Immune system and new avenues in Parkinson’s disease research and treatment
-
Ava Nasrolahi
, Fatemeh Safari , Mehdi Farhoudi , Afra Khosravi , Fereshteh Farajdokht , Saiyad Bastaminejad , Siamak Sandoghchian Shotorbani und Javad Mahmoudi
Abstract
Parkinson’s disease (PD) is a progressive neurological disorder characterized by degeneration of dopaminergic neurons in the substantia nigra. However, although 200 years have now passed since the primary clinical description of PD by James Parkinson, the etiology and mechanisms of neuronal loss in this disease are still not fully understood. In addition to genetic and environmental factors, activation of immunologic responses seems to have a crucial role in PD pathology. Intraneuronal accumulation of α-synuclein (α-Syn), as the main pathological hallmark of PD, potentially mediates initiation of the autoimmune and inflammatory events through, possibly, auto-reactive T cells. While current therapeutic regimens are mainly used to symptomatically suppress PD signs, application of the disease-modifying therapies including immunomodulatory strategies may slow down the progressive neurodegeneration process of PD. The aim of this review is to summarize knowledge regarding previous studies on the relationships between autoimmune reactions and PD pathology as well as to discuss current opportunities for immunomodulatory therapy.
References
Abou-Sleiman, P.M., Healy, D.G., Quinn, N., Lees, A.J., and Wood, N.W. (2003). The role of pathogenic DJ-1 mutations in Parkinson’s disease. Ann. Neurol. 54, 283–286.10.1002/ana.10675Suche in Google Scholar PubMed
Abramsky, O. and Litvin, Y. (1978). Autoimmune response to dopamine-receptor as a possible mechanism in the pathogenesis of Parkinson’s disease and schizophrenia. Perspect. Biol. Med. 22, 104–110.Suche in Google Scholar
Agarwal, S., Yadav, A., and Chaturvedi, R.K. (2017). Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders. Biochem. Biophys. Res. Commun. 483, 1166–1177.10.1016/j.bbrc.2016.08.043Suche in Google Scholar PubMed
Ahmed, I., Tamouza, R., Delord, M., Krishnamoorthy, R., Tzourio, C., Mulot, C., Nacfer, M., Lambert, J.C., Beaune, P., and Laurent-Puig, P. (2012). Association between Parkinson’s disease and the HLA-DRB1 locus. Mov. Disord. 27, 1104–1110.10.1002/mds.25035Suche in Google Scholar PubMed
Akundi, R.S., Huang, Z., Eason, J., Pandya, J.D., Zhi, L., Cass, W.A., Sullivan, P.G., and Büeler, H. (2011). Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice. PLoS One 6, e16038.10.1371/journal.pone.0016038Suche in Google Scholar PubMed PubMed Central
Amor, S., Puentes, F., Baker, D., and Van Der Valk, P. (2010). Inflammation in neurodegenerative diseases. Immunology 129, 154–169.10.1111/j.1365-2567.2009.03225.xSuche in Google Scholar PubMed PubMed Central
Antony, P., Diederich, N.J., Krüger, R., and Balling, R. (2013). The hallmarks of Parkinson’s disease. FEBS J. 280, 5981–5993.10.1111/febs.12335Suche in Google Scholar PubMed
Bandopadhyay, R., Kingsbury, A.E., Cookson, M.R., Reid, A.R., Evans, I.M., Hope, A.D., Pittman, A.M., Lashley, T., Canet-Aviles, R., and Miller, D.W. (2004). The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson’s disease. Brain 127, 420–430.10.1093/brain/awh054Suche in Google Scholar PubMed
Barker, R. and Cahn, A. (1988). Parkinson’s disease: an autoimmune process. Int. J. Neurosci. 43, 1–7.10.3109/00207458808985773Suche in Google Scholar PubMed
Barkhuizen, M., Anderson, D.G., and Grobler, A.F. (2016). Advances in GBA-associated Parkinson’s disease – pathology, presentation and therapies. Neurochem. Int. 93, 6–25.10.1016/j.neuint.2015.12.004Suche in Google Scholar PubMed
Barrett, P.J. and Greenamyre, J.T. (2015). Post-translational modification of α-synuclein in Parkinson’s disease. Brain Res. 1628, 247–253.10.1016/j.brainres.2015.06.002Suche in Google Scholar PubMed
Barrett, J.C., Hansoul, S., Nicolae, D.L., Cho, J.H., Duerr, R.H., Rioux, J.D., Brant, S.R., Silverberg, M.S., Taylor, K.D., and Barmada, M.M. (2008). Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat. Genet. 40, 955–962.10.1038/ng.175Suche in Google Scholar PubMed PubMed Central
Bartels, A., Willemsen, A., Doorduin, J., De Vries, E., Dierckx, R., and Leenders, K. (2010). [11 C]-PK11195 PET: quantification of neuroinflammation and a monitor of anti-inflammatory treatment in Parkinson’s disease. Parkinsonism Relat. Disord. 16, 57–59.10.1016/j.parkreldis.2009.05.005Suche in Google Scholar PubMed
Batelli, S., Albani, D., Rametta, R., Polito, L., Prato, F., Pesaresi, M., Negro, A., and Forloni, G. (2008). DJ-1 modulates α-synuclein aggregation state in a cellular model of oxidative stress: relevance for Parkinson’s disease and involvement of HSP70. PLoS One 3, e1884.10.1371/journal.pone.0001884Suche in Google Scholar PubMed PubMed Central
Beck, S., Geraghty, D., Inoko, H., and Rowen, L. (1999). Complete sequence and gene map of a human major histocompatibility complex. Nature 401, 921–923.10.1038/44853Suche in Google Scholar PubMed
Benner, E.J., Banerjee, R., Reynolds, A.D., Sherman, S., Pisarev, V.M., Tsiperson, V., Nemachek, C., Ciborowski, P., Przedborski, S., and Mosley, R.L. (2008). Nitrated α-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One 3, e1376.10.1371/journal.pone.0001376Suche in Google Scholar PubMed PubMed Central
Besong-Agbo, D., Wolf, E., Jessen, F., Oechsner, M., Hametner, E., Poewe, W., Reindl, M., Oertel, W.H., Noelker, C., and Bacher, M. (2013). Naturally occurring α-synuclein autoantibody levels are lower in patients with Parkinson disease. Neurology 80, 169–175.10.1212/WNL.0b013e31827b90d1Suche in Google Scholar PubMed
Block, M. and Hong, J.-S. (2007). Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem. Soc. Trans. 35, 1127–1132.10.1042/BST0351127Suche in Google Scholar PubMed
Bourgault, S., Vaudry, D., Dejda, A., Doan, N.D., Vaudry, H., and Fournier, A. (2009). Pituitary adenylate cyclase-activating polypeptide: focus on structure-activity relationships of a neuroprotective peptide. Curr. Med. Chem. 16, 4462–4480.10.2174/092986709789712899Suche in Google Scholar PubMed
Brochard, V., Combadière, B., Prigent, A., Laouar, Y., Perrin, A., Beray-Berthat, V., Bonduelle, O., Alvarez-Fischer, D., Callebert, J., and Launay, J.-M. (2008). Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J. Clin. Invest. 119, 182–192.10.1172/JCI36470Suche in Google Scholar PubMed PubMed Central
Brudek, T., Winge, K., Folke, J., Christensen, S., Fog, K., Pakkenberg, B., and Pedersen, L.Ø. (2017). Autoimmune antibody decline in Parkinson’s disease and multiple system atrophy; a step towards immunotherapeutic strategies. Mol. Neurodegener. 12, 44.10.1186/s13024-017-0187-7Suche in Google Scholar PubMed PubMed Central
Brundin, P., Dave, K.D., and Kordower, J.H. (2017). Therapeutic approaches to target alpha-synuclein pathology. Exp. Neurol. 298, 225–235.10.1016/j.expneurol.2017.10.003Suche in Google Scholar
Bryan, T., Luo, X., Forsgren, L., Morozova-Roche, L.A., and Davis, J.J. (2012). The robust electrochemical detection of a Parkinson’s disease marker in whole blood sera. Chem. Sci. 3, 3468–3473.10.1039/c2sc21221hSuche in Google Scholar
Caggiu, E., Paulus, K., Galleri, G., Arru, G., Manetti, R., Sechi, G., and Sechi, L. (2017). Homologous HSV1 and alpha-synuclein peptides stimulate a T cell response in Parkinson’s disease. J. Neuroimmunol. 310, 26–31.10.1016/j.jneuroim.2017.06.004Suche in Google Scholar
Cai, G., Kastelein, R.A., and Hunter, C.A. (1999). IL-10 enhances NK cell proliferation, cytotoxicity and production of IFN-γ when combined with IL-18. Eur. J. Immunol. 29, 2658–2665.10.1002/(SICI)1521-4141(199909)29:09<2658::AID-IMMU2658>3.0.CO;2-GSuche in Google Scholar
Carta, A., Frau, L., Pisanu, A., Wardas, J., Spiga, S., and Carboni, E. (2011). Rosiglitazone decreases peroxisome proliferator receptor-γ levels in microglia and inhibits TNF-alpha production: new evidences on neuroprotection in a progressive Parkinson’s disease model. Neuroscience 194, 250–261.10.1016/j.neuroscience.2011.07.046Suche in Google Scholar
Castano, A., Herrera, A., Cano, J., and Machado, A. (2002). The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-α, IL-1β and IFN-γ. J. Neurochem. 81, 150–157.10.1046/j.1471-4159.2002.00799.xSuche in Google Scholar
Castelijns, B. (2014). The role of genome-wide association studies in understanding sporadic Parkinson’s disease susceptibility. Master’s thesis.Suche in Google Scholar
Cebrián, C., Zucca, F.A., Mauri, P., Steinbeck, J.A., Studer, L., Scherzer, C.R., Kanter, E., Budhu, S., Mandelbaum, J., and Vonsattel, J.P. (2014). MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat. Commun. 5, 3633.10.1038/ncomms4633Suche in Google Scholar
Chandra, G., Roy, A., Rangasamy, S.B., and Pahan, K. (2017). Induction of adaptive immunity leads to nigrostriatal disease progression in MPTP mouse model of Parkinson’s disease. J. Immunol. 2017, 1700149.10.4049/jimmunol.1700149Suche in Google Scholar
Chen, H., Zhang, S.M., Hernán, M.A., Schwarzschild, M.A., Willett, W.C., Colditz, G.A., Speizer, F.E., and Ascherio, A. (2003). Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch. Neurol. 60, 1059–1064.10.1001/archneur.60.8.1059Suche in Google Scholar
Chen, L., Cagniard, B., Mathews, T., Jones, S., Koh, H.C., Ding, Y., Carvey, P.M., Ling, Z., Kang, U.J., and Zhuang, X. (2005). Age-dependent motor deficits and dopaminergic dysfunction in DJ-1 null mice. J. Biol. Chem. 280, 21418–21426.10.1074/jbc.M413955200Suche in Google Scholar
Chen, Z., Yang, Y., Yang, X., Zhou, C., Li, F., Lei, P., Zhong, L., Jin, X., and Peng, G. (2013). Immune effects of optimized DNA vaccine and protective effects in a MPTP model of Parkinson’s disease. Neurol. Sci. 34, 1559–1570.10.1007/s10072-012-1284-6Suche in Google Scholar
Chen, Z., Chen, S., and Liu, J. (2018). The role of T cells in the pathogenesis of Parkinson’s disease. Prog. Neurobiol. 169, 1–23.10.1016/j.pneurobio.2018.08.002Suche in Google Scholar
Christine, C.W. (2015). NINDS Exploratory Trials in Parkinson Disease (NET-PD) FS-ZONE Investigators. Pioglitazone in early Parkinson’s disease: a phase 2, multicentre, double-blind, randomised trial. Lancet Neurol. 14, 979–979.10.1016/S1474-4422(15)00144-1Suche in Google Scholar
Cicchetti, F., Brownell, A., Williams, K., Chen, Y., Livni, E., and Isacson, O. (2002). Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur. J. Neurosci. 15, 991–998.10.1046/j.1460-9568.2002.01938.xSuche in Google Scholar
Clements, C.M., McNally, R.S., Conti, B.J., Mak, T.W., and Ting, J.P.Y. (2006). DJ-1, a cancer- and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc. Natl. Acad. Sci. USA 103, 15091–15096.10.1073/pnas.0607260103Suche in Google Scholar
Codolo, G., Plotegher, N., Pozzobon, T., Brucale, M., Tessari, I., Bubacco, L., and de Bernard, M. (2013). Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PLoS One 8, e55375.10.1371/journal.pone.0055375Suche in Google Scholar
Colton, C. and Gilbert, D. (1993). Microglia, an in vivo source of reactive oxygen species in the brain. Adv. Neurol. 59, 321–326.Suche in Google Scholar
Coutinho, A., Kazatchkine, M.D., and Avrameas, S. (1995). Natural autoantibodies. Curr. Opin. Immunol. 7, 812–818.10.1016/0952-7915(95)80053-0Suche in Google Scholar
Dauer, W. and Przedborski, S. (2003). Parkinson’s disease: mechanisms and models. Neuron 39, 889–909.10.1016/S0896-6273(03)00568-3Suche in Google Scholar
De Lella Ezcurra, A.L., Chertoff, M., Ferrari, C., Graciarena, M., and Pitossi, F. (2010). Chronic expression of low levels of tumor necrosis factor-α in the substantia nigra elicits progressive neurodegeneration, delayed motor symptoms and microglia/macrophage activation. Neurobiol. Dis. 37, 630–640.10.1016/j.nbd.2009.11.018Suche in Google Scholar PubMed
De Virgilio, A., Greco, A., Fabbrini, G., Inghilleri, M., Rizzo, M.I., Gallo, A., Conte, M., Rosato, C., Appiani, M.C., and de Vincentiis, M. (2016). Parkinson’s disease: autoimmunity and neuroinflammation. Autoimmun. Rev. 15, 1005–1011.10.1016/j.autrev.2016.07.022Suche in Google Scholar PubMed
Dehmer, T., Heneka, M.T., Sastre, M., Dichgans, J., and Schulz, J.B. (2004). Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with IκBα induction and block of NFκB and iNOS activation. J. Neurochem. 88, 494–501.10.1046/j.1471-4159.2003.02210.xSuche in Google Scholar PubMed
Deleidi, M. and Gasser, T. (2013). The role of inflammation in sporadic and familial Parkinson’s disease. Cell. Mol. Life. Sci. 70, 4259–4273.10.1007/s00018-013-1352-ySuche in Google Scholar PubMed
Delgado, M. and Ganea, D. (2013). Vasoactive intestinal peptide: a neuropeptide with pleiotropic immune functions. Amino Acids 45, 25–39.10.1007/s00726-011-1184-8Suche in Google Scholar PubMed PubMed Central
Delgado, M., Chorny, A., Gonzalez-Rey, E., and Ganea, D. (2005). Vasoactive intestinal peptide generates CD4+CD25+ regulatory T cells in vivo. J. Leukoc. Biol. 78, 1327–1338.10.1189/jlb.0605299Suche in Google Scholar PubMed
Dentesano, G., Serratosa, J., Tusell, J.M., Ramón, P., Valente, T., Saura, J., and Solà, C. (2014). CD200R1 and CD200 expression are regulated by PPAR-γ in activated glial cells. Glia 62, 982–998.10.1002/glia.22656Suche in Google Scholar PubMed
Dogrukol-Ak, D., Tore, F., and Tuncel, N. (2004). Passage of VIP/PACAP/secretin family across theblood-brain barrier: therapeutic effects. Curr. Pharm. Des. 10, 1325–1340.10.2174/1381612043384934Suche in Google Scholar PubMed
Dong, J., Li, S., Mo, J.L., Cai, H.B., and Le, W.D. (2016). Nurr1-based therapies for Parkinson’s disease. CNS Neurosci. Ther. 22, 351–359.10.1111/cns.12536Suche in Google Scholar PubMed PubMed Central
Double, K.L., Rowe, D.B., Carew-Jones, F.M., Hayes, M., Chan, D.K.Y., Blackie, J., Corbett, A., Joffe, R., Fung, V., and Morris, J. (2009). Anti-melanin antibodies are increased in sera in Parkinson’s disease. Exp. Neurol. 217, 297–301.10.1016/j.expneurol.2009.03.002Suche in Google Scholar PubMed
Duffy, S.S., Keating, B.A., Perera, C.J., and Moalem-Taylor, G. (2018). The role of regulatory T cells in nervous system pathologies. J. Neurosci. Res. 96, 951–968.10.1002/jnr.24073Suche in Google Scholar PubMed
Edison, P., Ahmed, I., Fan, Z., Hinz, R., Gelosa, G., Chaudhuri, K.R., Walker, Z., Turkheimer, F.E., and Brooks, D.J. (2013). Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology 38, 938–949.10.1038/npp.2012.255Suche in Google Scholar PubMed PubMed Central
Fan, X., Luo, G., Ming, M., Pu, P., Li, L., Yang, D., and Le, W. (2009). Nurr1 expression and its modulation in microglia. Neuroimmunomodulation 16, 162–170.10.1159/000204229Suche in Google Scholar PubMed
Farmer, K., Rudyk, C., Prowse, N.A., and Hayley, S. (2015). Hematopoietic cytokines as therapeutic players in early stages Parkinson’s disease. Front Aging Neurosci. 7, 126.10.3389/fnagi.2015.00126Suche in Google Scholar PubMed PubMed Central
Ferger, B., Leng, A., Mura, A., Hengerer, B., and Feldon, J. (2004). Genetic ablation of tumor necrosis factor-alpha (TNF-α) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J. Neurochem. 89, 822–833.10.1111/j.1471-4159.2004.02399.xSuche in Google Scholar PubMed
Fernandez-Martin, A., Gonzalez-Rey, E., Chorny, A., Ganea, D., and Delgado, M. (2006). Vasoactive intestinal peptide induces regulatory T cells during experimental autoimmune encephalomyelitis. Eur. J. Immunol. 36, 318–326.10.1002/eji.200535430Suche in Google Scholar PubMed
Frank-Cannon, T.C., Tran, T., Ruhn, K.A., Martinez, T.N., Hong, J., Marvin, M., Hartley, M., Treviño, I., O’Brien, D.E., and Casey, B. (2008). Parkin deficiency increases vulnerability to inflammation-related nigral degeneration. J. Neurosci. 28, 10825–10834.10.1523/JNEUROSCI.3001-08.2008Suche in Google Scholar PubMed PubMed Central
Gangi, E., Vasu, C., Cheatem, D., and Prabhakar, B.S. (2005). IL-10-producing CD4+CD25+ regulatory T cells play a critical role in granulocyte-macrophage colony-stimulating factor-induced suppression of experimental autoimmune thyroiditis. J. Immunol. 174, 7006–7013.10.4049/jimmunol.174.11.7006Suche in Google Scholar PubMed
Gelders, G., Baekelandt, V., and Van der Perren, A. (2018). Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J. Immunol. Res. 2018, 1–12.10.1155/2018/4784268Suche in Google Scholar PubMed PubMed Central
Gendelman, H.E., Zhang, Y., Santamaria, P., Olson, K.E., Schutt, C.R., Bhatti, D., Laxmi, B., Shetty, D., Lu, Y., and Estes, K.A. (2017). Evaluation of the safety and immunomodulatory effects of sargramostim in a randomized, double-blind phase 1 clinical Parkinson’s disease trial. NPJ Parkinsons Dis. 3, 1.10.1038/s41531-017-0013-5Suche in Google Scholar PubMed PubMed Central
George, S. and Brundin, P. (2015). Immunotherapy in Parkinson’s disease: micromanaging α-synuclein aggregation. J. Parkinsons Dis. 5, 413–424.10.3233/JPD-150630Suche in Google Scholar PubMed PubMed Central
Gerhard, A., Pavese, N., Hotton, G., Turkheimer, F., Es, M., Hammers, A., Eggert, K., Oertel, W., Banati, R.B., and Brooks, D.J. (2006). In vivo imaging of microglial activation with [11 C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis. 21, 404–412.10.1016/j.nbd.2005.08.002Suche in Google Scholar PubMed
Gold, M., Pul, R., Bach, J.P., Stangel, M., and Dodel, R. (2012). Pathogenic and physiological autoantibodies in the central nervous system. Immunol. Rev. 248, 68–86.10.1111/j.1600-065X.2012.01128.xSuche in Google Scholar PubMed
Gruden, M.A., Yanamandra, K., Kucheryanu, V.G., Bocharova, O.R., Sherstnev, V.V., Morozova-Roche, L.A., and Sewell, R.D. (2012). Correlation between protective immunity to α-synuclein aggregates, oxidative stress and inflammation. Neuroimmunomodulation 19, 334–342.10.1159/000341400Suche in Google Scholar PubMed
Guan, L., Ji, Y., Yu, G., Ren, C., Liu, J., Ba, M., Lian, P., and Li, N. (2018). Protective effects of PACAP against lactacystin-induced PC12 cell apoptosis due to prevention of mitochondrial damage and endoplasmic reticulum stress. Biomed. Res. 29, 658–662.10.4066/biomedicalresearch.29-17-3094Suche in Google Scholar
Guareschi, S., Cova, E., Cereda, C., Ceroni, M., Donetti, E., Bosco, D.A., Trotti, D., and Pasinelli, P. (2012). An over-oxidized form of superoxide dismutase found in sporadic amyotrophic lateral sclerosis with bulbar onset shares a toxic mechanism with mutant SOD1. Proc. Natl. Acad. Sci. USA 109, 5074–5079.10.1073/pnas.1115402109Suche in Google Scholar PubMed PubMed Central
Haddadi, R., Nayebi, A.M., and Brooshghalan, S.E. (2013). Pre-treatment with silymarin reduces brain myeloperoxidase activity and inflammatory cytokines in 6-OHDA hemi-parkinsonian rats. Neurosci. Lett. 555, 106–111.10.1016/j.neulet.2013.09.022Suche in Google Scholar PubMed
Hamza, T.H., Zabetian, C.P., Tenesa, A., Laederach, A., Montimurro, J., Yearout, D., Kay, D.M., Doheny, K.F., Paschall, J., and Pugh, E. (2010). Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat. Genet. 42, 781–785.10.1038/ng.642Suche in Google Scholar PubMed PubMed Central
Han, S.C., Koo, D.H., Kang, N.J., Yoon, W.J., Kang, G.J., Kang, H.K., and Yoo, E.S. (2015). Docosahexaenoic acid alleviates atopic dermatitis by generating Tregs and IL-10/TGF-β-modified macrophages via a TGF-β-dependent mechanism. J. Invest. Dermatol. 135, 1556–1564.10.1038/jid.2014.488Suche in Google Scholar PubMed
Harms, A.S., Barnum, C.J., Ruhn, K.A., Varghese, S., Treviño, I., Blesch, A., and Tansey, M.G. (2011). Delayed dominant-negative TNF gene therapy halts progressive loss of nigral dopaminergic neurons in a rat model of Parkinson’s disease. Mol. Ther. 19, 46–52.10.1038/mt.2010.217Suche in Google Scholar PubMed PubMed Central
Harms, A.S., Cao, S., Rowse, A.L., Thome, A.D., Li, X., Mangieri, L.R., Cron, R.Q., Shacka, J.J., Raman, C., and Standaert, D.G. (2013). MHCII is required for α-synuclein-induced activationof microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J. Neurosci. 33, 9592–9600.10.1523/JNEUROSCI.5610-12.2013Suche in Google Scholar PubMed PubMed Central
Heinzel, S., Gold, M., Deuschle, C., Bernhard, F., Maetzler, W., Berg, D., and Dodel, R. (2014). Naturally occurring α-synuclein autoantibodiesin Parkinson’s disease: sources of (error) variance in biomarker assays. PLoS One 9, e114566.10.1371/journal.pone.0114566Suche in Google Scholar PubMed PubMed Central
Hill-Burns, E.M., Factor, S.A., Zabetian, C.P., Thomson, G., and Payami, H. (2011). Evidence for more than one Parkinson’s disease-associated variant within the HLA region. PLoS One 6, e27109.10.1371/journal.pone.0027109Suche in Google Scholar PubMed PubMed Central
Hirsch, E.C. and Hunot, S. (2009). Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 8, 382–397.10.1016/S1474-4422(09)70062-6Suche in Google Scholar
Holmans, P., Moskvina, V., Jones, L., Sharma, M., Consortium, I.P.s.D.G., Vedernikov, A., Buchel, F., Sadd, M., Bras, J.M., and Bettella, F. (2012). A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson’s disease. Hum. Mol. Genet. 22, 1039–1049.10.1093/hmg/dds492Suche in Google Scholar PubMed PubMed Central
Hooper, K.M., Kong, W., and Ganea, D. (2016). Immunomodulation by vasoactive intestinal polypeptide (VIP). In: Neuro-Immuno-Gastroenterology (Springer), pp. 75–96.10.1007/978-3-319-28609-9_5Suche in Google Scholar
Horvath, I., Iashchishyn, I.A., Forsgren, L., and Morozova-Roche, L.A. (2017). Immunochemical detection of α-synucleinautoantibodies in Parkinson’s disease: correlation between plasma and cerebrospinal fluid levels. ACS Chem. Neurosci. 8, 1170–1176.10.1021/acschemneuro.7b00063Suche in Google Scholar PubMed
Jankovic, J. (2018). Immunologic treatment of Parkinson’s disease. Immunotherapy 10, 81–84.10.2217/imt-2017-0146Suche in Google Scholar PubMed
Kadkhodaei, B., Ito, T., Joodmardi, E., Mattsson, B., Rouillard, C., Carta, M., Muramatsu, S.-I., Sumi-Ichinose, C., Nomura, T., and Metzger, D. (2009). Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J. Neurosci. 29, 15923–15932.10.1523/JNEUROSCI.3910-09.2009Suche in Google Scholar PubMed PubMed Central
Kelso, M.L., Elliott, B.R., Haverland, N.A., Mosley, R.L., and Gendelman, H.E. (2015). Granulocyte-macrophage colony stimulating factor exerts protective and immunomodulatory effects in cortical trauma. J. Neuroimmunol. 278, 162–173.10.1016/j.jneuroim.2014.11.002Suche in Google Scholar PubMed PubMed Central
Kim, W.-G., Mohney, R.P., Wilson, B., Jeohn, G.-H., Liu, B., and Hong, J.-S. (2000). Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J. Neurosci. 20, 6309–6316.10.1523/JNEUROSCI.20-16-06309.2000Suche in Google Scholar
Kim, J., Byun, J.-W., Choi, I., Kim, B., Jeong, H.-K., Jou, I., and Joe, E. (2013). PINK1 deficiency enhances inflammatory cytokine release from acutely prepared brain slices. Exp. Neurobiol. 22, 38–44.10.5607/en.2013.22.1.38Suche in Google Scholar PubMed PubMed Central
Kivisäkk, P., Mahad, D.J., Callahan, M.K., Trebst, C., Tucky, B., Wei, T., Wu, L., Baekkevold, E.S., Lassmann, H., and Staugaitis, S.M. (2003). Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc. Natl. Acad. Sci. USA 100, 8389–8394.10.1073/pnas.1433000100Suche in Google Scholar PubMed PubMed Central
Klein, C. and Westenberger, A. (2012). Genetics of Parkinson’s disease. Cold Spring Harb. Perspect Med. 2, a008888.10.1101/cshperspect.a008888Suche in Google Scholar PubMed PubMed Central
Koike, H., Ishida, A., Shimamura, M., Mizuno, S., Nakamura, T., Ogihara, T., Kaneda, Y., and Morishita, R. (2006). Prevention of onset of Parkinson’s disease by in vivo gene transfer of human hepatocyte growth factor in rodent model: a model of gene therapy for Parkinson’s disease. Gene Ther. 13, 1639–1644.10.1038/sj.gt.3302810Suche in Google Scholar PubMed
Korn, T. and Kallies, A. (2017). T cell responses in the central nervous system. Nat. Rev. Immunol. 17, 179–194.10.1038/nri.2016.144Suche in Google Scholar PubMed
Kosloski, L.M., Kosmacek, E.A., Olson, K.E., Mosley, R.L., and Gendelman, H.E. (2013). GM-CSF induces neuroprotective and anti-inflammatory responses in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxicated mice. J. Neuroimmunol. 265, 1–10.10.1016/j.jneuroim.2013.10.009Suche in Google Scholar PubMed PubMed Central
Kraft, A.D. and Harry, G.J. (2011). Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int. J. Environ. Res. Public Health 8, 2980–3018.10.3390/ijerph8072980Suche in Google Scholar PubMed PubMed Central
Kurkowska-Jastrzebska, I., Wrońska, A., Kohutnicka, M., Członkowski, A., and Członkowska, A. (1999). MHC class II positive microglia and lymphocytic infiltration are present in the substantia nigra and striatum in mouse model of Parkinson’s disease. Acta Neurobiol. Exp. 59, 1–8.10.55782/ane-1999-1289Suche in Google Scholar
Lamine-Ajili, A., Fahmy, A.M., Letourneau, M., Chatenet, D., Labonte, P., Vaudry, D., and Fournier, A. (2016). Effect of the pituitary adenylate cyclase-activating polypeptide on the autophagic activation observed in in vitro and in vivo models of Parkinson’s disease. Biochim. Biophys. Acta 1862, 688–695.10.1016/j.bbadis.2016.01.005Suche in Google Scholar PubMed
Leal, M.C., Casabona, J.C., Puntel, M., and Pitossi, F.J. (2013). Interleukin-1β and tumor necrosis factor-α: reliable targets for protective therapies in Parkinson’s disease? Front Cell Neurosci. 7, 53.10.3389/fncel.2013.00053Suche in Google Scholar PubMed PubMed Central
Lingor, P., Carboni, E., and Koch, J.C. (2017). Alpha-synuclein and iron: two keys unlocking Parkinson’s disease. J. Neural Transm. (Vienna) 124, 973–981.10.1007/s00702-017-1695-xSuche in Google Scholar PubMed
Lipski, D.A., Dewispelaere, R., Foucart, V., Caspers, L.E., Defrance, M., Bruyns, C., and Willermain, F. (2017). MHC class II expression and potential antigen-presenting cells in the retina during experimental autoimmune uveitis. J. Neuroinflamm. 14, 136.10.1186/s12974-017-0915-5Suche in Google Scholar PubMed PubMed Central
Liu, J., Halene, S., Yang, M., Iqbal, J., Yang, R., Mehal, W.Z., Chuang, W.-L., Jain, D., Yuen, T., and Sun, L. (2012). Gaucher disease gene GBA functions in immune regulation. Proc. Natl. Acad. Sci. USA 109, 10018–10023.10.1073/pnas.1200941109Suche in Google Scholar PubMed PubMed Central
Liu, Y., Holdbrooks, A.T., De Sarno, P., Rowse, A.L., Yanagisawa, L.L., McFarland, B.C., Harrington, L.E., Raman, C., Sabbaj, S., and Benveniste, E.N. (2014). Therapeutic efficacy of suppressing the Jak/STAT pathway in multiple models of experimental autoimmune encephalomyelitis. J. Immunol. 192, 59–72.10.4049/jimmunol.1301513Suche in Google Scholar PubMed PubMed Central
Liu, Z., Huang, Y., Cao, B.B., Qiu, Y.H., and Peng, Y.P. (2017). Th17 cells induce dopaminergic neuronal death viaLFA-1/ICAM-1 interaction in a mouse model of Parkinson’s disease. Mol. Neurobiol. 54, 7762–7776.10.1007/s12035-016-0249-9Suche in Google Scholar PubMed
Maasz, G., Zrinyi, Z., Reglodi, D., Petrovics, D., Rivnyak, A., Kiss, T., Jungling, A., Tamas, A., and Pirger, Z. (2017). Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models. Dis. Model Mech. 10, 127–139.10.1242/dmm.027185Suche in Google Scholar
Maetzler, W., Berg, D., Synofzik, M., Brockmann, K., Godau, J., Melms, A., Gasser, T., Hörnig, S., and Langkamp, M. (2011). Autoantibodies against amyloid and glial-derived antigens are increased in serum and cerebrospinal fluid of Lewy body-associated dementias. J. Alzheimers Dis. 26, 171–179.10.3233/JAD-2011-110221Suche in Google Scholar PubMed
Mahmoudi, J., Nayebi, A.M., Reyhani-Rad, S., and Samini, M. (2012). Fluoxetine improves the effect of levodopa on 6-hydroxy dopamine-induced motor impairments in rats. Adv. Pharm. Bull. 2, 149–155.Suche in Google Scholar
Mahmoudi, J., Farhoudi, M., Reyhani-Rad, S., and Sadigh-Eteghad, S. (2013). Dampening of serotonergic system through 5HT1A receptors is a promising target for treatment of Levodopa-induced motor problems. Adv. Pharm. Bull. 3, 439–441.Suche in Google Scholar
Mahmoudi, J., Mohaddes, G., Erfani, M., Sadigh-Eteghad, S., Karimi, P., Rajabi, M., Reyhani-Rad, S., and Farajdokht, F. (2018). Cerebrolysin attenuates hyperalgesia, photophobia, and neuroinflammation in a nitroglycerin-induced migraine model in rats. Brain Res. Bull. 140, 197–204.10.1016/j.brainresbull.2018.05.008Suche in Google Scholar PubMed
Mandler, M., Valera, E., Rockenstein, E., Weninger, H., Patrick, C., Adame, A., Santic, R., Meindl, S., Vigl, B., Smrzka, O., et al. (2014). Next-generation active immunization approach for synucleinopathies: implications for Parkinson’s disease clinical trials. Acta Neuropathol. 127, 861–879.10.1007/s00401-014-1256-4Suche in Google Scholar PubMed PubMed Central
Mandler, M., Valera, E., Rockenstein, E., Mante, M., Weninger, H., Patrick, C., Adame, A., Schmidhuber, S., Santic, R., Schneeberger, A., et al. (2015). Active immunization against alpha-synuclein ameliorates the degenerative pathology and prevents demyelination in a model of multiple system atrophy. Mol. Neurodegener. 10, 10.10.1186/s13024-015-0008-9Suche in Google Scholar PubMed PubMed Central
Masliah, E., Rockenstein, E., Adame, A., Alford, M., Crews, L., Hashimoto, M., Seubert, P., Lee, M., Goldstein, J., Chilcote, T., et al. (2005). Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46, 857–868.10.1016/j.neuron.2005.05.010Suche in Google Scholar PubMed
Matheoud, D., Sugiura, A., Bellemare-Pelletier, A., Laplante, A., Rondeau, C., Chemali, M., Fazel, A., Bergeron, J.J., Trudeau, L.E., Burelle, Y., et al. (2016). Parkinson’s disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation. Cell 166, 314–327.10.1016/j.cell.2016.05.039Suche in Google Scholar PubMed
Matsuo, Y. and Kamitani, T. (2010). Parkinson’s disease-related protein, α-synuclein, in malignant melanoma. PLoS One 5, e10481.10.1371/journal.pone.0010481Suche in Google Scholar PubMed PubMed Central
McCoy, M.K., Ruhn, K.A., Martinez, T.N., McAlpine, F.E., Blesch, A., and Tansey, M.G. (2008). Intranigral lentiviral delivery of dominant-negative TNF attenuates neurodegeneration and behavioral deficits inhemiparkinsonian rats. Mol Ther. 16, 1572–1579.10.1038/mt.2008.146Suche in Google Scholar PubMed PubMed Central
McGeer, P., Itagaki, S., Boyes, B., and McGeer, E. (1988). Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38, 1285–1285.10.1212/WNL.38.8.1285Suche in Google Scholar PubMed
McLelland, G.L., Soubannier, V., Chen, C.X., McBride, H.M., and Fon, E.A. (2014). Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33, 282–295.10.1002/embj.201385902Suche in Google Scholar PubMed PubMed Central
Meissner, W.G., Frasier, M., Gasser, T., Goetz, C.G., Lozano, A., Piccini, P., Obeso, J.A., Rascol, O., Schapira, A., Voon, V., et al. (2011). Priorities in Parkinson’s disease research. Nat. Rev. Drug Discov. 10, 377–393.10.1038/nrd3430Suche in Google Scholar PubMed
Mira, M.T., Alcais, A., Van Thuc, N., Moraes, M.O., Di Flumeri, C., Thai, V.H., Phuong, M.C., Huong, N.T., Ba, N.N., and Khoa, P.X. (2004). Susceptibility to leprosy is associated with PARK2 and PACRG. Nature 427, 636–640.10.1038/nature02326Suche in Google Scholar PubMed
Moehle, M.S. and West, A.B. (2015). M1 and M2 immune activation in Parkinson’s disease: foe and ally? Neuroscience 302, 59–73.10.1016/j.neuroscience.2014.11.018Suche in Google Scholar PubMed PubMed Central
Moehle, M.S., Webber, P.J., Tse, T., Sukar, N., Standaert, D.G., DeSilva, T.M., Cowell, R.M., and West, A.B. (2012). LRRK2 inhibition attenuates microglial inflammatory responses. J. Neurosci. 32, 1602–1611.10.1523/JNEUROSCI.5601-11.2012Suche in Google Scholar PubMed PubMed Central
Morell, M., Souza-Moreira, L., and González-Rey, E. (2012). VIP in neurological diseases: more than a neuropeptide. Endocr. Metab. Immune Disord. Drug Targets 12, 323–332.10.2174/187153012803832549Suche in Google Scholar PubMed
Mosser, D.M. and Zhang, X. (2008). Interleukin-10: new perspectives on an old cytokine. Immunol. Rev. 226, 205–218.10.1111/j.1600-065X.2008.00706.xSuche in Google Scholar PubMed PubMed Central
Nasrolahi, A., Mahmoudi, J., Akbarzadeh, A., Karimipour, M., Sadigh-Eteghad, S., Salehi, R., and Farhoudi, M. (2018). Neurotrophic factors hold promise for the future of Parkinson’s disease treatment: is there a light at the end of the tunnel? Rev. Neurosci. 29, 475–490.10.1515/revneuro-2017-0040Suche in Google Scholar PubMed
Oberländer, U., Pletinckx, K., Döhler, A., Müller, N., Lutz, M.B., Arzberger, T., Riederer, P., Gerlach, M., Koutsilieri, E., and Scheller, C. (2011). Neuromelanin is an immune stimulator for dendritic cells in vitro. BMC Neurosci. 12, 116.10.1186/1471-2202-12-116Suche in Google Scholar PubMed PubMed Central
Ojeda, V., Fuentealba, J.A., Galleguillos, D., and Andrés, M.E. (2003). Rapid increase of Nurr1 expression in the substantia nigra after 6-hydroxydopamine lesion in the striatum of the rat. J. Neurosci. Res. 73, 686–697.10.1002/jnr.10705Suche in Google Scholar
Olson, K.E., Kosloski-Bilek, L.M., Anderson, K.M., Diggs, B.J., Clark, B.E., Gledhill, J.M., Jr., Shandler, S.J., Mosley, R.L., and Gendelman, H.E. (2015). Selective VIP receptor agonists facilitate immune transformation for dopaminergic neuroprotection in MPTP-intoxicated mice. J. Neurosci. 35, 16463–16478.10.1523/JNEUROSCI.2131-15.2015Suche in Google Scholar
Onoue, S., Ohshima, K., Endo, K., Yajima, T., and Kashimoto, K. (2002). PACAP protects neuronal PC12 cells from the cytotoxicity of human prion protein fragment 106–126. FEBS Lett. 522, 65–70.10.1016/S0014-5793(02)02886-7Suche in Google Scholar
Orihuela, R., McPherson, C.A., and Harry, G.J. (2016). Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol. 173, 649–665.10.1111/bph.13139Suche in Google Scholar PubMed PubMed Central
Ouchi, Y., Yoshikawa, E., Sekine, Y., Futatsubashi, M., Kanno, T., Ogusu, T., and Torizuka, T. (2005). Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann. Neurol. 57, 168–175.10.1002/ana.20338Suche in Google Scholar PubMed
Papachroni, K.K., Ninkina, N., Papapanagiotou, A., Hadjigeorgiou, G.M., Xiromerisiou, G., Papadimitriou, A., Kalofoutis, A., and Buchman, V.L. (2007). Autoantibodies to α-synuclein in inherited Parkinson’s disease. J. Neurochem. 101, 749–756.10.1111/j.1471-4159.2006.04365.xSuche in Google Scholar PubMed PubMed Central
Parkhurst, C.N., Yang, G., Ninan, I., Savas, J.N., Yates, J.R., Lafaille, J.J., Hempstead, B.L., Littman, D.R., and Gan, W.-B. (2013). Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609.10.1016/j.cell.2013.11.030Suche in Google Scholar PubMed PubMed Central
Perez, A., Guan, L., Sutherland, K., and Cao, C. (2016). Immune system and Parkinson’s disease. Arch. Med. Jan. 8, 2.Suche in Google Scholar
Pickrell, A.M. and Youle, R.J. (2015). The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85, 257–273.10.1016/j.neuron.2014.12.007Suche in Google Scholar PubMed PubMed Central
Pierce, S. and Coetzee, G.A. (2017). Parkinson’s disease-associated genetic variation is linked to quantitative expression of inflammatory genes. PLoS One 12, e0175882.10.1371/journal.pone.0175882Suche in Google Scholar PubMed PubMed Central
Pisanu, A., Lecca, D., Mulas, G., Wardas, J., Simbula, G., Spiga, S., and Carta, A.R. (2014). Dynamic changes in pro-and anti-inflammatory cytokines in microglia after PPAR-γ agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson’s disease. Neurobiol. Dis. 71, 280–291.10.1016/j.nbd.2014.08.011Suche in Google Scholar PubMed
Price, D.A., Martinez, A.A., Seillier, A., Koek, W., Acosta, Y., Fernandez, E., Strong, R., Lutz, B., Marsicano, G., and Roberts, J.L. (2009). WIN55, 212-2, a cannabinoid receptor agonist, protects against nigrostriatal cell loss in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson’s disease. Eur. J. Neurosci. 29, 2177–2186.10.1111/j.1460-9568.2009.06764.xSuche in Google Scholar PubMed PubMed Central
Qian, L., Wei, S.-J., Zhang, D., Hu, X., Xu, Z., Wilson, B., El-Benna, J., Hong, J.-S., and Flood, P.M. (2008). Potent anti-inflammatory and neuroprotective effects of TGF-β1 are mediated through the inhibition of ERK and p47phox-Ser345 phosphorylation and translocation in microglia. J. Immunol. 181, 660–668.10.4049/jimmunol.181.1.660Suche in Google Scholar PubMed PubMed Central
Ran, C., Willows, T., Sydow, O., Johansson, A., Söderkvist, P., Dizdar, N., Ahmadi, A., Olson, L., and Belin, C. (2013). The HLA-DRA variation rs3129882 is not associated with Parkinsons disease in Sweden. Parkinsonism Relat. Disord. 19, 701–702.10.1016/j.parkreldis.2013.03.001Suche in Google Scholar PubMed
Reglodi, D., Kiss, P., Szabadfi, K., Atlasz, T., Gabriel, R., Horvath, G., Szakaly, P., Sandor, B., Lubics, A., Laszlo, E., et al. (2012). PACAP is an endogenous protective factor-insights from PACAP-deficient mice. J. Mol. Neurosci. 48, 482–492.10.1007/s12031-012-9762-0Suche in Google Scholar PubMed
Reglodi, D., Renaud, J., Tamas, A., Tizabi, Y., Socias, S.B., Del-Bel, E., and Raisman-Vozari, R. (2017). Novel tactics for neuroprotection in Parkinson’s disease: role of antibiotics, polyphenols and neuropeptides. Prog. Neurobiol. 155, 120–148.10.1016/j.pneurobio.2015.10.004Suche in Google Scholar PubMed
Reubi, J.C., Laderach, U., Waser, B., Gebbers, J.O., Robberecht, P., and Laissue, J.A. (2000). Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor subtypes in human tumors and their tissues of origin. Cancer Res. 60, 3105–3112.Suche in Google Scholar
Reyhani-Rad, S. and Mahmoudi, J. (2016). Effect of adenosine A2A receptor antagonists onmotor disorders induced by 6-hydroxydopamine in rat. Acta Cirurgica Brasi. 31, 133–137.10.1590/S0102-865020160020000008Suche in Google Scholar PubMed
Reynolds, A.D., Stone, D.K., Mosley, R.L., and Gendelman, H.E. (2009). Nitrated α-synuclein-induced alterations in microglial immunity are regulated by CD4+ Tcell subsets. J. Immunol. 182, 4137–4149.10.4049/jimmunol.0803982Suche in Google Scholar PubMed PubMed Central
Rocha, N.P., Assis, F., Scalzo, P.L., Vieira, É.L.M., Barbosa, I.G., de Souza, M.S., Christo, P.P., Reis, H.J., and Teixeira, A.L. (2018). Reduced activated T lymphocytes (CD4+ CD25+) and plasma levels of cytokines in Parkinson’s disease. Mol. Neurobiol. 55, 1488–1497.10.1007/s12035-017-0404-ySuche in Google Scholar PubMed
Rousselet, E., Callebert, J., Parain, K., Joubert, C., Hunot, S., Hartmann, A., Jacque, C., Perez-Diaz, F., Cohen-Salmon, C., and Launay, J.-M. (2002). Role of TNF-α receptors in mice intoxicated with the parkinsonian toxin MPTP. Exp. Neurol. 177, 183–192.10.1006/exnr.2002.7960Suche in Google Scholar PubMed
Safari, F., Farajnia, S., Arya, M., Zarredar, H., and Nasrolahi, A. (2018). CRISPR and personalized Treg therapy: new insights into the treatment of rheumatoid arthritis. Immunopharmacol. Immunotoxicol. 40, 201–211.10.1080/08923973.2018.1437625Suche in Google Scholar PubMed
Said, S.I. (1976). Evidence for secretion of vasoactive intestinal peptide by tumours of pancreas, adrenal medulla, thyroid and lung: support for the unifying APUD concept. Clin. Endocrinol. (Oxford) 5 (Suppl.), 201s–204s.10.1111/j.1365-2265.1976.tb03828.xSuche in Google Scholar
Saijo, K., Winner, B., Carson, C.T., Collier, J.G., Boyer, L., Rosenfeld, M.G., Gage, F.H., and Glass, C.K. (2009). A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137, 47–59.10.1016/j.cell.2009.01.038Suche in Google Scholar
Saura, J., Parés, M., Bové, J., Pezzi, S., Alberch, J., Marin, C., Tolosa, E., and Martí, M.J. (2003). Intranigral infusion of interleukin-1β activates astrocytes and protects from subsequent 6-hydroxydopamine neurotoxicity. J. Neurochem. 85, 651–661.10.1046/j.1471-4159.2003.01676.xSuche in Google Scholar
Schneeberger, A., Mandler, M., Mattner, F., and Schmidt, W. (2012). Vaccination for Parkinson’s disease. Parkinsonism Relat. Disord. 18 (Suppl. 1), S11–S13.10.1016/S1353-8020(11)70006-2Suche in Google Scholar
Schutt, C., Gendelman, H.E., and Mosley, R.L. (2017). Immunotherapies for movement disorders: Parkinson’s disease and amyotrophic lateral sclerosis. In: Neuroimmune Pharmacology (Springer), pp. 767–797.10.1007/978-3-319-44022-4_46Suche in Google Scholar
Sewal, R.K., Modi, M., Saikia, U.N., Chakrabarti, A., and Medhi, B. (2017). Increase in seizure susceptibility in sepsis like condition explained by spikingcytokines and altered adhesion molecules level with impaired blood brain barrier integrity in experimental model of rats treated with lipopolysaccharides. Epilepsy Res. 135, 176–186.10.1016/j.eplepsyres.2017.05.012Suche in Google Scholar
Shavali, S., Combs, C.K., and Ebadi, M. (2006). Reactive macrophages increase oxidative stress and alpha-synuclein nitration during death of dopaminergic neuronal cells in co-culture: relevance to Parkinson’s disease. Neurochem. Res. 31, 85–94.10.1007/s11064-005-9233-xSuche in Google Scholar
Shioda, S., Ohtaki, H., Nakamachi, T., Dohi, K., Watanabe, J., Nakajo, S., Arata, S., Kitamura, S., Okuda, H., Takenoya, F. et al. (2006). Pleiotropic functions of PACAP in the CNS: neuroprotection and neurodevelopment. Ann. NY Acad. Sci. 1070, 550–560.10.1196/annals.1317.080Suche in Google Scholar
Shivers, K.Y., Nikolopoulou, A., Machlovi, S.I., Vallabhajosula, S., and Figueiredo-Pereira, M.E. (2014). PACAP27 prevents Parkinson-like neuronal loss and motor deficits but not microglia activation induced by prostaglandin J2. Biochim. Biophys. Acta 1842, 1707–1719.10.1016/j.bbadis.2014.06.020Suche in Google Scholar
Sidransky, E. and Lopez, G. (2012). The link between the GBA gene and parkinsonism. Lancet Neurol. 11, 986–998.10.1016/S1474-4422(12)70190-4Suche in Google Scholar
Siloşi, I., Siloşi, C.A., Boldeanu, M.V., Cojocaru, M., Biciuşcă, V., Avrămescu, C.S., Cojocaru, I.M., Bogdan, M., and FolcuŢi, R.M. (2016). The role of autoantibodies in health and disease. Rom. J. Morphol. Embryol. 57, 633–638.10.1155/2016/3109135Suche in Google Scholar
Smith, L.M., Schiess, M.C., Coffey, M.P., Klaver, A.C., and Loeffler, D.A. (2012). α-Synuclein and anti-α-synuclein antibodies in Parkinson’s disease, atypical Parkinson syndromes, REM sleep behavior disorder, and healthy controls. PLoS One 7, e52285.10.1371/journal.pone.0052285Suche in Google Scholar
Sriram, K., Matheson, J.M., Benkovic, S.A., Miller, D.B., Luster, M.I., and O’Callaghan, J.P. (2002). Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson’s disease. FASEB J. 16, 1474–1476.10.1096/fj.02-0216fjeSuche in Google Scholar
Stranger, B.E., Nica, A.C., Forrest, M.S., Dimas, A., Bird, C.P., Beazley, C., Ingle, C.E., Dunning, M., Flicek, P., and Koller, D. (2007). Population genomics of human gene expression. Nat. Genet. 39, 1217.10.1038/ng2142Suche in Google Scholar
Su, X., Maguire-Zeiss, K.A., Giuliano, R., Prifti, L., Venkatesh, K., and Federoff, H.J. (2008). Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol. Aging 29, 1690–1701.10.1016/j.neurobiolaging.2007.04.006Suche in Google Scholar
Sulzer, D., Alcalay, R.N., Garretti, F., Cote, L., Kanter, E., Agin-Liebes, J., Liong, C., McMurtrey, C., Hildebrand, W.H., and Mao, X. (2017). T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 546, 22815.10.1038/nature22815Suche in Google Scholar
Sveinbjornsdottir, S. (2016). The clinical symptoms of Parkinson’s disease. J. Neurochem. 139, 318–324.10.1111/jnc.13691Suche in Google Scholar
Svenningsson, A., Andersen, O., Edsbagge, M., and Stemme, S. (1995). Lymphocyte phenotype and subset distribution in normal cerebrospinal fluid. J. Neuroimmunol. 63, 39–46.10.1016/0165-5728(95)00126-3Suche in Google Scholar
Szabadfi, K., Szabo, A., Kiss, P., Reglodi, D., Setalo, G., Jr., Kovacs, K., Tamas, A., Toth, G., and Gabriel, R. (2014). PACAP promotes neuron survival in early experimental diabetic retinopathy. Neurochem. Int. 64, 84–91.10.1016/j.neuint.2013.11.005Suche in Google Scholar PubMed
Tay, T.L., Savage, J.C., Hui, C.W., Bisht, K., and Tremblay, M.È. (2017). Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. J. Physiol. 595, 1929–1945.10.1113/JP272134Suche in Google Scholar PubMed PubMed Central
Teismann, P., Tieu, K., Choi, D.-K., Wu, D.-C., Naini, A., Hunot, S., Vila, M., Jackson-Lewis, V., and Przedborski, S. (2003). Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc. Natl. Acad. Sci. USA 100, 5473–5478.10.1073/pnas.0837397100Suche in Google Scholar PubMed PubMed Central
Theodore, S., Cao, S., McLean, P.J., and Standaert, D.G. (2008). Targeted overexpression of human α-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. Neuropathol. Exp. Neurol. 67, 1149–1158.10.1097/NEN.0b013e31818e5e99Suche in Google Scholar PubMed PubMed Central
Thorsby, E. and Lie, B.A. (2005). HLA associated genetic predisposition to autoimmune diseases: genes involved and possible mechanisms. Transpl. Immunol. 14, 175–182.10.1016/j.trim.2005.03.021Suche in Google Scholar PubMed
Tran, H.T., Chung, C.H.-Y., Iba, M., Zhang, B., Trojanowski, J.Q., Luk, K.C., and Lee, V.M. (2014). α-Synuclein immunotherapy blocks uptake and templated propagation of misfolded α-synuclein and neurodegeneration. Cell Rep. 7, 2054–2065.10.1016/j.celrep.2014.05.033Suche in Google Scholar PubMed PubMed Central
Trudler, D., Weinreb, O., Mandel, S.A., Youdim, M.B., and Frenkel, D. (2014). DJ-1 deficiency triggers microglia sensitivity to dopamine toward a pro-inflammatory phenotype that is attenuated by rasagiline. J. Neurochem. 129, 434–447.10.1111/jnc.12633Suche in Google Scholar PubMed
Tzartos, J.S., Craner, M.J., Friese, M.A., Jakobsen, K.B., Newcombe, J., Esiri, M.M., and Fugger, L. (2011). IL-21 and IL-21 receptor expression in lymphocytes and neurons in multiple sclerosis brain. Am. J. Pathol. 178, 794–802.10.1016/j.ajpath.2010.10.043Suche in Google Scholar PubMed PubMed Central
Valera, E. and Masliah, E. (2013). Immunotherapy for neurodegenerative diseases: focus on alpha-synucleinopathies. Pharmacol. Ther. 138, 311–322.10.1016/j.pharmthera.2013.01.013Suche in Google Scholar PubMed PubMed Central
Van der Perren, A., Macchi, F., Toelen, J., Carlon, M.S., Maris, M., de Loor, H., Kuypers, D.R., Gijsbers, R., Van den Haute, C., and Debyser, Z. (2015). FK506 reduces neuroinflammation and dopaminergic neurodegeneration in an α-synuclein-based rat model for Parkinson’s disease. Neurobiol. Aging 36, 1559–1568.10.1016/j.neurobiolaging.2015.01.014Suche in Google Scholar PubMed
Vaudry, D., Falluel-Morel, A., Bourgault, S., Basille, M., Burel, D., Wurtz, O., Fournier, A., Chow, B.K., Hashimoto, H., Galas, L. et al. (2009). Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol. Rev. 61, 283–357.10.1124/pr.109.001370Suche in Google Scholar PubMed
Vivekanantham, S., Shah, S., Dewji, R., Dewji, A., Khatri, C., and Ologunde, R. (2015). Neuroinflammation in Parkinson’s disease: role in neurodegeneration and tissue repair. Int. J. Neurosci. 125, 717–725.10.3109/00207454.2014.982795Suche in Google Scholar PubMed
Vogel, D.Y., Vereyken, E.J., Glim, J.E., Heijnen, P.D., Moeton, M., van der Valk, P., Amor, S., Teunissen, C.E., van Horssen, J., and Dijkstra, C.D. (2013). Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J. Neuroinflamm. 10, 35.10.1186/1742-2094-10-35Suche in Google Scholar PubMed PubMed Central
von Euler Chelpin, M. and Vorup-Jensen, T. (2017). Targets and mechanisms in prevention of Parkinson’s disease through immunomodulatory treatments. Scand. J. Immunol. 85, 321–330.10.1111/sji.12542Suche in Google Scholar PubMed
Waak, J., Weber, S.S., Waldenmaier, A., Görner, K., Alunni-Fabbroni, M., Schell, H., Vogt-Weisenhorn, D., Pham, T.-T., Reumers, V., and Baekelandt, V. (2009). Regulation of astrocyte inflammatory responses by the Parkinson’s disease-associated gene DJ-1. FASEB J. 23, 2478–2489.10.1096/fj.08-125153Suche in Google Scholar PubMed
Wakade, C., Giri, B., Malik, A., Khodadadi, H., Morgan, J.C., Chong, R.K., and Baban, B. (2018). Niacin modulates macrophage polarization in Parkinson’s disease. J. Neuroimmunol. 320, 76–79.10.1016/j.jneuroim.2018.05.002Suche in Google Scholar PubMed
Wang, J., Bankiewicz, K.S., Plunkett, R.J., and Oldfield, E.H. (1994). Intrastriatal implantation of interleukin-1: reduction of parkinsonism in rats by enhancing neuronal sprouting from residual dopaminergic neurons in the ventral tegmental area of the midbrain. J. Neurosurg. 80, 484–490.10.3171/jns.1994.80.3.0484Suche in Google Scholar PubMed
Wang, Q., Liu, Y., and Zhou, J. (2015a). Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener. 4, 19.10.1186/s40035-015-0042-0Suche in Google Scholar PubMed PubMed Central
Wang, S., Chu, C.-H., Stewart, T., Ginghina, C., Wang, Y., Nie, H., Guo, M., Wilson, B., Hong, J.-S., and Zhang, J. (2015b). α-Synuclein, a chemoattractant, directs microglial migration via H2O2-dependent Lyn phosphorylation. Proc. Natl. Acad. Sci. USA 112, E1926–E1935.10.1073/pnas.1417883112Suche in Google Scholar PubMed PubMed Central
Watson, M.B., Richter, F., Lee, S.K., Gabby, L., Wu, J., Masliah, E., Effros, R.B., and Chesselet, M.-F. (2012). Regionally-specific microglial activation in young mice over-expressing human wildtype alpha-synuclein. Exp. Neurol. 237, 318–334.10.1016/j.expneurol.2012.06.025Suche in Google Scholar PubMed PubMed Central
Wissemann, W.T., Hill-Burns, E.M., Zabetian, C.P., Factor, S.A., Patsopoulos, N., Hoglund, B., Holcomb, C., Donahue, R.J., Thomson, G., and Erlich, H. (2013). Association of Parkinson disease with structural and regulatory variants in the HLA region. Am. J. Hum. Genet. 93, 984–993.10.1016/j.ajhg.2013.10.009Suche in Google Scholar PubMed PubMed Central
Witoelar, A., Jansen, I.E., Wang, Y., Desikan, R.S., Gibbs, J.R., Blauwendraat, C., Thompson, W.K., Hernandez, D.G., Djurovic, S., and Schork, A.J. (2017). Genome-wide pleiotropy between Parkinson disease and autoimmune diseases. JAMA Neurol. 74, 780–792.10.1001/jamaneurol.2017.0469Suche in Google Scholar PubMed PubMed Central
Witte, M.E., Geurts, J.J., de Vries, H.E., van der Valk, P., and van Horssen, J. (2010). Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion 10, 411–418.10.1016/j.mito.2010.05.014Suche in Google Scholar PubMed
Woulfe, J., Duke, R., Middeldorp, J., Stevens, S., Vervoort, M., Hashimoto, M., Masliah, E., Chan, P., Di Monte, D., and Langston, J. (2002). Absence of elevated anti-α-synuclein and anti-EBV latent membrane protein antibodies in PD. Neurology 58, 1435–1435.10.1212/WNL.58.9.1435Suche in Google Scholar PubMed
Xu, S. and Chan, P. (2015). Interaction between neuromelanin and alpha-synuclein in Parkinson’s disease. Biomolecules 5, 1122–1142.10.3390/biom5021122Suche in Google Scholar PubMed PubMed Central
Xu, J., Zhong, N., Wang, H., Elias, J.E., Kim, C.Y., Woldman, I., Pifl, C., Gygi, S.P., Geula, C., and Yankner, B.A. (2005). The Parkinson’s disease-associated DJ-1 protein is a transcriptional co-activator that protects against neuronal apoptosis. Hum. Mol. Gen. 14, 1231–1241.10.1093/hmg/ddi134Suche in Google Scholar PubMed
Xu, Q., Evetts, S., Hu, M., Talbot, K., Wade-Martins, R., and Davis, J.J. (2014). An impedimetric assay of α-synuclein autoantibodies in early stage Parkinson’s disease. RSC Adv. 4, 58773–58777.10.1039/C4RA10100FSuche in Google Scholar
Xuan, Q., Xu, S.-L., Lu, D.-H., Yu, S., Zhou, M., Uéda, K., Cui, Y.-Q., Zhang, B.-Y., and Chan, P. (2011). Increase expression of α-synuclein in aged human brain associated with neuromelanin accumulation. J. Neural. Transm. 118, 1575–1583.10.1007/s00702-011-0636-3Suche in Google Scholar PubMed
Yanamandra, K., Gruden, M.A., Casaite, V., Meskys, R., Forsgren, L., and Morozova-Roche, L.A. (2011). α-Synuclein reactive antibodies as diagnostic biomarkers in blood sera of Parkinson’s disease patients. PLoS One 6, e18513.10.1371/journal.pone.0018513Suche in Google Scholar PubMed PubMed Central
Yang, F., Li, B., Li, L., and Zhang, H. (2016). The clinical significance of the imbalance of Th17 and Treg cells and their related cytokines in peripheral blood of Parkinson’s disease patients. Int. J. Clin. Exp. Med. 9, 17946–17951.Suche in Google Scholar
Yurek, D.M., Flectcher, A.M., Kowalczyk, T.H., Padegimas, L., and Cooper, M.J. (2009). Compacted DNA nanoparticle gene transfer of GDNF to the rat striatum enhances the survival of grafted fetal dopamine neurons. Cell Transplant. 18, 1183–1196.10.3727/096368909X12483162196881Suche in Google Scholar PubMed PubMed Central
Zappia, M., Crescibene, L., Bosco, D., Arabia, G., Nicoletti, G., Bagala, A., Bastone, L., Napoli, I., Caracciolo, M., and Bonavita, S. (2002). Anti-GM1 ganglioside antibodies in Parkinson’s disease. Acta Neurol. Scand. 106, 54–57.10.1034/j.1600-0404.2002.01240.xSuche in Google Scholar PubMed
Zecca, L., Wilms, H., Geick, S., Claasen, J.-H., Brandenburg, L.-O., Holzknecht, C., Panizza, M.L., Zucca, F.A., Deuschl, G., and Sievers, J. (2008). Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson’s disease. Acta Neuropathol. 116, 47–55.10.1007/s00401-008-0361-7Suche in Google Scholar PubMed
Zhang, W., Wang, T., Pei, Z., Miller, D.S., Wu, X., Block, M.L., Wilson, B., Zhang, W., Zhou, Y., and Hong, J.-S. (2005). Aggregated α-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J. 19, 533–542.10.1096/fj.04-2751comSuche in Google Scholar PubMed
Zhang, W., Phillips, K., Wielgus, A.R., Liu, J., Albertini, A., Zucca, F.A., Faust, R., Qian, S.Y., Miller, D.S., and Chignell, C.F. (2011). Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease. Neurotox. Res. 19, 63–72.10.1007/s12640-009-9140-zSuche in Google Scholar PubMed PubMed Central
Zhang, W., Yan, Z.-F., Gao, J.-H., Sun, L., Huang, X.-Y., Liu, Z., Yu, S.-Y., Cao, C.-J., Zuo, L.-J., and Chen, Z.-J. (2014). Role and mechanism of microglial activation in iron-induced selective and progressive dopaminergic neurodegeneration. Mol. Neurobiol. 49, 1153–1165.10.1007/s12035-013-8586-4Suche in Google Scholar PubMed PubMed Central
Zhu, R., Lu, X., Tang, L., Huang, B., Yu, W., Li, S., and Li, L. (2015). Association between HLA rs3129882 polymorphism and Parkinson’s disease: a meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 19, 423–432.Suche in Google Scholar
Zucca, F.A., Basso, E., Cupaioli, F.A., Ferrari, E., Sulzer, D., Casella, L., and Zecca, L. (2014). Neuromelanin of the human substantia nigra: an update. Neurotox Res. 25, 13–23.10.1007/s12640-013-9435-ySuche in Google Scholar PubMed
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Evidence for nucleolar dysfunction in Alzheimer’s disease
- National Institutes of Health Stroke Scale, modified Rankin Scale, and modified Thrombolysis in Cerebral Infarction as autonomy predictive tools for stroke patients
- Immune system and new avenues in Parkinson’s disease research and treatment
- Mitophagy could fight Parkinson’s disease through antioxidant action
- Metabolic pattern analysis of 18F-FDG PET as a marker for Parkinson’s disease: a systematic review and meta-analysis
- Pathological and cognitive changes in patients with type 2 diabetes mellitus and comorbid MCI and protective hypoglycemic therapies: a narrative review
- Pain in cervical dystonia and the antinociceptive effects of botulinum toxin: what is currently known?
- N2 amplitude modulation across the antisocial spectrum: a meta-analysis
Artikel in diesem Heft
- Frontmatter
- Evidence for nucleolar dysfunction in Alzheimer’s disease
- National Institutes of Health Stroke Scale, modified Rankin Scale, and modified Thrombolysis in Cerebral Infarction as autonomy predictive tools for stroke patients
- Immune system and new avenues in Parkinson’s disease research and treatment
- Mitophagy could fight Parkinson’s disease through antioxidant action
- Metabolic pattern analysis of 18F-FDG PET as a marker for Parkinson’s disease: a systematic review and meta-analysis
- Pathological and cognitive changes in patients with type 2 diabetes mellitus and comorbid MCI and protective hypoglycemic therapies: a narrative review
- Pain in cervical dystonia and the antinociceptive effects of botulinum toxin: what is currently known?
- N2 amplitude modulation across the antisocial spectrum: a meta-analysis