klüver’s mechanisms of hallucinations as illustrated by the paintings of Max Ernst. In: Keup, W. (Eds.). Origin and mechanisms of hallucinations. MA Springer, Boston.10.1007/978-1-4615-8645-6_19Suche in Google Scholar
Kenna, J.C. and Sedman, G. (1964). The subjective experience of time during lysergic acid diethylamide (LSD-25) intoxication. Psychopharmacologia 5: 280–288, https://doi.org/10.1007/bf02341260.Suche in Google Scholar
Key, B.J. (1961). The effect of drugs on discrimination and sensory generalization of auditory stimuli in cats. Psychopharmacologia 2: 352–363, https://doi.org/10.1007/bf00404123.Suche in Google Scholar
Key, B.J. (1965). Effect of lysergic acid diethylamide on potentials evoked in the specific sensory pathways. Br. Med. Bull. 21: 30–35, https://doi.org/10.1093/oxfordjournals.bmb.a070352.Suche in Google Scholar
Khazan, N. and McCask, D. (1965). Effects of LSD-25, n, n-dimethyltryptamine (DMT), and n, n-diethyltryptamine (DET) on the photic evoked responses in the unanesthetized rabbit. Arch. Int. Pharmacodyn. Ther. 154: 474–483.Suche in Google Scholar
Klüver, H. (1928). Mescal: the divine plant and its psychological effects. Kegan Paul, London.Suche in Google Scholar
Klüver, H. (1942). Mechanisms of hallucinations. In: Terman and Merrill (Eds.). Studies in personality. McGraw-Hill, New York, NY, pp. 175–207.Suche in Google Scholar
Knauer, A. and Maloney, W. (1913). A preliminary note on the psychic action of mescalin, with special reference to the mechanism of visual hallucinations. J. Nerv. Ment. Dis. 40: 425–436, https://doi.org/10.1097/00005053-191307000-00001.Suche in Google Scholar
Koella, W.P., Wells, C.H., and Smythies, J.R. (1959). Influence of LSD-25 on optically evoked potentials in the nonanesthetized rabbit. Am. J. Physiol. 196: 1181–1184, https://doi.org/10.1152/ajplegacy.1959.196.6.1181.Suche in Google Scholar
Kohn, B. and Bryden, M.P. (1964). The effect of lysergic acid diethylamide (LSD-25) on perception with stabilized images. Psychopharmacologia 7: 311–321.10.1007/BF00403756Suche in Google Scholar PubMed
Kometer, M., Cahn, B.R., Andel, D., Carter, O.L., and Vollenweider, F.X. (2011). The 5-HT2A/1A agonist psilocybin disrupts modal object completion associated with visual hallucinations. Biol. Psychiatry 69: 399–406, https://doi.org/10.1016/j.biopsych.2010.10.002.Suche in Google Scholar
Kometer, M., Schmidt, A., Jäncke, L., and Vollenweider, F.X. (2013). Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations. J. Neurosci. 33: 10544–10551, https://doi.org/10.1523/jneurosci.3007-12.2013.Suche in Google Scholar
Kometer, M. and Vollenweider, F.X. (2016). Serotonergic hallucinogen-induced visual perceptual alterations. In: Halberstadt, A., Vollenweider, F.X., and Nichols, D.E. (Eds.). Behavioral neurobiology of psychedelic drugs. Springer, Berlin, pp. 257–282.10.1007/7854_2016_461Suche in Google Scholar PubMed
Koppanyi, T. (1945). Acetaldehyde, a volatile anesthetic and sympathetic stimulant. Anesthesiology 6: 603–611, https://doi.org/10.1097/00000542-194511000-00008.Suche in Google Scholar
Korein, J. and Musaccio, J.M. (1968). LSD and focal cerebral lesions: behavioral and EEG effects in patients with sensory defects. Neurology 18: 147–152, https://doi.org/10.1212/wnl.18.2.147.Suche in Google Scholar
Kraehenmann, R. (2017). Dreams and psychedelics: neurophenomenological comparison and therapeutic implications. Curr. Neuropharmacol. 15: 1032–1042, https://doi.org/10.2174/1573413713666170619092629.Suche in Google Scholar
Kraehenmann, R., Pokorny, D., Vollenweider, L., Preller, K.H., Pokorny, T., Seifritz, E., and Vollenweider, F.X. (2017). Dreamlike effects of LSD on waking imagery in humans depend on serotonin 2A receptor activation. Psychopharmacology 234: 2031–2046, https://doi.org/10.1007/s00213-017-4610-0.Suche in Google Scholar
Krill, A.E., Alpert, H.J., and Ostfeld, A.M. (1963). Effects of a hallucinogenic agent in totally blind subjects. Arch. Ophthalmol. 69: 180–185, https://doi.org/10.1001/archopht.1963.00960040186009.Suche in Google Scholar
Krill, A.E., Wiedland, A.M., and Ostfeld, A.M. (1960). The effect of two hallucinogenic agents on human retinal function. Arch. Ophthalmol. 64: 104–113, https://doi.org/10.1001/archopht.1960.01840010726015.Suche in Google Scholar
Kuramochi, H. and Takahashi, R. (1964). Psychopathology of LSD intoxication: study of experimental psychosis induces by LSD-25: description of LSD symptoms in normal oriental subjects. Arch. Gen. Psychiatry 11: 151–161, https://doi.org/10.1001/archpsyc.1964.01720260045006.Suche in Google Scholar
Lebedev, A.V., Lövdén, M., Rosenthal, G., Feilding, A., Nutt, D.J., and Carhart‐Harris, R.L. (2015). Finding the self by losing the self: neural correlates of ego‐dissolution under psilocybin. Hum. Brain Mapp. 36: 3137–3153, https://doi.org/10.1002/hbm.22833.Suche in Google Scholar
Liebert, R.S., Wapner, S., and Werner, H. (1957). Effect of LSD on perception of verticality in normals. AMA Arch. Neurol. Psychiatry 77, 193, https://doi.org/10.1001/archneurpsyc.1957.02330320091012.Suche in Google Scholar
Linton, H.B. and Langs, R.J. (1962). Subjective reactions lysergic acid diethylamide (LSD-25): measured by a questionnaire. Arch. Gen. Psychiatry 6: 352–368, https://doi.org/10.1001/archpsyc.1962.01710230020003.Suche in Google Scholar
Luck, S.J. (2014). An introduction to the event-related potential technique. MIT Press, Cambridge, MA.Suche in Google Scholar
Lumholtz, C. (1902). Unknown Mexico: a record of five year’s exploration among the tribes of the western Sierra Madre; in the tierra caliente of Tepic and Jalisco; and among the Tarascos of Michoacan. Scribners, New York, NY.10.2307/197404Suche in Google Scholar
Malitz, S., Esecover, H., Wilkens, B., and Hoch, P.H. (1960). Some observations on psilocybin, a new hallucinogen, in volunteer subjects. Compr. Psychiatry 1: 8–17, https://doi.org/10.1016/s0010-440x(60)80045-4.Suche in Google Scholar
Marshall, C.R. (1937). An enquiry into the causes of mescal visions. J. Neurol. Psychopathol. 17: 289–304, https://doi.org/10.1136/jnnp.s1-17.68.289.Suche in Google Scholar
Martindale, C. and Fischer, R. (1977). The effects of psilocybin on primary process content in language. Confin. Psychiatry 20: 195–202.Suche in Google Scholar
McKay, J.M. and Horn, G. (1971). Effects of LSD on receptive fields of single cells in the lateral geniculate nucleus of the cat. Nature 229: 347–349, https://doi.org/10.1038/229347a0.Suche in Google Scholar
Michaels, T.I., Purdon, J., Collins, A., and Williams, M.T. (2018). Inclusion of people of color in psychedelic-assisted psychotherapy: a review of the literature. BMC Psychiatry 18: 245, https://doi.org/10.1186/s12888-018-1824-6.Suche in Google Scholar
Mitchell, S.W. (1896). Remarks on the effects of Anhelonium lewinii (the mescal button). Brux. Med. 2: 1625–1629, https://doi.org/10.1136/bmj.2.1875.1625.Suche in Google Scholar
Mouriz-Garcia, A., Schmidt, R., and Arlazoroff, A. (1969). Effects on LSD on the spontaneous and evoked activity of retinal and geniculate ganglion cells. Psychopharmacologia 15: 362–391, https://doi.org/10.1007/bf00403713.Suche in Google Scholar
Muthukumaraswamy, S.D., Carhart-Harris, R.L., Moran, R.J., Brookes, M.J., Williams, T.M., Errtizoe, D., Sessa, B., Papadopoulos, A., Bolstridge, M., Singh, K.D., et al.. (2013). Broadband cortical desynchronization underlies the human psychedelic state. J. Neurosci. 33: 15171–15183. https://doi.org/10.1523/jneurosci.2063-13.2013.Suche in Google Scholar
Nguyen, V.H., Palmer, S.B., Aday, J.S., Bloesch, E.K., and Davoli, C.C. (2020). Meditation alters representations of peripersonal space: evidence from auditory evoked potentials. Conscious. Cognit. 83: 1–7, https://doi.org/10.1016/j.concog.2020.102978.Suche in Google Scholar
Oster, G. (1966). Moiré patterns and visual hallucinations. Psychedelic Rev. 7: 33–40.Suche in Google Scholar
Ostfeld, A.M. (1961). Effects of LSD 25 and JB 318 on test of visual and perceptual functions in man. Fed. Proc. 20: 876–883.Suche in Google Scholar
Pahnke, W.N., Kurland, A.A., Unger, S., Savage, C., and Grof, S. (1970). The experimental use of psychedelic (LSD) psychotherapy. J. Am. Med. Assoc. 212: 1856–1863, https://doi.org/10.1001/jama.212.11.1856.Suche in Google Scholar
Prentiss, D.W. and Morgan, F.P. (1895). Anhalonium lewinii (mescal buttons): a study of the drug, with especial reference to its physiological action upon man, with report of experiments. Therap. Gazette 11: 577–585.Suche in Google Scholar
Richards, W.A. (2015). Sacred knowledge: psychedelics and religious experiences. Columbia University Press, New York, NY.10.7312/columbia/9780231174060.001.0001Suche in Google Scholar
Rinkel, M. (1958). The psychological aspects of the LSD psychosis. In: Rinkel, M. and Denber, H.C.B. (Eds.). Chemical concepts of psychosis. McDowell Obelensky, New York, NY, pp. 75–84.10.1037/11190-005Suche in Google Scholar
Roseman, L., Haijen, E., Idialu-Ikato, K., Kaelen, M., Watts, R., and Carhart-Harris, R. (2019). Emotional breakthrough and psychedelics: validation of the emotional breakthrough inventory. J. Psychopharmacology 33: 1076–1087, https://doi.org/10.1177/0269881119855974.Suche in Google Scholar
Roseman, L., Nutt, D.J., and Carhart-Harris, R.L. (2018). Quality of acute psychedelic experience predicts therapeutic efficacy of psilocybin for treatment-resistant depression. Front. Pharmacol. 8, https://doi.org/10.3389/fphar.2017.00974.Suche in Google Scholar
Schwartz, A.S. and Cheney, C. (1965). Effect of LSD on the tonic activity of the visual pathways of the cat. Life Sci. 4: 771–778, https://doi.org/10.1016/0024-3205(65)90309-7.Suche in Google Scholar
Shirahashi, K. (1960). Electroencephalographic study of mental disturbances experimentally induced by LSD-25. Folia Psychiatr. Neurol. Jpn. 14: 140–155, https://doi.org/10.1111/j.1440-1819.1960.tb02237.x.Suche in Google Scholar
Siegel, R.K. (1969). Effects of cannabis sativa and lysergic acid diethylamide on a visual discrimination task in pigeons. Psychopharmacologia 15: 1–8, https://doi.org/10.1007/bf00410795.Suche in Google Scholar
Silverstein, A.B. and Klee, G.D. (1958). A psychopharmacological test of the “body image” hypothesis. J. Nerv. Ment. Dis. 127: 323–329, https://doi.org/10.1097/00005053-195810000-00003.Suche in Google Scholar
Snyder, S.H. and Reivich, M. 1966. Regional localization of lysergic acid diethylamide in monkey brain. Nature 209: 1093–1095, https://doi.org/10.1038/2091093a0.Suche in Google Scholar
Stockings, G.T. (1940). A clinical study of the mescaline psychosis, with special reference to the mechanism of the genesis of schizophrenic and other psychotic states. J. Ment. Sci. 86: 29–47, https://doi.org/10.1192/bjp.86.360.29.Suche in Google Scholar
Strassman, R.J. (1996). Human psychopharmacology of N, N-dimethyltryptamine. Behav. Brain Res. 73: 121–124, https://doi.org/10.1016/0166-4328(96)00081-2.Suche in Google Scholar
Strassman, R.J., Qualls, C.R., Uhlenhuth, E.H., and Kellner, R. (1994). Dose-response study of N, N-dimethyltryptamine in humans: II. Subjective effects and preliminary results of a new rating scale. Arch. Gen. Psychiatry 51: 98–108, https://doi.org/10.1001/archpsyc.1994.03950020022002.Suche in Google Scholar
Szara, S. (1957). The comparison of the psychotic effect of tryptamine derivatives with the effects of mescaline and LSD-25 in self-experiments. In: Garattini, S. and Ghetti, V. (Eds.). Psychotropic drugs. Elsevier Science Publishing Co Inc., New York, NY, pp. 460–467.Suche in Google Scholar
Terhune, D.B., Luke, D.P., Kaelen, M., Bolstridge, M., Feilding, A., Nutt, D., Carhart-Harris, R., and Ward, J. (2016). A placebo-controlled investigation of synaesthesia-like experiences under LSD. Neuropsychologia 88: 28–34, https://doi.org/10.1016/j.neuropsychologia.2016.04.005.Suche in Google Scholar
Timmermann, C., Roseman, L., Schartner, M., Milliere, R., Williams, L.T., Erritzoe, D., Muthukumaraswamy, S., Ashton, M., Bendrioua, A., Kaur, O., et al.. (2019). Neural correlates of the DMT experience assessed with multivariate EEG. Sci. Rep. 9: 1–13, https://doi.org/10.1038/s41598-019-51974-4.Suche in Google Scholar
Valle, M., Maqueda, A.E., Rabella, M., Rodríguez-Pujadas, A., Antonijoan, R.M., Romero, S., Alonso, J.F., Mañanas, M.À., Barker, S., Friedlander, P., et al.. (2016). Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans. Eur. Neuropsychopharmacol. 26: 1161–1175, https://doi.org/10.1016/j.euroneuro.2016.03.012.Suche in Google Scholar
Walter, W.G., Cooper, R., Aldridge, V.J., McCallum, W.C., and Winter, A.L. (1964). Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature 203: 380–384, https://doi.org/10.1038/203380a0.Suche in Google Scholar
Wapner, S. and Krus, D.M. (1959). Behavioral effects of lysergic acid diethylamide (LSD-25). AMA Arch Gen Psychiatry 1: 87–89, https://doi.org/10.1001/archpsyc.1959.03590040087008.Suche in Google Scholar
Wasson, R.G., (1957). Seeking the magic mushroom. Life 42: 100–120.Suche in Google Scholar
Wittmann, M., Carter, O., Hasler, F., Cahn, B.R., Grimberg, U., Spring, P., Hell, D., Flohr, H., and Vollenweider, F.X. (2007). Effects of psilocybin on time perception and temporal control of behaviour in humans. J. Psychopharmacol. 21: 50–64, https://doi.org/10.1177/0269881106065859.Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/revneuro-2020-0094).
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Optogenetic and chemogenetic modulation of astroglial secretory phenotype
- The role of PKMζ in the maintenance of long-term memory: a review
- Advances in imaging acute ischemic stroke: evaluation before thrombectomy
- Current updates on various treatment approaches in the early management of acute spinal cord injury
- The long-term prognosis of Transient Global Amnesia: a systematic review
- The cellular mechanism by which the rostral ventromedial medulla acts on the spinal cord during chronic pain
- Psychedelic drugs and perception: a narrative review of the first era of research
Artikel in diesem Heft
- Frontmatter
- Optogenetic and chemogenetic modulation of astroglial secretory phenotype
- The role of PKMζ in the maintenance of long-term memory: a review
- Advances in imaging acute ischemic stroke: evaluation before thrombectomy
- Current updates on various treatment approaches in the early management of acute spinal cord injury
- The long-term prognosis of Transient Global Amnesia: a systematic review
- The cellular mechanism by which the rostral ventromedial medulla acts on the spinal cord during chronic pain
- Psychedelic drugs and perception: a narrative review of the first era of research