Abstract
The hippocampus exhibits a wide range of epilepsy-related abnormalities and is situated in the mesial temporal lobe, where limbic seizures begin. These abnormalities could affect membrane excitability and lead to overstimulation of neurons. Multiple overlapping processes refer to neural homeostatic responses develop in neurons that work together to restore neuronal firing rates to control levels. Nevertheless, homeostatic mechanisms are unable to restore normal neuronal excitability, and the epileptic hippocampus becomes hyperexcitable or hypoexcitable. Studies show that there is hyperexcitability even before starting recurrent spontaneous seizures, suggesting although hippocampal hyperexcitability may contribute to epileptogenesis, it alone is insufficient to produce epileptic seizures. This supports the concept that the hippocampus is not the only substrate for limbic seizure onset, and a broader hyperexcitable limbic structure may contribute to temporal lobe epilepsy (TLE) seizures. Nevertheless, seizures also occur in conditions where the hippocampus shows a hypoexcitable phenotype. Since TLE seizures most often originate in the hippocampus, it could therefore be assumed that both hippocampal hypoexcitability and hyperexcitability are undesirable states that make the epileptic hippocampal network less stable and may, under certain conditions, trigger seizures.
References
Abdelmalik, P.A., Shannon, P., Yiu, A., Liang, P., Adamchik, Y., Weisspapir, M., Samoilova, M., Burnham, W.M., and Carlen, P.L. (2007). Hypoglycemic seizures during transient hypoglycemia exacerbate hippocampal dysfunction. Neurobiol. Dis. 26, 646–660.10.1016/j.nbd.2007.03.002Suche in Google Scholar
Abraham, H., Orsi, G., and Seress, L. (2007). Ontogeny of cocaine- and amphetamine-regulated transcript (CART) peptide and calbindin immunoreactivity in granule cells of the dentate gyrus in the rat. Int. J. Dev. Neurosci. 25, 265–274.10.1016/j.ijdevneu.2007.05.008Suche in Google Scholar
Acharya, M.M., Hattiangady, B., and Shetty, A.K. (2008). Progress in neuroprotective strategies for preventing epilepsy. Prog. Neurobiol. 84, 363–404.10.1016/j.pneurobio.2007.10.010Suche in Google Scholar
Acsady, L., Kamondi, A., Sik, A., Freund, T., and Buzsaki, G. (1998). GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J. Neurosci. 18, 3386–3403.10.1523/JNEUROSCI.18-09-03386.1998Suche in Google Scholar
Ahern, G.P., Klyachko, V.A., and Jackson, M.B. (2002). cGMP and S-nitrosylation: two routes for modulation of neuronal excitability by NO. Trends Neurosci. 25, 510–517.10.1016/S0166-2236(02)02254-3Suche in Google Scholar
Albrecht, U. (2012). Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74, 246–260.10.1016/j.neuron.2012.04.006Suche in Google Scholar
Alger, B.E. and Nicoll, R.A. (1979). GABA-mediated biphasic inhibitory responses in hippocampus. Nature 281, 315–317.10.1038/281315a0Suche in Google Scholar
Allen, C.N. (2008). Circadian rhythms, diet, and neuronal excitability. Epilepsia 49, 124–126.10.1111/j.1528-1167.2008.01856.xSuche in Google Scholar
Anderson, W.R., Franck, J.E., Stahl, W.L., and Maki, A.A. (1994). Na,K-ATPase is decreased in hippocampus of kainate-lesioned rats. Epilepsy Res. 17, 221–231.10.1016/0920-1211(94)90052-3Suche in Google Scholar
Andre, V., Dube, C., Francois, J., Leroy, C., Rigoulot, M.A., Roch, C., Namer, I.J., and Nehlig, A. (2007). Pathogenesis and pharmacology of epilepsy in the lithium-pilocarpine model. Epilepsia 48, 41–47.10.1111/j.1528-1167.2007.01288.xSuche in Google Scholar PubMed
Annegers, J.F., Rocca, W.A., and Hauser, W.A. (1996). Causes of epilepsy: contributions of the Rochester epidemiology project. Mayo Clin. Proc. 71, 570–575.10.4065/71.6.570Suche in Google Scholar
Arancio, O., Kandel, E.R., and Hawkins, R.D. (1995). Activity-dependent long-term enhancement of transmitter release by presynaptic 3′,5′-cyclic GMP in cultured hippocampal neurons. Nature 376, 74–80.10.1038/376074a0Suche in Google Scholar
Arisi, G.M. and Garcia-Cairasco, N. (2007). Doublecortin-positive newly born granule cells of hippocampus have abnormal apical dendritic morphology in the pilocarpine model of temporal lobe epilepsy. Brain Res. 1165, 126–134.10.1016/j.brainres.2007.06.037Suche in Google Scholar
Ascoli, G.A., Krichmar, J.L., Nasuto, S.J., and Senft, S.L. (2001). Generation, description and storage of dendritic morphology data. Philos. Trans. R Soc. Lond. B Biol. Sci. 356, 1131–1145.10.1098/rstb.2001.0905Suche in Google Scholar
Avoli, M. (2001). Do interictal discharges promote or control seizures? Experimental evidence from an in vitro model of epileptiform discharge. Epilepsia 3, 2–4.10.1046/j.1528-1157.2001.042suppl.3002.xSuche in Google Scholar
Avoli, M., D’Antuono, M., Louvel, J., Kohling, R., Biagini, G., Pumain, R., D’Arcangelo, G., and Tancredi, V. (2002). Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog. Neurobiol. 68, 167–207.10.1016/S0301-0082(02)00077-1Suche in Google Scholar
Baf, M.H., Subhash, M.N., Lakshmana, K.M., and Rao, B.S. (1994). Sodium valproate induced alterations in monoamine levels in different regions of the rat brain. Neurochem. Int. 24, 67–72.10.1016/0197-0186(94)90130-9Suche in Google Scholar
Baimbridge, K.G., Celio, M.R., and Rogers, J.H. (1992). Calcium-binding proteins in the nervous system. Trends Neurosci. 15, 303–308.10.1016/0166-2236(92)90081-ISuche in Google Scholar
Bak, L.K., Schousboe, A., Sonnewald, U., and Waagepetersen, H.S. (2006). Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons. J. Cereb. Blood Flow Metab. 26, 1285–1297.10.1038/sj.jcbfm.9600281Suche in Google Scholar
Barna, B., Szasz, A., Vilagi, I., and Szente, M. (2000). Anticonvulsive effect of AMPA receptor antagonist GYKI 52466 on 4-aminopyridine-induced cortical ictal activity in rat. Brain Res. Bull. 51, 241–248.10.1016/S0361-9230(99)00224-5Suche in Google Scholar
Barnwell, L.F., Lugo, J.N., Lee, W.L., Willis, S.E., Gertz, S.J., Hrachovy, R.A., and Anderson, A.E. (2009). Kv4.2 knockout mice demonstrate increased susceptibility to convulsant stimulation. Epilepsia 50, 1741–1751.10.1111/j.1528-1167.2009.02086.xSuche in Google Scholar
Bartolomei, F., Khalil, M., Wendling, F., Sontheimer, A., Regis, J., Ranjeva, J.P., Guye, M., and Chauvel, P. (2005). Entorhinal cortex involvement in human mesial temporal lobe epilepsy: an electrophysiologic and volumetric study. Epilepsia 46, 677–687.10.1111/j.1528-1167.2005.43804.xSuche in Google Scholar
Beck, H., Blumcke, I., Kral, T., Clusmann, H., Schramm, J., Wiestler, O.D., Heinemann, U., and Elger, C.E. (1996). Properties of a delayed rectifier potassium current in dentate granule cells isolated from the hippocampus of patients with chronic temporal lobe epilepsy. Epilepsia 37, 892–901.10.1111/j.1528-1157.1996.tb00043.xSuche in Google Scholar
Becker, A.J., Pitsch, J., Sochivko, D., Opitz, T., Staniek, M., Chen, C.C., Campbell, K.P., Schoch, S., Yaari, Y., and Beck, H. (2008). Transcriptional upregulation of Cav3.2 mediates epileptogenesis in the pilocarpine model of epilepsy. J. Neurosci. 28, 13341–13353.10.1523/JNEUROSCI.1421-08.2008Suche in Google Scholar
Ben-Ari, Y., Tremblay, E., Riche, D., Ghilini, G., and Naquet, R. (1981). Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience 6, 1361–1391.10.1016/0306-4522(81)90193-7Suche in Google Scholar
Bernard, C., Anderson, A., Becker, A., Poolos, N.P., Beck, H., and Johnston, D. (2004). Acquired dendritic channelopathy in temporal lobe epilepsy. Science 305, 532–535.10.1126/science.1097065Suche in Google Scholar
Bernstein, G.M., Mendonca, A., Wadia, J., Burnham, W.M., and Jones, O.T. (1999). Kindling induces a long-term enhancement in the density of N-type calcium channels in the rat hippocampus. Neuroscience 94, 1083–1095.10.1016/S0306-4522(99)00371-1Suche in Google Scholar
Bertram, E.H. (2003). Why does surgery fail to cure limbic epilepsy? Seizure functional anatomy may hold the answer. Epilepsy Res. 56, 93–99.10.1016/j.eplepsyres.2003.10.003Suche in Google Scholar
Bertram, E.H., Zhang, D.X., Mangan, P., Fountain, N., and Rempe, D. (1998). Functional anatomy of limbic epilepsy: a proposal for central synchronization of a diffusely hyperexcitable network. Epilepsy Res. 32, 194–205.10.1016/S0920-1211(98)00051-5Suche in Google Scholar
Bertrand, S., Nouel, D., Morin, F., Nagy, F., and Lacaille, J.C. (2003). Gabapentin actions on Kir3 currents and N-type Ca2+ channels via GABAB receptors in hippocampal pyramidal cells. Synapse 50, 95–109.10.1002/syn.10247Suche in Google Scholar PubMed
Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J., et al. (2001). CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat. Neurosci. 4, 702–710.10.1038/89490Suche in Google Scholar
Bhaskaran, M.D. and Smith, B.N. (2010). Cannabinoid-mediated inhibition of recurrent excitatory circuitry in the dentate gyrus in a mouse model of temporal lobe epilepsy. PLoS One 5, e10683.10.1371/journal.pone.0010683Suche in Google Scholar
Blumcke, I., Coras, R., Miyata, H., and Ozkara, C. (2012). Defining clinico-neuropathological subtypes of mesial temporal lobe epilepsy with hippocampal sclerosis. Brain Pathol. 22, 402–411.10.1111/j.1750-3639.2012.00583.xSuche in Google Scholar
Borrell, V., Del Rio, J.A., Alcantara, S., Derer, M., Martinez, A., D’Arcangelo, G., Nakajima, K., Mikoshiba, K., Derer, P., Curran, T., et al. (1999). Reelin regulates the development and synaptogenesis of the layer-specific entorhino-hippocampal connections. J. Neurosci. 19, 1345–1358.10.1523/JNEUROSCI.19-04-01345.1999Suche in Google Scholar
Bortel, A., Levesque, M., Biagini, G., Gotman, J., and Avoli, M. (2010). Convulsive status epilepticus duration as determinant for epileptogenesis and interictal discharge generation in the rat limbic system. Neurobiol. Dis. 40, 478–489.10.1016/j.nbd.2010.07.015Suche in Google Scholar
Braak, H., Braak, E., Yilmazer, D., and Bohl, J. (1996). Functional anatomy of human hippocampal formation and related structures. J. Child Neurol. 11, 265–275.10.1177/088307389601100402Suche in Google Scholar
Bragin, A., Csicsvari, J., Penttonen, M., and Buzsaki, G. (1997). Epileptic afterdischarge in the hippocampal-entorhinal system: current source density and unit studies. Neuroscience 76, 1187–1203.10.1016/S0306-4522(96)00446-0Suche in Google Scholar
Bragin, A., Engel, J. Jr., Wilson, C.L., Vizentin, E., and Mathern, G.W. (1999). Electrophysiologic analysis of a chronic seizure model after unilateral hippocampal KA injection. Epilepsia 40, 1210–1221.10.1111/j.1528-1157.1999.tb00849.xSuche in Google Scholar PubMed
Bragin, A., Azizyan, A., Almajano, J., Wilson, C.L., and Engel, J., Jr. (2005). Analysis of chronic seizure onsets after intrahippocampal kainic acid injection in freely moving rats. Epilepsia 46, 1592–1598.10.1111/j.1528-1167.2005.00268.xSuche in Google Scholar PubMed
Bronstein, J., Farber, D., and Wasterlain, C. (1988). Decreased calmodulin kinase activity after status epilepticus. Neurochem. Res. 13, 83–86.10.1007/BF00971859Suche in Google Scholar PubMed
Brooks-Kayal, A.R., Shumate, M.D., Jin, H., Rikhter, T.Y., and Coulter, D.A. (1998). Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy. Nat. Med. 4, 1166–1172.10.1038/2661Suche in Google Scholar
Buckmaster, P.S. and Jongen-Relo, A.L. (1999). Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats. J. Neurosci. 19, 9519–9529.10.1523/JNEUROSCI.19-21-09519.1999Suche in Google Scholar
Buckmaster, P.S. and Lew, F.H. (2011). Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy. J. Neurosci. 31, 2337–2347.10.1523/JNEUROSCI.4852-10.2011Suche in Google Scholar
Buckmaster, P.S., Wenzel, H.J., Kunkel D.D., and Schwartzkroin, P.A. (1996). Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J. Comp. Neurol. 366, 271–292.10.1002/(SICI)1096-9861(19960304)366:2<270::AID-CNE7>3.0.CO;2-2Suche in Google Scholar
Buckmaster, P.S., Ingram, E.A., and Wen, X. (2009). Inhibition of the mammalian target of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in a rodent model of temporal lobe epilepsy. J. Neurosci. 29, 8259–8269.10.1523/JNEUROSCI.4179-08.2009Suche in Google Scholar
Buhl, E.H., Otis, T.S., and Mody, I. (1996). Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model. Science 271, 369–373.10.1126/science.271.5247.369Suche in Google Scholar
Butler, L.S., Silva, A.J., Abeliovich, A., Watanabe, Y., Tonegawa, S., and McNamara, J.O. (1995). Limbic epilepsy in transgenic mice carrying a Ca2+/calmodulin-dependent kinase II alpha-subunit mutation. Proc. Natl. Acad. Sci. USA 92, 6852–6855.10.1073/pnas.92.15.6852Suche in Google Scholar
Cacheaux, L.P., Ivens, S., David, Y., Lakhter, A.J., Bar-Klein, G., Shapira, M., Heinemann, U., Friedman, A., and Kaufer, D. (2009). Transcriptome profiling reveals TGF-β signaling involvement in epileptogenesis. J. Neurosci. 29, 8927–8935.10.1523/JNEUROSCI.0430-09.2009Suche in Google Scholar
Cain, D.P. (1989). Long-term potentiation and kindling: how similar are the mechanisms? Trends Neurosci. 12, 6–10.10.1016/0166-2236(89)90146-XSuche in Google Scholar
Cain, S.M. and Snutch, T.P. (2013). T-type calcium channels in burst-firing, network synchrony, and epilepsy. Biochim. Biophys. Acta 1828, 1572–1578.10.1016/j.bbamem.2012.07.028Suche in Google Scholar
Cao, R. and Obrietan, K. (2010). mTOR signaling and entrainment of the mammalian circadian clock. Mol. Cell Pharmacol. 2, 125–130.Suche in Google Scholar
Cao, R., Li, A., Cho, H.Y., Lee, B., and Obrietan, K. (2010). Mammalian target of rapamycin signaling modulates photic entrainment of the suprachiasmatic circadian clock. J. Neurosci. 30, 6302–6314.10.1523/JNEUROSCI.5482-09.2010Suche in Google Scholar
Cardoso, A., Assuncao, M., Andrade, J.P., Pereira, P.A., Madeira, M.D., Paula-Barbosa, M.M., and Lukoyanov, N.V. (2008). Loss of synapses in the entorhinal-dentate gyrus pathway following repeated induction of electroshock seizures in the rat. J. Neurosci. Res. 86, 71–83.10.1002/jnr.21474Suche in Google Scholar
Carletti, F., Ferraro, G., Rizzo, V., Cannnizzaro, C., and Sardo, P. (2013). Antiepileptic effect of dimethyl sulfoxide in a rat model of temporal lobe epilepsy. Neurosci. Lett. 546, 31–35.10.1016/j.neulet.2013.04.031Suche in Google Scholar
Carletti, F., Gambino, G., Rizzo, V., Ferraro, G., and Sardo, P. (2015). Cannabinoid and nitric oxide signaling interplay in the modulation of hippocampal hyperexcitability: study on electrophysiological and behavioral models of temporal lobe epilepsy in the rat. Neuroscience 303, 149–159.10.1016/j.neuroscience.2015.06.047Suche in Google Scholar
Carletti, F., Sardo, P., Gambino, G., Liu, X.A., Ferraro, G., and Rizzo, V. (2016). Hippocampal hyperexcitability is modulated by microtubule-active agent: evidence from in vivo and in vitro epilepsy models in the rat. Front Cell Neurosci. 10, 29.10.3389/fncel.2016.00029Suche in Google Scholar
Cartmell, J. and Schoepp, D.D. (2000). Regulation of neurotransmitter release by metabotropic glutamate receptors. J. Neurochem. 75, 889–907.10.1046/j.1471-4159.2000.0750889.xSuche in Google Scholar
Cendes, F., Andermann, F., Gloor, P., Lopes-Cendes, I., Andermann, E., Melanson, D., Jones-Gotman, M., Robitaille, Y., Evans, A., and Peters, T. (1993). Atrophy of mesial structures in patients with temporal lobe epilepsy: cause or consequence of repeated seizures? Ann. Neurol. 34, 795–801.10.1002/ana.410340607Suche in Google Scholar
Chancey, J.H., Poulsen, D.J., Wadiche, J.I., and Overstreet-Wadiche, L. (2014). Hilar mossy cells provide the first glutamatergic synapses to adult-born dentate granule cells. J. Neurosci. 34, 2349–2354.10.1523/JNEUROSCI.3620-13.2014Suche in Google Scholar
Chang, B.S. and Lowenstein, D.H. (2003). Epilepsy. N. Engl. J. Med. 349, 1257–1266.10.1056/NEJMra022308Suche in Google Scholar
Chapman, A.G. (1998). Glutamate receptors in epilepsy. Prog. Brain Res. 116, 371–383.10.1016/S0079-6123(08)60449-5Suche in Google Scholar
Chen, S., Su, H., Yue, C., Remy, S., Royeck, M., Sochivko, D., Opitz, T., Beck, H., and Yaari, Y. (2011). An increase in persistent sodium current contributes to intrinsic neuronal bursting after status epilepticus. J. Neurophysiol. 105, 117–129.10.1152/jn.00184.2010Suche in Google Scholar
Cho, C.H. (2011). Frontier of epilepsy research – mTOR signaling pathway. Exp. Mol. Med. 43, 231–274.10.3858/emm.2011.43.5.032Suche in Google Scholar
Cho, K.O., Lybrand, Z.R., Ito, N., Brulet, R., Tafacory, F., Zhang, L., Good, L., Ure, K., Kernie, S.G., Birnbaum, S.G., et al. (2015). Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat. Commun. 6, 6606.10.1038/ncomms7606Suche in Google Scholar
Churn, S.B., Kochan, L.D., and DeLorenzo, R.J. (2000a). Chronic inhibition of Ca(2+)/calmodulin kinase II activity in the pilocarpine model of epilepsy. Brain Res. 875, 66–77.10.1016/S0006-8993(00)02623-8Suche in Google Scholar
Churn, S.B., Sombati, S., Jakoi, E.R., Severt, L., and DeLorenzo, R.J. (2000b). Inhibition of calcium/calmodulin kinase II alpha subunit expression results in epileptiform activity in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA 97, 5604–5609.10.1073/pnas.080071697Suche in Google Scholar PubMed PubMed Central
Clapcote, S.J., Duffy, S., Xie, G., Kirshenbaum, G., Bechard, A.R., Rodacker Schack, V., Petersen, J., Sinai, L., Saab, B.J., Lerch, J.P., et al. (2009). Mutation I810N in the α3 isoform of Na+,K+-ATPase causes impairments in the sodium pump and hyperexcitability in the CNS. Proc. Natl. Acad. Sci. USA 106, 14085–14090.10.1073/pnas.0904817106Suche in Google Scholar PubMed PubMed Central
Clinckers, R., Smolders, I., Meurs, A., Ebinger, G., and Michotte, Y. (2004a). Anticonvulsant action of GBR-12909 and citalopram against acute experimentally induced limbic seizures. Neuropharmacology 47, 1053–1061.10.1016/j.neuropharm.2004.07.032Suche in Google Scholar PubMed
Clinckers, R., Smolders, I., Meurs, A., Ebinger, G., and Michotte, Y. (2004b). Anticonvulsant action of hippocampal dopamine and serotonin is independently mediated by D and 5-HT receptors. J. Neurochem. 89, 834–843.10.1111/j.1471-4159.2004.02355.xSuche in Google Scholar PubMed
Clynen, E., Swijsen, A., Raijmakers, M., Hoogland, G., and Rigo, J.M. (2014). Neuropeptides as targets for the development of anticonvulsant drugs. Mol. Neurobiol. 50, 626–646.10.1007/s12035-014-8669-xSuche in Google Scholar PubMed PubMed Central
Cohen, I., Navarro, V., Clemenceau, S., Baulac, M., and Miles, R. (2002). On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298, 1418–1421.10.1126/science.1076510Suche in Google Scholar PubMed
Colbran, R.J. (1992). Regulation and role of brain calcium/calmodulin-dependent protein kinase II. Neurochem. Int. 21, 469–497.10.1016/0197-0186(92)90080-BSuche in Google Scholar
Colmers, W.F. and Bleakman, D. (1994). Effects of neuropeptideYon the electrical properties of neurons. Trends Neurosci. 17, 373–379.10.1016/0166-2236(94)90046-9Suche in Google Scholar
Cossart, R., Dinocourt, C., Hirsch, J.C., Merchan-Perez, A., De Felipe, J., Ben-Ari, Y., Esclapez, M., and Bernard, C. (2001). Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nat. Neurosci. 4, 52–62.10.1038/82900Suche in Google Scholar
Covolan, L. and Mello, L.E. (2000). Temporal profile of neuronal injury following pilocarpine or kainic acid-induced status epilepticus. Epilepsy Res. 39, 133–152.10.1016/S0920-1211(99)00119-9Suche in Google Scholar
Coyle, J.T. (1982). Excitatory Amino Acid Neurotoxins. Handbook of Psychopharmacology. L.L. Iversen, S.D. Iversen, and S.H. Snyder, eds. pp. 237–269.10.1007/978-1-4613-3452-1_5Suche in Google Scholar
Craddock, T.J., Tuszynski, J.A., Priel, A., and Freedman, H. (2010). Microtubule ionic conduction and its implications for higher cognitive functions. J. Integr. Neurosci. 9, 103–122.10.1142/S0219635210002421Suche in Google Scholar
Crino, P.B., Jin, H., Shumate, M.D., Robinson, M.B., Coulter, D.A., and Brooks-Kayal, A.R. (2002). Increased expression of the neuronal glutamate transporter (EAAT3/EAAC1) in hippocampal and neocortical epilepsy. Epilepsia 43, 211–218.10.1046/j.1528-1157.2002.35001.xSuche in Google Scholar PubMed PubMed Central
D’Arcangelo, G., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., and Curran, T. (1997). Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J. Neurosci. 17, 23–31.10.1523/JNEUROSCI.17-01-00023.1997Suche in Google Scholar
David, Y., Cacheaux, L.P., Ivens, S., Lapilover, E., Heinemann, U., Kaufer, D., and Friedman, A. (2009). Astrocytic dysfunction in epileptogenesis: consequence of altered potassium and glutamate homeostasis? J. Neurosci. 29, 10588–10599.10.1523/JNEUROSCI.2323-09.2009Suche in Google Scholar PubMed PubMed Central
Davidson, D.L., Tsukada, Y., and Barbeau, A. (1978). Ouabain induced seizures: site of production and response to anticonvulsants. Can. J. Neurol. Sci. 5, 405–411.10.1017/S0317167100024185Suche in Google Scholar PubMed
Deadwyler, S.A., Hampson, R.E., Mu, J., Whyte, A., and Childers, S. (1995). Cannabinoids modulate voltage sensitive potassium A-current in hippocampal neurons via a cAMP-dependent process. J. Pharmacol. Exp. Ther. 273, 734–743.Suche in Google Scholar
De Gasquet, P., Griglio, S., Pequignot-Planche, E., and Malewiak, M.I. (1977). Diurnal changes in plasma and liver lipids and lipoprotein lipase activity in heart and adipose tissue in rats fed a high and low fat diet. J. Nutr. 107, 199–212.10.1093/jn/107.2.199Suche in Google Scholar
de Lanerolle, N.C., Kim, J.H., Robbins, R.J., and Spencer, D.D. (1989). Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res. 495, 387–395.10.1016/0006-8993(89)90234-5Suche in Google Scholar
DeLorenzo, R.J., Hauser, W.A., Towne, A.R., Boggs, J.G., Pellock, J.M., Penberthy, L., Garnett, L., Fortner, C.A., and Ko, D. (1996). A prospective, population-based epidemiologic study of status epilepticus in Richmond, Virginia. Neurology 46, 1029–1035.10.1212/WNL.46.4.1029Suche in Google Scholar
Del Rio, J.A., Heimrich, B., Borrell, V., Forster, E., Drakew, A., Alcantara, S., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., et al. (1997). A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385, 70–74.10.1038/385070a0Suche in Google Scholar
Dietrich, D., Clusmann, H., Kral, T., Steinhauser, C., Blumcke, I., Heinemann, U., and Schramm J. (1999). Two electrophysiologically distinct types of granule cells in epileptichuman hippocampus. Neuroscience 90, 1197–1206.10.1016/S0306-4522(98)00574-0Suche in Google Scholar
Di Marzo, V., Melck, D., Bisogno, T., and De Petrocellis, L. (1998). Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci. 21, 521–528.10.1016/S0166-2236(98)01283-1Suche in Google Scholar
Djamshidian, A., Grassl, R., Seltenhammer, M., Czech, T., Baumgartner, C., Schmidbauer, M., Ulrich, W., and Zimprich, F. (2002). Altered expression of voltage-dependent calcium channel α1 subunits in temporal lobe epilepsy with Ammon’s horn sclerosis. Neuroscience 111, 57–69.10.1016/S0306-4522(01)00528-0Suche in Google Scholar
Donoso, J.A., Illanes, J.P., and Samson, F. (1977). Dimethylsulfoxide action on fast axoplasmic transport and ultrastructure of vagal axons. Brain Res. 120, 287–301.10.1016/0006-8993(77)90907-6Suche in Google Scholar
Dubey, J., Ratnakaran, N., and Koushika, S.P. (2015). Neurodegeneration and microtubule dynamics: death by a thousand cuts. Front Cell Neurosci. 9, 343.10.3389/fncel.2015.00343Suche in Google Scholar PubMed PubMed Central
Dudek, F.E. and Staley, K.J. (2012). Jasper’s Basic Mechanisms of the Epilepsies, 4th ed. J.L. Noebels, M. Avoli, M.A. Rogawski, R.W. Olsen, and A.V. Delgado-Escueta, eds. (Bethesda, MD).Suche in Google Scholar
Dulak, L. and Crist, R. D. (1974). Microtubule properties in dimethylsulfoxide (DMSO), J. Cell Biol. 63, 90a.Suche in Google Scholar
Dunleavy, M., Provenzano, G., Henshall, D.C., and Bozzi, Y. (2013). Kainic acid-induced seizures modulate Akt (SER473) phosphorylation in the hippocampus of dopamine D2 receptor knockout mice. J. Mol. Neurosci. 49, 202–210.10.1007/s12031-012-9927-xSuche in Google Scholar PubMed PubMed Central
Dyrvig, M., Christiansen, S.H., Woldbye, D.P., and Lichota, J. (2014). Temporal gene expression profile after acute electroconvulsive stimulation in the rat. Gene 539, 8–14.10.1016/j.gene.2014.01.072Suche in Google Scholar
El-Hassar, L., Milh, M., Wendling, F., Ferrand, N., Esclapez, M., and Bernard, C. (2007a). Cell domain-dependent changes in the glutamatergic and GABAergic drives during epileptogenesis in the rat CA1 region. J. Physiol. 578, 193–211.10.1113/jphysiol.2006.119297Suche in Google Scholar
El-Hassar, L., Esclapez, M., and Bernard, C. (2007b). Hyperexcitability of the CA1 hippocampal region during epileptogenesis. Epilepsia 48, 131–139.10.1111/j.1528-1167.2007.01301.xSuche in Google Scholar
Elmer, E., Kokaia, Z., Kokaia, M., Lindvall, O., and McIntyre, D.C. (1997). Mossy fibre sprouting: evidence against a facilitatory role in epileptogenesis. Neuroreport 8, 1193–1196.10.1097/00001756-199703240-00027Suche in Google Scholar
Esclapez, M. and Houser, C.R. (1999). Up-regulation of GAD65 and GAD67 in remaining hippocampal GABA neurons in a model of temporal lobe epilepsy. J. Comp. Neurol. 412, 488–505.10.1002/(SICI)1096-9861(19990927)412:3<488::AID-CNE8>3.0.CO;2-6Suche in Google Scholar
Esclapez, M., Hirsch, J.C., Ben-Ari, Y., and Bernard, C. (1999). Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy. J. Comp. Neurol. 408, 449–460.10.1002/(SICI)1096-9861(19990614)408:4<449::AID-CNE1>3.0.CO;2-RSuche in Google Scholar
Fabene, P.F., Navarro Mora, G., Martinello, M., Rossi, B., Merigo, F., Ottoboni, L., Bach, S., Angiari, S., Benati, D., Chakir, A., et al. (2008). A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat. Med. 14, 1377–1383.10.1038/nm.1878Suche in Google Scholar
Faber, E.S. (2009). Functions and modulation of neuronal SK channels. Cell Biochem. Biophys. 55, 127–139.10.1007/s12013-009-9062-7Suche in Google Scholar
Faber, E.S. and Sah, P. (2007). Functions of SK channels in central neurons. Proc. Austral. Physiol. Soc. 38, 25–34.10.1111/j.1440-1681.2007.04725.xSuche in Google Scholar
Faheem, M., Chaudhary, A.G., Kumosani, T.A., Al-Qahtani, M.H., Yasir, M., Bibi, F., Kim, M.O., Rasool. M., and Naseer, M.I. (2014). Interaction of different proteins with GABAA receptor and their modulatory effect on inhibitory neural transmission leads to epilepsy. CNS Neurol. Disord. Drug Targets 13, 1148–1159.10.2174/1871527313666140917115121Suche in Google Scholar
Fanara, P., Banerjee, J., Hueck, R.V., Harper, M.R., Awada, M., Turner, H., Husted, K.H., Brandt, R., and Hellerstein, M.K. (2007). Stabilization of hyperdynamic microtubules is neuroprotective in amyotrophic lateral sclerosis. J. Biol. Chem. 282, 23465–23472.10.1074/jbc.M703434200Suche in Google Scholar
Feil, R. and Kleppisch, T. (2008). NO/cGMP-dependent modulation of synaptic transmission. Handb. Exp. Pharmacol. 184, 529–560.10.1007/978-3-540-74805-2_16Suche in Google Scholar
Ferhat, L. (2012). Potential role of drebrin A, an f-actin binding protein, in reactive synaptic plasticity after pilocarpine-induced seizures: functional implications in epilepsy. Int. J. Cell Biol. 2012, 474351.10.1155/2012/474351Suche in Google Scholar
Fisher, R.S., Scharfman, H.E., and deCurtis, M. (2014). How can we identify ictal and interictal abnormal activity? Adv. Exp. Med. Biol. 813, 3–23.10.1007/978-94-017-8914-1_1Suche in Google Scholar
Fitzgerald, P.J. (2010). Is elevated norepinephrine an etiological factor in some cases of epilepsy? Seizure 19, 311–318.10.1016/j.seizure.2010.04.011Suche in Google Scholar
Foresti, M.L., Arisi, G.M., and Shapiro, L.A. (2011). Role of glia in epilepsy-associated neuropathology, neuroinflammation and neurogenesis. Brain Res. Rev. 66, 115–122.10.1016/j.brainresrev.2010.09.002Suche in Google Scholar
Forti, M. and Michelson, H.B. (1998). Synaptic connectivity of distinct hilar interneuron subpopulations. J. Neurophysiol. 79, 3229–3237.10.1152/jn.1998.79.6.3229Suche in Google Scholar
Friedman, A., Kaufer, D., and Heinemann, U. (2009). Blood–brain barrier breakdown-inducing astrocytic transformation: novel targets for the prevention of epilepsy. Epilepsy Res. 85, 142–149.10.1016/j.eplepsyres.2009.03.005Suche in Google Scholar
Fritschy, J.M., Kiener, T., Bouilleret, V., and Loup, F. (1999). GABAergic neurons and GABA(A)-receptors in temporal lobe epilepsy. Neurochem Int. 34, 435–445.10.1016/S0197-0186(99)00040-6Suche in Google Scholar
Frotscher, M. and Zimmer, J. (1983). Commissural fibers terminate on non-pyramidal neurons in the guinea pig hippocampus – a combined Golgi/EM degeneration study. Brain Res. 265, 289–293.10.1016/0006-8993(83)90344-XSuche in Google Scholar
Furtinger, S., Pirker, S., Czech, T., Baumgartner, C., Ransmayr, G., and Sperk, G. (2001). Plasticity of Y1 and Y2 receptors and neuropeptide Y fibers in patients with temporal lobe epilepsy. J. Neurosci. 21, 5804–5812.10.1523/JNEUROSCI.21-15-05804.2001Suche in Google Scholar
Gardiner, J. and Marc, J. (2010). Disruption of normal cytoskeletal dynamics may play a key role in the pathogenesis of epilepsy. Neuroscientist 16, 28–39.10.1177/1073858409334422Suche in Google Scholar
Gean, P.W. (1990). The epileptiform activity induced by 4-aminopyridine in rat amygdala slices: antagonism by non-N-methyl-d-aspartate receptor antagonists. Brain Res. 530, 251–256.10.1016/0006-8993(90)91291-NSuche in Google Scholar
Gibbs, J.W., 3rd, Shumate, M.D., and Coulter, D.A. (1997). Differential epilepsy-associated alterations in postsynaptic GABA(A) receptor function in dentate granule and CA1 neurons. J. Neurophysiol. 77, 1924–1938.10.1152/jn.1997.77.4.1924Suche in Google Scholar PubMed
Giorgi, F.S., Pizzanelli, C., Biagioni, F., Murri, L., and Fornai, F. (2004). The role of norepinephrine in epilepsy: from the bench to the bedside. Neurosci. Biobehav. Rev. 28, 507–524.10.1016/j.neubiorev.2004.06.008Suche in Google Scholar PubMed
Giorgi, F.S., Mauceli, G., Blandini, F., Ruggieri, S., Paparelli, A., Murri, L., and Fornai, F. (2006). Locus coeruleus and neuronal plasticity in a model of focal limbic epilepsy. Epilepsia 5, 21–25.10.1111/j.1528-1167.2006.00872.xSuche in Google Scholar PubMed
Goldberg, E.M. and Coulter, D.A. (2013). Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat. Rev. Neurosci. 14, 337–349.10.1038/nrn3482Suche in Google Scholar PubMed PubMed Central
Golomb, D., Yue, C., and Yaari, Y. (2006). Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study. J. Neurophysiol. 96, 1912–1926.10.1152/jn.00205.2006Suche in Google Scholar PubMed
Gorter, J.A., Van Vliet, E.A., Proper, E.A., De Graan, P.N., Ghijsen, W.E., Lopes Da Silva, F.H., and Aronica, E. (2002a). Glutamate transporters alterations in the reorganizing dentate gyrus are associated with progressive seizure activity in chronic epileptic rats. J. Comp. Neurol. 442, 365–377.10.1002/cne.10101Suche in Google Scholar PubMed
Gorter, J.A., van Vliet, E.A., Aronica, E., and Lopes da Silva, F.H. (2002b). Long-lasting increased excitability differs in dentate gyrus vs. CA1 in freely moving chronic epileptic rats after electrically induced status epilepticus. Hippocampus 12, 311–324.10.1002/hipo.1100Suche in Google Scholar PubMed
Gottlieb, D.I. and Cowan, W.M. (1973). Autoradiographic studies of the commissural and ipsilateral association connection of the hippocampus and detentate gyrus of the rat. I. The commissural connections. J. Comp. Neurol. 149, 393–422.10.1002/cne.901490402Suche in Google Scholar
Greber, S., Schwarzer, C., and Sperk, G. (1994). Neuropeptide Y inhibits potassium-stimulated glutamate release through Y2 receptors in rat hippocampal slices in vitro. Br. J. Pharmacol. 113, 737–740.10.1111/j.1476-5381.1994.tb17055.xSuche in Google Scholar
Gulledge, A.T. and Stuart, G.J. (2003). Excitatory actions of GABA in the cortex. Neuron 37, 299–309.10.1016/S0896-6273(02)01146-7Suche in Google Scholar
Haas, C.A. and Frotscher, M. (2010). Reelin deficiency causes granule cell dispersion in epilepsy. Exp. Brain Res. 200, 141–149.10.1007/s00221-009-1948-5Suche in Google Scholar PubMed
Haas, K.Z., Sperber, E.F., Moshe, S.L., and Stanton, P.K. (1996). Kainic acid-induced seizures enhance dentate gyrus inhibition by downregulation of GABA(B) receptors. J. Neurosci. 16, 4250–4260.10.1523/JNEUROSCI.16-13-04250.1996Suche in Google Scholar
Haas, C.A., Dudeck, O., Kirsch, M., Huszka, C., Kann, G., Pollak, S., Zentner, J., and Frotscher, M. (2002). Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J. Neurosci. 22, 5797–5802.10.1523/JNEUROSCI.22-14-05797.2002Suche in Google Scholar
Haglund, M.M. and Schwartzkroin, P.A. (1990). Role of Na-K pump potassium regulation and IPSPs in seizures and spreading depression in immature rabbit hippocampal slices. J. Neurophysiol. 63, 225–239.10.1152/jn.1990.63.2.225Suche in Google Scholar PubMed
Harris, K.M. and Kater, S.B. (1994). Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu. Rev. Neurosci. 17, 341–371.10.1146/annurev.ne.17.030194.002013Suche in Google Scholar PubMed
Hastings, M., O’Neill, J.S., and Maywood, E.S. (2007). Circadian clocks: regulators of endocrine and metabolic rhythms. J. Endocrinol. 195, 187–198.10.1677/JOE-07-0378Suche in Google Scholar PubMed
Hayashi, Y., Shi, S.H., Esteban, J.A., Piccini, A., Poncer, J.C., and Malinow, R. (2000). Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267.10.1126/science.287.5461.2262Suche in Google Scholar PubMed
He, X.P., Kotloski, R., Nef, S., Luikart, B.W., Parada, L.F., and McNamara, J.O. (2004). Conditional deletion of TrkB but not BDNF prevents epileptogenesis in the kindling model. Neuron 43, 31–42.10.1016/j.neuron.2004.06.019Suche in Google Scholar
Heinemann, U., Beck, H., Dreier, J.P., Ficker, E., Stabel, J., and Zhang, C.L. (1992). The dentate gyrus as a regulated gate for the propagation of epileptiform activity. Epilepsy Res. (Suppl.) 7, 273–280.Suche in Google Scholar
Heinrich, C., Lahteinen, S., Suzuki, F., Anne-Marie, L., Huber, S., Haussler, U., Haas, C., Larmet, Y., Castren, E., and Depaulis, A. (2011). Increase in BDNF-mediated TrkB signaling promotes epileptogenesis in a mouse model of mesial temporal lobe epilepsy. Neurobiol. Dis. 42, 35–47.10.1016/j.nbd.2011.01.001Suche in Google Scholar
Herrero, I., Miras-Portugal, M.T., and Sanchez-Prieto, J. (1998). Functional switch from facilitation to inhibition in the control of glutamate release by metabotropic glutamate receptors. J. Biol. Chem. 273, 1951–1958.10.1074/jbc.273.4.1951Suche in Google Scholar
Hesse, G.W. and Teyler, T.J. (1976). Reversible loss of hippocampal long term potentiation following electronconvulsive seizures. Nature 264, 562–564.10.1038/264562a0Suche in Google Scholar
Hester, M.S. and Danzer, S.C. (2013). Accumulation of abnormal adult-generated hippocampal granule cells predicts seizure frequency and severity. J. Neurosci. 33, 8926–8936.10.1523/JNEUROSCI.5161-12.2013Suche in Google Scholar
Hill, T.D., Cascio, M.G., Romano, B., Duncan, M., Pertwee, R.G., Williams, C.M., Whalley, B.J., Hil, A.J. (2013). Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat viaa CB1 receptor-independent mechanism. Br. J. Pharmacol. 170, 679–692.10.1111/bph.12321Suche in Google Scholar
Hjorth-Simonsen, A. and Jeune, B. (1972). Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation. J. Comp. Neurol. 144, 215–232.10.1002/cne.901440206Suche in Google Scholar
Hollmann, M., Hartley, M., and Heinemann, S. (1991). Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science 252, 851–853.10.1126/science.1709304Suche in Google Scholar
Holmes, K.H., Bilkey, D.K., Laverty, R., and Goddard, G.V. (1990). The N-methyl-d-aspartate antagonists aminophosphonovalerate and carboxypiperazinephosphonate retard the development and expression of kindled seizures. Brain Res. 506, 227–235.10.1016/0006-8993(90)91255-FSuche in Google Scholar
Hsu, D. (2007). The dentate gyrus as a filter or gate: a look back and a look ahead. Prog. Brain Res. 163, 601–613.10.1016/S0079-6123(07)63032-5Suche in Google Scholar
Huang, C.W., Huang, C.C., Cheng, J.T., Tsai, J.J., and Wu, S.N. (2007). Glucose and hippocampal neuronal excitability: role of ATP-sensitive potassium channels. J. Neurosci. Res. 85, 1468–1477.10.1002/jnr.21284Suche in Google Scholar
Huang, C.W., Cheng, J.T., Tsai, J.J., Wu, S.N., and Huang, C.C. (2009). Diabetic hyperglycemia aggravates seizures and status epilepticus-induced hippocampal damage. Neurotox. Res. 15, 71–81.10.1007/s12640-009-9008-2Suche in Google Scholar
Huang, X., Zhang, H., Yang, J., Wu, J., McMahon, J., Lin, Y., Cao, Z., Gruenthal, M., and Huang, Y. (2010). Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy. Neurobiol. Dis. 40, 193–199.10.1016/j.nbd.2010.05.024Suche in Google Scholar
Hughes, P.E., Young, D., Preston, K.M., Yan, Q., and Dragunow, M. (1998). Differential regulation by MK801 of immediate-early genes, brain-derived neurotrophic factor and trk receptor mRNA induced by a kindling after-discharge. Brain Res. Mol. Brain Res. 53, 138–151.10.1016/S0169-328X(97)00288-XSuche in Google Scholar
Hwa, G.G. and Avoli, M. (1991). The involvement of excitatory amino acids in neocortical epileptogenesis: NMDA and non-NMDA receptors. Exp. Brain Res. 86, 248–256.10.1007/BF00228949Suche in Google Scholar PubMed
Ikegaya, Y., Yoshida, M., Saito, H., and Nishiyama, N. (1997). Epileptic activity prevents synapse formation of hippocampal mossy fibers via L-type calcium channel activation in vitro. J. Pharmacol. Exp. Ther. 280, 471–476.Suche in Google Scholar
Ivanov, A., Esclapez, M., and Ferhat, L. (2009). Role of drebrin A in dendritic spine plasticity and synaptic function: implications in neurological disorders. Commun. Integr. Biol. 2, 268–270.10.4161/cib.2.3.8166Suche in Google Scholar PubMed PubMed Central
Iyengar, S.S., LaFrancois, J.J., Friedman, D., Drew, L.J., Denny, C.A., Burghardt, N.S., Wu, M.V., Hsieh, J., Hen, R., and Scharfman, H.E. (2015). Suppression of adult neurogenesis increases the acute effects of kainic acid. Exp. Neurol. 264, 135–149.10.1016/j.expneurol.2014.11.009Suche in Google Scholar PubMed PubMed Central
Jackson, M.B. and Scharfman, H.E. (1996). Positive feedback from hilar mossy cells to granule cells in the dentate gyrus revealed by voltage-sensitive dye and microelectrode recording. J. Neurophysiol. 76, 601–616.10.1152/jn.1996.76.1.601Suche in Google Scholar PubMed
Jakubs, K., Nanobashvili, A., Bonde, S., Ekdahl, C.T., Kokaia, Z., Kokaia, M., and Lindvall, O. (2006). Environment matters: synaptic properties of neurons born in the epileptic adult brain develop to reduce excitability. Neuron 52, 1047–1059.10.1016/j.neuron.2006.11.004Suche in Google Scholar PubMed
Jin, Z., Jin, Y., Kumar-Mendu, S., Degerman, E., Groop, L., and Birnir, B. (2011). Insulin reduces neuronal excitability by turning on GABA(A) channels that generate tonic current. PLoS One 6, e16188.10.1371/journal.pone.0016188Suche in Google Scholar PubMed PubMed Central
Johnston, D. and Amaral, D. (1997). Hippocampus. The Synaptic Organization of the Brain, 4th ed. G.M. Shepherd, ed. (New York: Oxford University Press), pp. 417–458.Suche in Google Scholar
Jones, N.A., Glyn, S.E., Akiyama, S., Hill, T.D.M., Hill, A.J., Weston, S.E., Burnett, M.D.A., Yamasaki, Y., Stephens, G.J., Whalley, B.J., et al. (2012). Cannabidiol exerts anti-convulsanteffects in animal models of temporal lobe and partial seizures.Seizure 21, 344—352.10.1016/j.seizure.2012.03.001Suche in Google Scholar
Jung, K.H., Chu, K., Lee, S.T., Kim, J., Sinn, D.I., Kim, J.M., Park, D.K., Lee, J.J., Kim, S.U., Kim, M., et al. (2006). Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiol Dis. 23, 237–246.10.1016/j.nbd.2006.02.016Suche in Google Scholar
Jung, S., Jones, T.D., Lugo, J.N., Jr., Sheerin, A.H., Miller, J.W., D’Ambrosio, R., Anderson, A.E., and Poolos, N.P. (2007). Progressive dendritic HCN channelopathy during epileptogenesis in the rat pilocarpine model of epilepsy. J. Neurosci. 27, 13012–13021.10.1523/JNEUROSCI.3605-07.2007Suche in Google Scholar
Jung, S., Bullis, J.B., Lau, I.H., Jones, T.D., Warner, L.N., and Poolos, N.P. (2010). Downregulation of dendritic HCN channel gating in epilepsy is mediated by altered phosphorylation signaling. J. Neurosci. 30, 6678–6688.10.1523/JNEUROSCI.1290-10.2010Suche in Google Scholar
Kafka, M.S., Benedito, M.A., Blendy, J.A., and Tokola, N.S. (1986). Circadian rhythms in neurotransmitter receptors in discrete rat brain regions. Chronobiol. Int. 3, 91–100.10.3109/07420528609066353Suche in Google Scholar
Kaila, K., Ruusuvuori, E., Seja, P., Voipio, J., and Puskarjov, M. (2014). GABA actions and ionic plasticity in epilepsy. Curr. Opin. Neurobiol. 26, 34–41.10.1016/j.conb.2013.11.004Suche in Google Scholar
Kask, K., Berthold, M., and Bartfai, T. (1997). Galanin receptors: involvement in feeding, pain, depression and Alzheimer’s disease. Life Sci. 60, 1523–1533.10.1016/S0024-3205(96)00624-8Suche in Google Scholar
Ketelaars, S.O., Gorter, J.A., van Vliet, E.A., Lopes da Silva, F.H., and Wadman, W.J. (2001). Sodium currents in isolated rat CA1 pyramidal and dentate granule neurones in the post-status epilepticus model of epilepsy. Neuroscience 105, 109–120.10.1016/S0306-4522(01)00176-2Suche in Google Scholar
Kirchheim, F., Tinnes, S., Haas, C.A., Stegen, M., and Wolfart, J. (2013). Regulation of action potential delays via voltage-gated potassium Kv1.1 channels in dentate granule cells during hippocampal epilepsy. Front Cell Neurosci. 7, 248.10.3389/fncel.2013.00248Suche in Google Scholar PubMed PubMed Central
Kirchner, A., Velísková, J., and Velísek, L. (2006). Differential effects of low glucose concentrations on seizures and epileptiform activity in vivo and in vitro. Eur. J. Neurosci. 23, 1512–1522.10.1111/j.1460-9568.2006.04665.xSuche in Google Scholar PubMed
Kirschstein, T., Bauer, M., Muller, L., Ruschenschmidt, C., Reitze, M., Becker, A.J., Schoch, S., and Beck, H. (2007). Loss of metabotropic glutamate receptor-dependent long-term depression via downregulation of mGluR5 after status epilepticus. J. Neurosci. 27, 7696–7704.10.1523/JNEUROSCI.4572-06.2007Suche in Google Scholar
Kobayashi, M. and Buckmaster, P.S. (2003). Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. J. Neurosci. 23, 2440–2452.10.1523/JNEUROSCI.23-06-02440.2003Suche in Google Scholar
Kohr, G., De Koninck, Y., and Mody, I. (1993). Properties of NMDA receptor channels in neurons acutely isolated from epileptic (kindled) rats. J. Neurosci. 13, 3612–3627.10.1523/JNEUROSCI.13-08-03612.1993Suche in Google Scholar
Korn, M.J., Mandle, Q.J., and Parent, J.M. (2016). Conditional disabled-1 deletion in mice alters hippocampal neurogenesis and reduces seizure threshold. Front Neurosci. 10, 63.10.3389/fnins.2016.00063Suche in Google Scholar
Kovacs, Z., Czurko, A., Kekesi, K.A., and Juhasz, G. (2011). The effect of intraperitoneally administered dimethyl sulfoxide on absence-like epileptic activity of freely moving WAG/Rij rats. J. Neurosci. Methods 197, 133–136.10.1016/j.jneumeth.2011.02.005Suche in Google Scholar
Koyama, R. and Ikegaya, Y. (2004). Mossy fiber sprouting as a potential therapeutic target for epilepsy. Curr. Neurovasc. Res. 1, 3–10.10.2174/1567202043480242Suche in Google Scholar
Koyama, R., Tao, K., Sasaki, T., Ichikawa, J., Miyamoto, D., Muramatsu, R., Matsuki, N., and Ikegaya, Y. (2012). GABAergic excitation after febrile seizures induces ectopic granule cells and adult epilepsy. Nat. Med. 18, 1271–1278.10.1038/nm.2850Suche in Google Scholar
Kraus, J.E., Yeh, G.C., Bonhaus, D.W., Nadler, J.V., and McNamara, J.O. (1994). Kindling induces the long-lasting expression of a novel population of NMDA receptors in hippocampal region CA3. J. Neurosci. 14, 4196–4205.10.1523/JNEUROSCI.14-07-04196.1994Suche in Google Scholar
Kreitzer, A.C and Regehr, W.G. (2001). Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29, 717–727.10.1016/S0896-6273(01)00246-XSuche in Google Scholar
Krook-Magnuson, E., Armstrong, C., Bui, A., Lew, S., Oijala, M., and Soltesz, I. (2015). In vivo evaluation of the dentate gate theory in epilepsy. J. Physiol. 593, 2379–2388.10.1113/JP270056Suche in Google Scholar PubMed PubMed Central
Kwak, S.E., Kim, J.E., Kim, D.S., Won, M.H., Lee, H.J., Choi, S.Y., Kwon, O.S., Kim, J.S., and Kang, T.C. (2006). Differential paired-pulse responses between the CA1 region and the dentate gyrus are related to altered CLC-2 immunoreactivity in the pilocarpine-induced rat epilepsy model. Brain Res. 1115, 162–168.10.1016/j.brainres.2006.07.082Suche in Google Scholar
Lathe, R. (2001). Hormones and the hippocampus. J. Endocrinol. 169, 205–231.10.1677/joe.0.1690205Suche in Google Scholar
Lavin, P.J. (2005). Hyperglycemic hemianopia: a reversible complication of non-ketotic hyperglycemia. Neurology 65, 616–619.10.1212/01.wnl.0000173064.80826.b8Suche in Google Scholar
Leonard, A.S., Lim, I.A., Hemsworth, D.E., Horne, M.C., and Hell, J.W. (1999). Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-d-aspartate receptor. Proc. Natl. Acad. Sci. USA 96, 3239–3244.10.1073/pnas.96.6.3239Suche in Google Scholar
Leroy, C., Poisbeau, P., Keller, A.F., and Nehlig, A. (2004). Pharmacological plasticity of GABA(A) receptors at dentate gyrus synapses in a rat model of temporal lobe epilepsy. J. Physiol. 557, 473–487.10.1113/jphysiol.2003.059246Suche in Google Scholar
Leung, L.S. and Shen, B. (1991). Hippocampal CA1 evoked response and radial 8-arm maze performance after hippocampal kindling. Brain Res. 555, 353–357.10.1016/0006-8993(91)90365-3Suche in Google Scholar
Levesque, M., Avoli, M., and Bernard, C. (2015). Animal models of temporal lobe epilepsy following systemic chemoconvulsant administration. J. Neurosci. Methods 260, 45–52.10.1016/j.jneumeth.2015.03.009Suche in Google Scholar PubMed PubMed Central
Lewerenz, J., Klein, M., and Methner, A. (2006). Cooperative action of glutamate transporters and cystine/glutamate antiporter system Xc- protects from oxidative glutamate toxicity. J. Neurochem. 98, 916–925.10.1111/j.1471-4159.2006.03921.xSuche in Google Scholar PubMed
Li, G., Bauer, S., Nowak, M., Norwood, B., Tackenberg, B., Rosenow, F., Knake, S., Oertel, W.H., and Hamer, H.M. (2011). Cytokines and epilepsy. Seizure 20, 249–256.10.1016/j.seizure.2010.12.005Suche in Google Scholar PubMed
Liu, X., Yang, Z., Yin, Y., and Deng, X. (2014). Increased expression of Notch1 in temporal lobe epilepsy: animal models and clinical evidence. Neural Regen. Res. 9, 526–533.10.4103/1673-5374.130083Suche in Google Scholar PubMed PubMed Central
Lorente de Nó, R. (1934). Studies on the structure of the cerebral cortex. Continuation of the study of the ammonic system. J. Psychol. Neurol. 46, 113–177.Suche in Google Scholar
Lu, X., Mazarati, A., Sanna, P., Shinmei, S., and Bartfai, T. (2005). Distribution and differential regulation of galanin receptor subtypes in rat brain: effects of seizure activity. Neuropeptides 39, 147–152.10.1016/j.npep.2004.12.011Suche in Google Scholar PubMed
Ludanyi, A., Eross, L., Czirjak, S., Vajda, J., Halasz, P., Watanabe, M., Palkovits, M., Magloczky, Z., Freund, T.F., and Katona, I. (2008). Downregulation of the CB1 cannabinoid receptor and related molecular elements of the endocannabinoid system in epileptic human hippocampus. J. Neurosci. 28, 2976–2990.10.1523/JNEUROSCI.4465-07.2008Suche in Google Scholar PubMed PubMed Central
Lukyanetz, E.A., Shkryl, V.M., and Kostyuk, P.G. (2002). Selective blockade of N-type calcium channels by levetiracetam. Epilepsia 43, 9–18.10.1046/j.1528-1157.2002.24501.xSuche in Google Scholar PubMed
Lynd-Balta, E., Pilcher, W.H., and Joseph, S.A. (2004). AMPA receptor alterations precede mossy fiber sprouting in young children with temporal lobe epilepsy. Neuroscience 126, 105–114.10.1016/j.neuroscience.2004.03.004Suche in Google Scholar PubMed
Maday, S., Twelvetrees, A. E., Moughamian, A. J., and Holzbaur, E. L. F. (2014). Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron 84, 292–309.10.1016/j.neuron.2014.10.019Suche in Google Scholar PubMed PubMed Central
Maguire, J. and Salpekar, J.A. (2013). Stress, seizures, and hypothalamic-pituitary-adrenal axis targets for the treatment of epilepsy. Epilepsy Behav. 26, 352–362.10.1016/j.yebeh.2012.09.040Suche in Google Scholar PubMed PubMed Central
Makara, J.K., Katona, I., Nyíri, G., Nemeth, B., Ledent, C., Watanabe, M., de Vente, J., Freund, T.F., and Hájos, N. (2007). Involvement of nitric oxide in depolarization-induced suppression of inhibition in hippocampal pyramidal cells during activation of cholinergic receptors. J. Neurosci. 27, 10211–10222.10.1523/JNEUROSCI.2104-07.2007Suche in Google Scholar PubMed PubMed Central
Malin, S.A. and Nerbonne, J.M. (2002). Delayed rectifier K+ currents, IK, are encoded by Kv2 alpha-subunits and regulate tonic firing in mammalian sympathetic neurons. J. Neurosci. 22, 10094–10105.10.1523/JNEUROSCI.22-23-10094.2002Suche in Google Scholar
Mangan, P.S. and Lothman, E.W. (1996). Profound disturbances of pre- and postsynaptic GABAB-receptor-mediated processes in region CA1 in a chronic model of temporal lobe epilepsy. J. Neurophysiol. 76, 1282–1296.10.1152/jn.1996.76.2.1282Suche in Google Scholar PubMed
Mao, L.Y., Ding, J., Peng, W.F., Ma, Y., Zhang, Y.H., Fan, W., and Wang, X. (2013). Interictal interleukin-17A levels are elevated and correlate with seizure severity of epilepsy patients. Epilepsia 54, e142–e145.10.1111/epi.12337Suche in Google Scholar PubMed
Margineanu, D.G., Niespodziany, I., and Wulfert, E. (1998). Hippocampal slices from long-term streptozotocin-injected rats are prone to epileptiform responses. Neurosci. Lett. 252, 183–186.10.1016/S0304-3940(98)00580-1Suche in Google Scholar
Marksteiner, J., Ortler, M., Bellmann, R., and Sperk, G. (1990). Neuropeptide Y biosynthesis is markedly induced in mossy fibers during temporal lobe epilepsy of the rat. Neurosci. Lett. 112, 143–148.10.1016/0304-3940(90)90193-DSuche in Google Scholar
Marsicano, G., Goodenough, S., Monory, K., Hermann, H., Eder, M., Cannich, A., Azad, S.C., Cascio, M.G., Gutierrez, S.O., van der Stelt, M., et al. (2003). CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302, 84–88.10.1126/science.1088208Suche in Google Scholar PubMed
Mason, R. and Cheer, J.F. (2009). Cannabinoid receptor activation reverses kainate-induced synchronized population burst firing in rat hippocampus. Front Integr. Neurosci. 3, 13.10.3389/neuro.07.013.2009Suche in Google Scholar PubMed PubMed Central
Mathern, G.W., Babb, T.L., Pretorius, J.K., and Leite, J.P. (1995). Reactive synaptogenesis and neuron densities for neuropeptide Y, somatostatin, and glutamate decarboxylase immunoreactivity in the epileptogenic human fascia dentata. J. Neurosci. 15, 3990–4004.10.1523/JNEUROSCI.15-05-03990.1995Suche in Google Scholar
Mathern, G.W., Pretorius, J.K., Mendoza, D., Lozada, A., Leite, J.P., Chimelli, L., Fried, I., Sakamoto, A.C., Assirati, J.A., and Adelson, P.D. (1998). Increased hippocampal AMPA and NMDA receptor subunit immunoreactivity in temporal lobe epilepsy patients. J. Neuropathol. Exp. Neurol. 57, 615–634.10.1097/00005072-199806000-00008Suche in Google Scholar PubMed
Mathern, G.W., Mendoza, D., Lozada, A., Pretorius, J.K., Dehnes, Y., Danbolt, N.C., Nelson, N., Leite, J.P., Chimelli, L., Born, D.E., et al. (1999). Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology 52, 453–472.10.1212/WNL.52.3.453Suche in Google Scholar PubMed
Matos, G., Tufik, S., Scorza, F.A., Cavalheiro, E.A., and Andersen, M.L. (2011). Sleep, epilepsy and translational research: what can we learn from the laboratory bench? Prog. Neurobiol. 95, 396–405.10.1016/j.pneurobio.2011.09.006Suche in Google Scholar PubMed
Matzen, J., Buchheim, K., and Holtkamp, M. (2012). Circadian dentate gyrus excitability in a rat model of temporal lobe epilepsy. Exp. Neurol. 234, 105–111.10.1016/j.expneurol.2011.12.029Suche in Google Scholar PubMed
Mazarati, A. and Lu, X. (2005). Regulation of limbic status epilepticus by hippocampal galanin type 1 and type 2 receptors. Neuropeptides 39, 277–280.10.1016/j.npep.2004.12.003Suche in Google Scholar PubMed
Mazarati, A.M., Halaszi, E., and Telegdy, G. (1992). Anticonvulsive effects of galanin administered into the central nervous system upon the picrotoxin-kindled seizure syndrome in rats. Brain Res. 589, 164–166.10.1016/0006-8993(92)91179-ISuche in Google Scholar
Mazarati, A.M., Liu, H., Soomets, U., Sankar, R., Shin, D., Katsumori, H., Langel, U., and Wasterlain, C.G. (1998). Galanin modulation of seizures and seizure modulation of hippocampal galanin in animal models of status epilepticus. J. Neurosci. 18, 10070–10077.10.1523/JNEUROSCI.18-23-10070.1998Suche in Google Scholar
Mazarati, A.M., Hohmann, J.G., Bacon, A., Liu, H., Sankar, R., Steiner, R.A., Wynick, D., and Wasterlain, C.G. (2000). Modulation of hippocampal excitability and seizures by galanin. J. Neurosci. 20, 6276–6281.10.1523/JNEUROSCI.20-16-06276.2000Suche in Google Scholar
Mazarati, A., Lu, X., Kilk, K., Langel, U., Wasterlain, C., and Bartfai, T. (2004). Galanin type 2 receptors regulate neuronal survival, susceptibility to seizures and seizure-induced neurogenesis in the dentate gyrus. Eur. J. Neurosci. 19, 3235–3244.10.1111/j.0953-816X.2004.03449.xSuche in Google Scholar
McNamara, J.O. (1994). Cellular and molecular basis of epilepsy. J. Neurosci. 14, 3413–3425.10.1523/JNEUROSCI.14-06-03413.1994Suche in Google Scholar
Medina-Ceja, L., Morales-Villagran, A., and Tapia, R. (2000). Action of 4-aminopyridine on extracellular amino acids in hippocampus and entorhinal cortex: a dual microdialysis and electroencehalographic study in awake rats. Brain Res. Bull. 53, 255–262.10.1016/S0361-9230(00)00336-1Suche in Google Scholar
Medina-Ceja, L., Sandoval-Garcia, F., Morales-Villagran, A., and Lopez-Perez, S.J. (2012). Rapid compensatory changes in the expression of EAAT-3 and GAT-1 transporters during seizures in cells of the CA1 and dentate gyrus. J. Biomed. Sci. 19, 78.10.1186/1423-0127-19-78Suche in Google Scholar
Melo, I.S., Santons, Y.M., Costa, M.A., Pacheco, A.L., Silva, N.K., Cardoso-Sousa, L., Pereira, U.P., Goulart, L.R., Garcia-Cairasco, N., Duzzioni, M., et al. (2016). Inhibition of sodium glucose cotransporters following status epilepticus induced by intrahippocampal pilocarpine affects neurodegeneration process in hippocampus. Epilepsy Behav. 61, 258–268.10.1016/j.yebeh.2016.05.026Suche in Google Scholar
Miles, R., Toth, K., Gulyas, A.I., Hajos, N., and Freund, T.F. (1996). Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16, 815–823.10.1016/S0896-6273(00)80101-4Suche in Google Scholar
Millecamps, S. and Julien, J.P. (2013). Axonal transport deficits and neurodegenerative diseases. Nat. Rev. Neurosci. 14, 161–176.10.1038/nrn3380Suche in Google Scholar PubMed
Miller, L.G. Galpern, W.R., Dunlap, K., Dinarello, C.A., and Turner, T.J. (1991). Interleukin-1 augments gamma-aminobutyric acidA receptor function in brain. Mol. Pharmacol. 39, 105–108.Suche in Google Scholar
Miller, K.E., Liu, X.A., and Puthanveettil, S.V. (2015). Automated measurement of fast mitochondrial transport in neurons. Front Cell Neurosci. 3, 9, 435.10.3389/fncel.2015.00435Suche in Google Scholar
Milner, T.A., Wiley, R.G., Kurucz, O.S., Prince, S.R., and Pierce, J.P. (1997). Selective changes in hippocampal neuropeptide Y neurons following removal of the cholinergic septal inputs. J. Comp. Neurol. 386, 46–59.10.1002/(SICI)1096-9861(19970915)386:1<46::AID-CNE6>3.0.CO;2-DSuche in Google Scholar
Mody, I., Stanton, P.K., and Heinemann, U. (1988). Activation of N-methyl-D-aspartate receptors parallels changes in cellular and synaptic properties of dentate gyrus granule cells after kindling. J. Neurophysiol. 59, 1033–1054.10.1152/jn.1988.59.3.1033Suche in Google Scholar
Mohapatra, D.P., Misonou, H., Pan, S.J., Held, J.E., Surmeier, D.J., and Trimmer, J.S. (2009). Regulation of intrinsic excitability in hippocampal neurons by activity-dependent modulation of the KV2.1 potassium channel. Channels (Austin) 3, 46–56.10.4161/chan.3.1.7655Suche in Google Scholar
Monory, K., Massa, F., Egertova, M., Eder, M., Blaudzun, H., Westenbroek, R., Kelsch, W., Jacob, W., Marsch, R., Ekker, M., et al. (2006). The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51, 455–466.10.1016/j.neuron.2006.07.006Suche in Google Scholar
Morales-Villagran, A., Medina-Ceja, L., and Lopez-Perez, S.J. (2008a). Simultaneous glutamate and EEG activity measurements during seizures in rat hippocampal region with the use of an electrochemical biosensor. J. Neurosci. Methods 168, 48–53.10.1016/j.jneumeth.2007.09.005Suche in Google Scholar
Morales-Villagran, A., Sandoval-Salazar, C., and Medina-Ceja, L. (2008b). An analytical flow injection system to measure glutamate in microdialysis samples based on an enzymatic reaction and electrochemical detection. Neurochem. Res. 33, 1592–1598.10.1007/s11064-008-9704-ySuche in Google Scholar
Murakoshi, H. and Trimmer, J.S. (1999). Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons. J. Neurosci. 19, 1728–1735.10.1523/JNEUROSCI.19-05-01728.1999Suche in Google Scholar
Murphy, B.L. and Danzer, S.C. (2011). Somatic translocation: a novel mechanism of granule cell dendritic dysmorphogenesis and dispersion. J. Neurosci. 31, 2959–2964.10.1523/JNEUROSCI.3381-10.2011Suche in Google Scholar
Myers, C.E., Bermudez-Hernandez, K., and Scharfman, H.E. (2013). The influence of ectopic migration of granule cells into the hilus on dentate gyrus-CA3 function. PLoS One 8, e68208.10.1371/journal.pone.0068208Suche in Google Scholar
Nadler, J.V. (2003). The recurrent mossy fiber pathway of the epileptic brain. Neurochem. Res. 28, 1649–1658.10.1023/A:1026004904199Suche in Google Scholar
Nagerl, U.V., Mody, I., Jeub, M., Lie, A.A., Elger, C.E., and Beck, H. (2000). Surviving granule cells of the sclerotic human hippocampus have reduced Ca2+ influx because of a loss of calbindin-D(28k) in temporal lobe epilepsy. J. Neurosci. 20, 1831–1836.10.1523/JNEUROSCI.20-05-01831.2000Suche in Google Scholar
Nehlig, A. (2007). What is animal experimentation telling us about new drug treatments of status epilepticus? Epilepsia 48 (Suppl 8), 78–81.10.1111/j.1528-1167.2007.01358.xSuche in Google Scholar
Neuman, R., Cherubini, E., and Ben-Ari, Y. (1988). Epileptiform bursts elicited in CA3 hippocampal neurons by a variety of convulsants are not blocked by N-methyl-d-aspartate antagonists. Brain Res. 459, 265–274.10.1016/0006-8993(88)90642-7Suche in Google Scholar
Newman, E.A. (1993). Inward-rectifying potassium channels in retinal glial (Muller) cells. J. Neurosci. 13, 3333–3345.10.1523/JNEUROSCI.13-08-03333.1993Suche in Google Scholar
Nicoletti, F., Bruno, V., Catania, M.V., Battaglia, G., Copani, A., Barbagallo, G., Cena, V., Sanchez-Prieto, J., Spano, P.F., and Pizzi, M. (1999). Group-I metabotropic glutamate receptors: hypotheses to explain their dual role in neurotoxicity and neuroprotection. Neuropharmacology 38, 1477–1484.10.1016/S0028-3908(99)00102-1Suche in Google Scholar
Notenboom, R.G., Hampson, D.R., Jansen, G.H., van Rijen, P.C., van Veelen, C.W., van Nieuwenhuizen, O., and de Graan, P.N. (2006). Up-regulation of hippocampal metabotropic glutamate receptor 5 in temporal lobe epilepsy patients. Brain 129, 96–107.10.1093/brain/awh673Suche in Google Scholar PubMed
Nuriya, M. and Huganir, R.L. (2006). Regulation of AMPA receptor trafficking by N-cadherin. J. Neurochem. 97, 652–661.10.1111/j.1471-4159.2006.03740.xSuche in Google Scholar PubMed
Nusser, Z., Hajos, N., Somogyi, P., and Mody, I. (1998). Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature 395, 172–177.10.1038/25999Suche in Google Scholar PubMed
Oby, E. and Janigro, D. (2006). The blood-brain barrier and epilepsy. Epilepsia 47, 1761–1774.10.1111/j.1528-1167.2006.00817.xSuche in Google Scholar PubMed
Okazaki, M.M. and Nadler, J.V. (2001). Glutamate receptor involvement in dentate granule cell epileptiform activity evoked by mossy fiber stimulation. Brain Res. 915, 58–69.10.1016/S0006-8993(01)02824-4Suche in Google Scholar
Oliveira, M.S., Skinner, F., Arshadmansab, M.F., Garcia, I., Mello, C.F., Knaus, H.G., Ermolinsky, B.S., Otalora, L.F., and Garrido-Sanabria, E.R. (2010). Altered expression and function of small-conductance (SK) Ca2+-activated K+ channels in pilocarpine-treated epileptic rats. Brain Res. 1348, 187–199.10.1016/j.brainres.2010.05.095Suche in Google Scholar
O’Malley, D., Shanley, L.J., and Harvey, J. (2003). Insulin inhibits rat hippocampal neurones via activation of ATP-sensitive K+ and large conductance Ca2+-activated K+ channels. Neuropharmacology 44, 855–863.10.1016/S0028-3908(03)00081-9Suche in Google Scholar
Palazzi, E., Felinska, S., Zambelli, M., Fisone, G., Bartfai, T., and Consolo, S. (1991). Galanin reduces carbachol stimulation of phosphoinositide turnover in rat ventral hippocampus by lowering Ca2+ influx through voltage-sensitive Ca2+ channels. J. Neurochem. 56, 739–747.10.1111/j.1471-4159.1991.tb01986.xSuche in Google Scholar PubMed
Pan, X., Ikeda, S.R., and Lewi, D.L. (1996). Rat brain cannabinoid receptor modulates N-type Ca2+ channels in a neuronal expression system. Mol. Pharmacol. 49, 707–714.Suche in Google Scholar
Pasantes-Morales, H. and Tuz, K. (2006). Volume changes in neurons: hyperexcitability and neuronal death. Contrib. Nephrol. 152, 221–240.10.1159/000096326Suche in Google Scholar PubMed
Pathak, H.R., Weissinger, F., Terunuma, M., Carlson, G.C., Hsu, F.C., Moss, S.J., and Coulter, D.A. (2007). Disrupted dentate granule cell chloride regulation enhances synaptic excitability during development of temporal lobe epilepsy. J. Neurosci. 27, 14012–14022.10.1523/JNEUROSCI.4390-07.2007Suche in Google Scholar PubMed PubMed Central
Pavlov, I. and Walker, M.C. (2013). Tonic GABA(A) receptor-mediated signalling in temporal lobe epilepsy. Neuropharmacology 69, 55–61.10.1016/j.neuropharm.2012.04.003Suche in Google Scholar PubMed
Penfield, W. and Jasper, H. (1954). Epilepsy and the Functional Anatomy of the Human Brain. (Little Brown, Boston), pp. 896.10.1097/00007611-195407000-00024Suche in Google Scholar
Peng, Z., Huang, C.S., Stell, B.M., Mody, I., and Houser, C.R. (2004). Altered expression of the delta subunit of the GABAA receptor in a mouse model of temporal lobe epilepsy. J. Neurosci. 24, 8629–8639.10.1523/JNEUROSCI.2877-04.2004Suche in Google Scholar PubMed PubMed Central
Perlson, E., Maday, S., Fu, M.M., Moughamian, A.J., and Holzbaur, E.L. (2010). Retrograde axonal transport: pathways to cell death? Trends Neurosci. 33, 335–344.10.1016/j.tins.2010.03.006Suche in Google Scholar PubMed PubMed Central
Pernhorst, K., Herms, S., Hoffmann, P., Cichon, S., Schulz, H., Sander, T., Schoch, S., Becker, A.J., and Grote, A. (2013). TLR4, ATF-3 and IL8 inflammation mediator expression correlates with seizure frequency in human epileptic brain tissue. Seizure 22, 675–678.10.1016/j.seizure.2013.04.023Suche in Google Scholar
Persike, D.S., Lima, M.L., Amorim, R.P., Cavalheiro, E.A., Yacubian, E.M.T., Centeno, R.S., Carrete, Jr. H., Schenkman, S., Canzian, M., and Fernandes, M.J.S. (2012). Hippocampal proteomic profile in temporal lobe epilepsy. J. Epilepsy Clin. Neurophysiol. 18, 53–56.10.1590/S1676-26492012000200007Suche in Google Scholar
Pierfelice, T., Alberi, L., and Gaiano, N. (2011). Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 69, 840–855.10.1016/j.neuron.2011.02.031Suche in Google Scholar
Pitkanen, A. and Engel, J. Jr. (2014). Past and present definitions of epileptogenesis and its biomarkers. Neurotherapeutics 11, 231–241.10.1007/s13311-014-0257-2Suche in Google Scholar
Placidi, F., Floris, R., Bozzao, A., Romigi, A., Baviera, M.E., Tombini, M., Izzi, F., Sperli, F., and Marciani, M.G. (2001). Ketotic hyperglycemia and epilepsia partialis continua. Neurology 57, 534–537.10.1212/WNL.57.3.534Suche in Google Scholar
Plata-Salaman, C.R., Ilyin, S.E., Turrin, N.P., Gayle, D., Flynn, M.C., Romanovitch, A.E., Kelly, M.E., Bureau, Y., Anisman, H., and McIntyre, D.C. (2000). Kindling modulates the IL-1β system, TNF-α, TGF-β1 and neuropeptide mRNAs in specific brain regions. Mol. Brain Res. 75, 248–258.10.1016/S0169-328X(99)00306-XSuche in Google Scholar
Proper, E.A., Hoogland, G., Kappen, S.M., Jansen, G.H., Rensen, M.G., Schrama, L.H., van Veelen, C.W., van Rijen, P.C., van Nieuwenhuizen, O., Gispen, W.H., et al. (2002). Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 125, 32–43.10.1093/brain/awf001Suche in Google Scholar PubMed
Puskarjov, M., Ahmad, F., Kaila, K., and Blaesse, P. (2012). Activity-dependent cleavage of the K-Cl cotransporter KCC2 mediated by calcium-activated protease calpain. J. Neurosci. 32, 11356–11364.10.1523/JNEUROSCI.6265-11.2012Suche in Google Scholar PubMed PubMed Central
Ravizza, T. and Vezzani, A. (2006). Status epilepticus induces time-dependent neuronal and astrocytic expression of interleukin-1 receptor type I in the rat limbic system. Neuroscience 137, 301–308.10.1016/j.neuroscience.2005.07.063Suche in Google Scholar PubMed
Ravizza, T., Gagliardi, B., Noe, F., Boer, K., Aronica, E., and Vezzani, A. (2008). Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol. Dis. 29, 142–160.10.1016/j.nbd.2007.08.012Suche in Google Scholar PubMed
Raza, M., Pal, S., Rafiq, A., and DeLorenzo, R.J. (2001). Long-term alteration of calcium homeostatic mechanisms in the pilocarpine model of temporal lobe epilepsy. Brain Res. 903, 1–12.10.1016/S0006-8993(01)02127-8Suche in Google Scholar
Raza, M., Blair, R.E., Sombati, S., Carter, D.S., Deshpande, L.S., and DeLorenzo, R.J. (2004). Evidence that injury-induced changes in hippocampal neuronal calcium dynamics during epileptogenesis cause acquired epilepsy. Proc. Natl. Acad. Sci. USA 101, 17522–17527.10.1073/pnas.0408155101Suche in Google Scholar
Reebs, S.G. and Mrosovsky, N. (1989). Effects of induced wheel running on the circadian activity rhythms of Syrian hamsters: entrainment and phase response curve. J. Biol. Rhythms. 4, 39–48.10.1177/074873048900400103Suche in Google Scholar
Rice, A., Rafiq, A., Shapiro, S.M., Jakoi, E.R., Coulter, D.A., and DeLorenzo, R.J. (1996). Long-lasting reduction of inhibitory function and gamma-aminobutyric acid type A receptor subunit mRNA expression in a model of temporal lobe epilepsy. Proc. Natl. Acad. Sci. USA 93, 9665–9669.10.1073/pnas.93.18.9665Suche in Google Scholar
Rivera, C., Li, H., Thomas-Crusells, J., Lahtinen, H., Viitanen, T., Nanobashvili, A., Kokaia, Z., Airaksinen, M.S., Voipio, J., Kaila, K., et al. (2002). BDNF-induced TrkB activation down-regulates the K+-Cl− cotransporter KCC2 and impairs neuronal Cl− extrusion. J. Cell Biol. 159, 747–752.10.1083/jcb.200209011Suche in Google Scholar
Rivera, C., Voipio, J., Thomas-Crusells, J., Li, H., Emri, Z., Sipila, S., Payne, J.A., Minichiello, L., Saarma, M., and Kaila, K. (2004). Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2. J. Neurosci. 24, 4683–4691.10.1523/JNEUROSCI.5265-03.2004Suche in Google Scholar
Rizzo, V., Carletti, F., Gambino, G., Schiera, G., Cannizzaro, C., Ferraro, G., and Sardo. P. (2014). Role of CB2 receptors and cGMP pathway on the cannabinoid-dependent antiepileptic effects in an in vivo model of partial epilepsy. Epilepsy Res. 108, 1711–1718.10.1016/j.eplepsyres.2014.10.001Suche in Google Scholar
Rodriguez-Moreno, A., Sistiaga, A., Lerma, J., and Sanchez-Prieto, J. (1998). Switch from facilitation to inhibition of excitatory synaptic transmission by group I mGluR desensitization. Neuron 21, 1477–1486.10.1016/S0896-6273(00)80665-0Suche in Google Scholar
Rogawski, M.A. (2011). Revisiting AMPA receptors as an antiepileptic drug target. Epilepsy Curr. 11, 56–63.10.5698/1535-7511-11.2.56Suche in Google Scholar PubMed PubMed Central
Rogawski, M.A. (1995). Excitatory Amino Acids and Seizures. Neurotransmitters and Neuromodulators. Glutamate. T.W. Stone, ed. (CNS Boca Raton: CRC Press), pp. 219–237.Suche in Google Scholar
Roper, S.N., Obenaus, A., and Dudek, F.E. (1992). Osmolality and nonsynaptic epileptiform bursts in rat CA1 and dentate gyrus. Ann. Neurol. 31, 81–85.10.1002/ana.410310115Suche in Google Scholar PubMed
Rosenwasser, A.M. and Dwyer, S.M. (2001). Circadian phase shifting: relationships between photic and nonphotic phase-response curves. Physiol. Behav. 73, 175–183.10.1016/S0031-9384(01)00466-8Suche in Google Scholar
Ross, S.T. and Soltesz, I. (2000). Selective depolarization of interneurons in the early posttraumatic dentate gyrus: involvement of the Na+/K+-ATPase. J. Neurophysiol. 83, 2916–2930.10.1152/jn.2000.83.5.2916Suche in Google Scholar
Roth, S.U., Sommer, C., Mundel, P., and Kiessling, M. (2001). Expression of synaptopodin, an actin-associated protein, in the rat hippocampus after limbic epilepsy. Brain Pathol. 11, 169–181.10.1111/j.1750-3639.2001.tb00389.xSuche in Google Scholar
Saly, V. and Andrew, R.D. (1993). CA3 neuron excitation and epileptiform discharge are sensitive to osmolality. J. Neurophysiol. 69, 2200–2208.10.1152/jn.1993.69.6.2200Suche in Google Scholar
Samland, H., Huitron-Resendiz, S., Masliah, E., Criado, J., Henriksen, S.J., and Campbell, I.L. (2003). Profound increase in sensitivity to glutamatergic- but not cholinergic agonist-induced seizures in transgenic mice with astrocyte production of IL-6. J. Neurosci Res. 73, 176–187.10.1002/jnr.10635Suche in Google Scholar
Sato, K. and Abe, K. (2001). Increases in mRNA levels for Tα1-tubulin in the rat kindling model of epilepsy. Brain Res. 904, 157–160.10.1016/S0006-8993(01)02459-3Suche in Google Scholar
Sbai, O., Khrestchatisky, M., Esclapez, M., and Ferhat, L. (2012). Drebrin A expression is altered after pilocarpine-induced seizures: time course of changes is consistent for a role in the integrity and stability of dendritic spines of hippocampal granule cells. Hippocampus 22, 477–493.10.1002/hipo.20914Suche in Google Scholar
Scharfman, H.E. (1995). Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons. J. Neurophysiol. 74, 179–194.10.1152/jn.1995.74.1.179Suche in Google Scholar
Scharfman, H.E. (2004). Functional implications of seizure-induced neurogenesis. Adv. Exp. Med. Biol. 548, 192–212.10.1007/978-1-4757-6376-8_14Suche in Google Scholar
Scharfman, H.E. (2007). The CA3 “backprojection” to the dentate gyrus. Prog. Brain Res. 163, 627–637.10.1016/S0079-6123(07)63034-9Suche in Google Scholar
Scharfman, H.E. and Pierce, J.P. (2012). New insights into the role of hilar ectopic granule cells in the dentate gyrus based on quantitative anatomic analysis and three-dimensional reconstruction. Epilepsia 53 (Suppl 1), 109–115.10.1111/j.1528-1167.2012.03480.xSuche in Google Scholar
Scharfman, H.E., Goodman, J.H., and Sollas, A.L. (2000). Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J. Neurosci. 20, 6144–6158.10.1523/JNEUROSCI.20-16-06144.2000Suche in Google Scholar
Schauwecker, P.E. (2012). The effects of glycemic control on seizures and seizure-induced excitotoxic cell death. BMC Neurosci. 13, 94.10.1186/1471-2202-13-94Suche in Google Scholar
Schöbitz, B., De Kloet, R.E., and Holsboer, F. (1994). Gene expression and function of interleukin-1, interleukin-6 and tumor necrosis factor in the brain. Prog Neurobiol. 44, 397–432.10.1016/0301-0082(94)90034-5Suche in Google Scholar
Schroder, W., Hinterkeuser, S., Seifert, G., Schramm, J., Jabs, R., Wilkin, G.P., and Steinhauser, C. (2000). Functional and molecular properties of human astrocytes in acute hippocampal slices obtained from patients with temporal lobe epilepsy. Epilepsia 41 (Suppl 6), S181–S184.10.1111/j.1528-1157.2000.tb01578.xSuche in Google Scholar
Schulz, R., Kirschstein, T., Brehme, H., Porath, K., Mikkat, U., and Kohling, R. (2012). Network excitability in a model of chronic temporal lobe epilepsy critically depends on SK channel-mediated AHP currents. Neurobiol. Dis. 45, 337–347.10.1016/j.nbd.2011.08.019Suche in Google Scholar
Schwarzer, C., Tsunashima, K., Wanzenbock, C., Fuchs, K., Sieghart, W., and Sperk, G. (1997). GABA(A) receptor subunits in the rat hippocampus II: altered distribution in kainic acid-induced temporal lobe epilepsy. Neuroscience 80, 1001–1017.10.1016/S0306-4522(97)00145-0Suche in Google Scholar
Schwechter, E.M., Veliskova, J., and Velisek, L. (2003). Correlation between extracellular glucose and seizure susceptibility in adult rats. Ann. Neurol. 53, 91–101.10.1002/ana.10415Suche in Google Scholar PubMed
Scott, R.C. (2014). What are the effects of prolonged seizures in the brain? Epileptic. Disord. Int. Epilepsy J. Videotape 16, 6–11.10.1684/epd.2014.0689Suche in Google Scholar PubMed PubMed Central
Sekino, Y., Kojima, N., and Shirao, T. (2007). Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem. Int. 51, 92–104.10.1016/j.neuint.2007.04.029Suche in Google Scholar PubMed
Seress, L. and Ribak, C.E. (1984). Direct commissural connections to the basket cells of the hippocampal dentate gyrus: anatomical evidence for feed-forward inhibition. J. Neurocytol. 13, 215–225.10.1007/BF01148116Suche in Google Scholar PubMed
Sethi, N. and Kang, Y. (2012). Notch signaling: mediator and therapeutic target of bone metastasis. Bonekey Rep. 1, 3.10.1038/bonekey.2012.2Suche in Google Scholar PubMed PubMed Central
Sha, L.Z., Xing, X.L., Zhang, D., Yao, Y., Dou, W.C., Jin, L.R., Wu, L.W., and Xu, Q. (2012). Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy. PLoS One 7, e39152.10.1371/journal.pone.0039152Suche in Google Scholar PubMed PubMed Central
Shan, W., Yoshida, M., Wu, X.R., Huntley, G.W., and Colman, D.R. (2002). Neural (N-) cadherin, a synaptic adhesion molecule, is induced in hippocampal mossy fiber axonal sprouts by seizure. J. Neurosci. Res. 69, 292–304.10.1002/jnr.10305Suche in Google Scholar PubMed
Shapiro, L.A., Korn, M.J., and Ribak, C.E. (2005). Newly generated dentate granule cells from epileptic rats exhibit elongated hilar basal dendrites that align along GFAP-immunolabeled processes. Neuroscience 136, 823–831.10.1016/j.neuroscience.2005.03.059Suche in Google Scholar PubMed
Shapiro, L.A., Wang, L., and Ribak, C.E. (2008). Rapid astrocyte and microglial activation following pilocarpine-induced seizures in rats. Epilepsia 49 (Suppl 2), 33–41.10.1111/j.1528-1167.2008.01491.xSuche in Google Scholar PubMed
Shetty, A.K. and Hattiangady, B. (2007). Restoration of calbindin after fetal hippocampal CA3 cell grafting into the injured hippocampus in a rat model of temporal lobe epilepsy. Hippocampus 17, 943–956.10.1002/hipo.20311Suche in Google Scholar PubMed PubMed Central
Shetty, A.K. and Turner, D.A. (1995). Intracerebroventricular kainic acid administration in adult rat alters hippocampal calbindin and non-phosphorylated neurofilament expression. J. Comp. Neurol. 363, 581–599.10.1002/cne.903630406Suche in Google Scholar PubMed
Shetty, A.K., Zaman, V., and Hattiangady, B. (2005). Repair of the injured adult hippocampus through graft-mediated modulation of the plasticity of the dentate gyrus in a rat model of temporal lobe epilepsy. J. Neurosci. 25, 8391–8401.10.1523/JNEUROSCI.1538-05.2005Suche in Google Scholar PubMed PubMed Central
Shin, R., Kobayashi, K., Hagihara, H., Kogan, J.H., Miyake, S., Tajinda, K., Walton, N.M., Gross, A.K., Heusner, C.L., Chen, Q., et al. (2013). The immature dentate gyrus represents a shared phenotype of mouse models of epilepsy and psychiatric disease. Bipolar. Disord. 15, 405–421.10.1111/bdi.12064Suche in Google Scholar PubMed PubMed Central
Silva, A.P., Lourenco, J., Xapelli, S., Ferreira, R., Kristiansen, H., Woldbye, D.P., Oliveira, C.R., and Malva, J.O. (2007). Protein kinase C activity blocks neuropeptide Y-mediated inhibition of glutamate release and contributes to excitability of the hippocampus in status epilepticus. FASEB J. 21, 671–681.10.1096/fj.06-6163comSuche in Google Scholar
Siman, R., Baudry, M., and Lynch, G. (1985). Regulation of glutamate receptor binding by the cytoskeletal protein fodrin. Nature 313, 225–228.10.1038/313225a0Suche in Google Scholar
Skeberdis, V.A., Lan, J., Zheng, X., Zukin, R.S., and Bennett, M.V. (2001). Insulin promotes rapid delivery of N-methyl-d-aspartate receptors to the cell surface by exocytosis. Proc. Natl. Acad. Sci. USA 98, 3561–3566.10.1073/pnas.051634698Suche in Google Scholar
Sloviter, R.S. (1987). Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science 235, 73–76.10.1126/science.2879352Suche in Google Scholar
Sloviter, R.S. (1991). Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1, 41–66.10.1002/hipo.450010106Suche in Google Scholar
Sloviter, R.S. (1992). Possible functional consequences of synaptic reorganization in the dentate gyrus of kainate-treated rats. Neurosci. Lett. 137, 91–96.10.1016/0304-3940(92)90306-RSuche in Google Scholar
Sloviter, R.S. and Bumanglag, A.V. (2012). Defining “epileptogenesis” and identifying “antiepileptogenic targets” in animal models of acquired temporal lobe epilepsy is not as simple as it might seem. Neuropharmacology 69, 3–15.10.1016/j.neuropharm.2012.01.022Suche in Google Scholar
Sloviter, R.S., Sollas, A.L., Barbaro, N.M., and Laxer, K.D. (1991). Calcium-binding protein (calbindin-D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus. J. Comp. Neurol. 308, 381–396.10.1002/cne.903080306Suche in Google Scholar
Sloviter, R.S., Bumanglag, A.V., Schwarcz, R., and Frotscher, M. (2012). Abnormal Dentate Gyrus Network Circuitry in Temporal Lobe Epilepsy. Jasper’s Basic Mechanisms of the Epilepsies [Internet]. 4th ed. (Bethesda, MD: National Center for Biotechnology Information (US)).Suche in Google Scholar
Smialowska, M. (1995). An inhibitory dopaminergic regulation of the neuropeptide Y immunoreactivity expression in the rat cerebral cortex neurons. Neuroscience 66, 589–595.10.1016/0306-4522(95)00028-HSuche in Google Scholar
Smialowska, M., Wieronska, J.M., Branski, P., Obuchowicz, E., and Pilc, A. (2004). MPEP, mGlu5 receptor antagonist, regulates NPYmRNA expression in hippocampal and amygdalar neurons. Pol. J. Pharmacol. 56, 709–718.Suche in Google Scholar
Soriano, E. and Frotscher, M. (1993). Spiney nonpyramidal neurons in the CA3 region of the rat hippocampus are glutamate-like immunoreactive and receive convergent mossy fiber input. J. Comp. Neurol. 333, 435–448.10.1002/cne.903330309Suche in Google Scholar PubMed
Soriano, E. and Frotscher, M. (1994). Mossy cells of the rat fascia dentata are glutamate-immunoreactive. Hippocampus 4, 65–69.10.1002/hipo.450040108Suche in Google Scholar
Sosunov, A.A., Wu, X., McGovern, R.A., Coughlin, D.G., Mikell, C.B., Goodman, R.R., and McKhann, G.M., 2nd. (2012). The mTOR pathway is activated in glial cells in mesial temporal sclerosis. Epilepsia 53 (Suppl 1), 78–86.10.1111/j.1528-1167.2012.03478.xSuche in Google Scholar
Soukupova, M., Binaschi, A., Falcicchia, C., Zucchini, S., Roncon, P., Palma, E., Magri, E., Grandi, E., and Simonato, M. (2014). Impairment of GABA release in the hippocampus at the time of the first spontaneous seizure in the pilocarpine model of temporal lobe epilepsy. Exp Neurol. 257, 39–49.10.1016/j.expneurol.2014.04.014Suche in Google Scholar
Soukupova, M., Binaschi, A., Falcicchia, C., Palma, E., Roncon, P., Zucchini, S., and Simonato, M. (2015). Increased extracellular levels of glutamate in the hippocampus of chronically epileptic rats. Neuroscience 301, 246–253.10.1016/j.neuroscience.2015.06.013Suche in Google Scholar
Sperk, G., Schwarzer, C., Heilman, J., Furtinger, S., Reimer, R.J., Edwards, R.H., and Nelson, N. (2003). Expression of plasma membrane GABA transporters but not of the vesicular GABA transporter in dentate granule cells after kainic acid seizures. Hippocampus 13, 806–815.10.1002/hipo.10133Suche in Google Scholar
Stanton, P.K., Jones, R.S., Mody, I., and Heinemann, U. (1987). Epileptiform activity induced by lowering extracellular [Mg2+] in combined hippocampal-entorhinal cortex slices: modulation by receptors for norepinephrine and N-methyl-d-aspartate. Epilepsy Res. 1, 53–62.10.1016/0920-1211(87)90051-9Suche in Google Scholar
Starr, M.S. (1996). The role of dopamine in epilepsy. Synapse 22, 159–194.10.1002/(SICI)1098-2396(199602)22:2<159::AID-SYN8>3.0.CO;2-CSuche in Google Scholar
Stegen, M., Kirchheim, F., Hanuschkin, A., Staszewski, O., Veh, R.W., and Wolfart, J. (2012). Adaptive intrinsic plasticity in human dentate gyrus granule cells during temporal lobe epilepsy. Cereb. Cortex 22, 2087–2101.10.1093/cercor/bhr294Suche in Google Scholar
Stellwagen, D., Beattie, E.C., Seo, J.Y., and Malenka, R.C. (2005). Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-α. J. Neurosci. 25, 3219–3228.10.1523/JNEUROSCI.4486-04.2005Suche in Google Scholar
Strack, S. and Colbran, R.J. (1998). Autophosphorylation-dependent targeting of calcium/calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl-d-aspartate receptor. J. Biol. Chem. 273, 20689–20692.10.1074/jbc.273.33.20689Suche in Google Scholar
Su, H., Sochivko, D., Becker, A., Chen, J., Jiang, Y., Yaari, Y., and Beck, H. (2002). Upregulation of a T-type Ca2+ channel causes a long-lasting modification of neuronal firing mode after status epilepticus. J. Neurosci. 22, 3645–3655.10.1523/JNEUROSCI.22-09-03645.2002Suche in Google Scholar
Sutula, T., Cascino, G., Cavazos, J., Parada, I., and Ramirez, L. (1989). Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann. Neurol. 26, 321–330.10.1002/ana.410260303Suche in Google Scholar
Sveinbjornsdottir, S., Sander, J.W., Upton, D., Thompson, P.J., Patsalos, P.N., Hirt, D., Emre, M., Lowe, D., and Duncan, J.S. (1993). The excitatory amino acid antagonist D-CPP-ene (SDZ EAA-494) in patients with epilepsy. Epilepsy Res. 16, 165–174.10.1016/0920-1211(93)90031-2Suche in Google Scholar
Tai, C.Y., Kim, S.A., and Schuman, E.M. (2008). Cadherins and synaptic plasticity. Curr. Opin. Cell Biol. 20, 567–575.10.1016/j.ceb.2008.06.003Suche in Google Scholar
Talathi, S.S., Hwang, D.U., Ditto, W.L., Mareci, T., Sepulveda, H., Spano, M., and Carney, P.R. (2009). Circadian control of neural excitability in an animal model of temporal lobe epilepsy. Neurosci. Lett. 455, 145–149.10.1016/j.neulet.2009.03.057Suche in Google Scholar
Tang, F.R., Lee, W.L., Gao, H., Chen, Y., Loh, Y.T., and Chia, S.C. (2004). Expression of different isoforms of protein kinase C in the rat hippocampus after pilocarpine-induced status epilepticus with special reference to CA1 area and the dentate gyrus. Hippocampus 14, 87–98.10.1002/hipo.10156Suche in Google Scholar
Tejada, J., Garcia-Cairasco, N., and Roque, A.C. (2014). Combined role of seizure-induced dendritic morphology alterations and spine loss in newborn granule cells with mossy fiber sprouting on the hyperexcitability of a computer model of the dentate gyrus. PLoS Comput. Biol. 10, e1003601.10.1371/journal.pcbi.1003601Suche in Google Scholar
Titulaer, M.N., Kamphuis, W., Pool, C.W., van Heerikhuize, J.J., and Lopes da Silva, F.H. (1994). Kindling induces time-dependent and regional specific changes in the [3H]muscimol binding in the rat hippocampus: a quantitative autoradiographic study. Neuroscience 59, 817–826.10.1016/0306-4522(94)90286-0Suche in Google Scholar
Titulaer, M.N., Ghijsen, W.E., Kamphuis, W., De Rijk, T.C., and Lopes da Silva, F.H. (1995). Opposite changes in GABA(A) receptor function in the CA1-3 area and fascia dentata of kindled rat hippocampus. J. Neurochem. 64, 2615–2621.10.1046/j.1471-4159.1995.64062615.xSuche in Google Scholar
Togashi, H., Abe, K., Mizoguchi, A., Takaoka, K., Chisaka, O., and Takeichi, M. (2002). Cadherin regulates dendritic spine morphogenesis. Neuron 35, 77–89.10.1016/S0896-6273(02)00748-1Suche in Google Scholar
Torben-Nielsen, B. and Stiefel, K.M. (2010). An inverse approach for elucidating dendritic function. Front Comput. Neurosci. 4, 128.10.3389/fncom.2010.00128Suche in Google Scholar
Toyoda, I., Bower, M.R., Leyva, F., and Buckmaster, P.S. (2013). Early activation of ventral hippocampus and subiculum during spontaneous seizures in a rat model of temporal lobe epilepsy. J. Neurosci. 33, 11100–11115.10.1523/JNEUROSCI.0472-13.2013Suche in Google Scholar
Tsunashima, K., Schwarzer, C., Kirchmair, E., Sieghart, W., and Sperk, G. (1997). GABA(A) receptor subunits in the rat hippocampus III: altered messenger RNA expression in kainic acid-induced epilepsy. Neuroscience 80, 1019–1032.10.1016/S0306-4522(97)00144-9Suche in Google Scholar
Turski, L., Ikonomidou, C., Turski, W.A., Bortolotto, Z.A., and Cavalheiro, E.A. (1989). Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse 3, 154–171.10.1002/syn.890030207Suche in Google Scholar PubMed
Tutka, P., Sawiniec, J., and Kleinrok, Z. (1998). Experimental diabetes sensitizes mice to electrical- and bicuculline-induced convulsions. Pol. J. Pharmacol. 50, 92–93.Suche in Google Scholar
Uludag, I.F., Bilgin, S., Zorlu, Y., Tuna, G., and Kirkali, G. (2013). Interleukin-6, interleukin-1 beta and interleukin-1 receptor antagonist levels in epileptic seizures. Seizure 22, 457–461.10.1016/j.seizure.2013.03.004Suche in Google Scholar PubMed
Vaillend, C., Mason, S.E., Cuttle, M.F., and Alger, B.E. (2002). Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+-K+-ATPases in the rat CA1 hippocampal region. J. Neurophysiol. 88, 2963–2978.10.1152/jn.00244.2002Suche in Google Scholar PubMed
van Groen, T., Miettinen, P., and Kadish, I. (2003). The entorhinal cortex of the mouse: organization of the projection to the hippocampal formation. Hippocampus 13, 133–149.10.1002/hipo.10037Suche in Google Scholar PubMed
van Oosterhout, F., Lucassen, E.A., Houben, T., vanderLeest, H.T., Antle, M.C., and Meijer, J.H. (2012). Amplitude of the SCN clock enhanced by the behavioral activity rhythm. PLoS One 7, e39693.10.1371/journal.pone.0039693Suche in Google Scholar PubMed PubMed Central
Verdoorn, T.A., Burnashev, N., Monyer, H., Seeburg, P.H., and Sakmann, B. (1991). Structural determinants of ion flow through recombinant glutamate receptor channels. Science 252, 1715–1718.10.1126/science.1710829Suche in Google Scholar PubMed
Vezzani, A. and Friedman, A. (2011). Brain inflammation as a biomarker in epilepsy. Biomark Med. 5, 607–614.10.2217/bmm.11.61Suche in Google Scholar PubMed PubMed Central
Vezzani, A. and Sperk, G. (2004). Overexpression of NPY and Y2 receptors in epileptic brain tissue: an endogenous neuroprotective mechanism in temporal lobe epilepsy? Neuropeptides 38, 245–252.10.1016/j.npep.2004.05.004Suche in Google Scholar
Vezzani, A., Sperk, G., and Colmers, W.F. (1999). Neuropeptide Y: emerging evidence for a functional role in seizure modulation. Trends Neurosci. 22, 25–30.10.1016/S0166-2236(98)01284-3Suche in Google Scholar
Vezzani, A., Balosso, S., and Ravizza, T. (2008). The role of cytokines in the pathophysiology of epilepsy. Brain Behav. Immun. 22, 797–803.10.1016/j.bbi.2008.03.009Suche in Google Scholar
Vezzani, A., French, J., Bartfai, T., and Baram, T.Z. (2011). The role of inflammation in epilepsy. Nat. Rev. Neurol. 7, 31–40.10.1038/nrneurol.2010.178Suche in Google Scholar
Vezzani, A., Friedman, A., and Dingledine, R.J. (2013). The role of inflammation in epileptogenesis. Neuropharmacology 69, 16–24.10.1016/j.neuropharm.2012.04.004Suche in Google Scholar
Wallace, M.J., Blair, R.E., Falenski, K.W., Martin, B.R., and DeLorenzo, R.J. (2003). The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J. Pharmacol. Exp. Ther. 307, 129–137.10.1124/jpet.103.051920Suche in Google Scholar
Walls, A.B., Flynn, S.P., West, P.J., Muller, M.S., Bak, L.K., Bulaj, G., Schousboe, A., and White, H.S. (2016). The anticonvulsant action of the galanin receptor agonist NAX-5055 involves modulation of both excitatory- and inhibitory neurotransmission. Epilepsy Res. 121, 55–63.10.1016/j.eplepsyres.2016.01.006Suche in Google Scholar
Wan, Q., Xiong, Z.G., Man, H.Y., Ackerley, C.A., Braunton, J., Lu, W.Y., Becker, L.E., MacDonald, J.F., and Wang, Y.T. (1997). Recruitment of functional GABA(A) receptors to postsynaptic domains by insulin. Nature 388, 686–690.10.1038/41792Suche in Google Scholar
Wang, S., Cheng, Q., Malik, S., and Yang, J. (2000). Interleukin-1β inhibits γ-aminobutyric acid type A (GABAA) receptor current in cultured hippocampal neurons. J. Pharmacol. Exp. Ther. 292, 497–504.Suche in Google Scholar
Wang, Q., Yu, S., Simonyi, A., Sun, G.Y., and Sun, A.Y. (2005). Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol. Neurobiol. 31, 3–16.10.1385/MN:31:1-3:003Suche in Google Scholar
Wang, L., Liu, G., He, M., Shen, L., Shen, D., Lu, Y., and Wang, X. (2010). Increased insulin receptor expression in anterior temporal neocortex of patients with intractable epilepsy. J. Neurol. Sci. 296, 64–68.10.1016/j.jns.2010.06.005Suche in Google Scholar PubMed
Wenzel, H.J., Buckmaster, P.S., Anderson, N.L., Wenzel, M.E., and Schwartzkroin, P.A. (1997). Ultra-structural localization of neurotransmitter immunoreactivity in mossy cell axons and their synaptic targets in the rat dentate gyrus. Hippocampus 7, 559–570.10.1002/(SICI)1098-1063(1997)7:5<559::AID-HIPO11>3.0.CO;2-#Suche in Google Scholar
Wenzel, H.J., Woolley, C.S., Robbins, C.A., and Schwartzkroin, P.A. (2000). Kainic acid-induced mossy fiber sprouting and synapse formation in the dentate gyrus of rats. Hippocampus 10, 244–260.10.1002/1098-1063(2000)10:3<244::AID-HIPO5>3.0.CO;2-7Suche in Google Scholar
Whatley, V.J. and Harris, R.A. (1996). The cytoskeleton and neurotransmitter receptors. Int. Rev. Neurobiol. 39, 113–143.10.1016/S0074-7742(08)60665-0Suche in Google Scholar
Wilson, R.I. and Nicoll, R.A. (2001). Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410, 588–592.10.1038/35069076Suche in Google Scholar
Wittner, L., Eross, L., Czirjak, S., Halasz, P., Freund, T.F., and Magloczky, Z. (2005). Surviving CA1 pyramidal cells receive intact perisomatic inhibitory input in the human epileptic hippocampus. Brain 128, 138–152.10.1093/brain/awh339Suche in Google Scholar
Wu, C. and Leung, L.S. (1997). Partial hippocampal kindling decreases efficacy of presynaptic GABAB autoreceptors in CA1. J. Neurosci. 17, 9261–9269.10.1523/JNEUROSCI.17-23-09261.1997Suche in Google Scholar
Wu, K. and Leung, L.S. (2001). Enhanced but fragile inhibition in the dentate gyrus in vivo in the kainic acid model of temporal lobe epilepsy: a study using current source density analysis. Neuroscience 104, 379–396.10.1016/S0306-4522(01)00043-4Suche in Google Scholar
Wu, K. and Leung, L.S. (2003). Increased dendritic excitability in hippocampal CA1 in vivo in the kainic acid model of temporal lobe epilepsy: a study using current source density analysis. Neuroscience 116, 599–616.10.1016/S0306-4522(02)00567-5Suche in Google Scholar
Wyler, A.R., Dohan, F.C., Schweitzer, J.B, and Berry III A.D. (1992). A grading system for hippocampal sclerosis. J. Epilepsy 5, 220–225.10.1016/S0896-6974(05)80120-3Suche in Google Scholar
Xiong, Z.Q. and Stringer, J.L. (2000). Sodium pump activity, not glial spatial buffering, clears potassium after epileptiform activity induced in the dentate gyrus. J. Neurophysiol. 83, 1443–1451.10.1152/jn.2000.83.3.1443Suche in Google Scholar
Xiong, T., Liu, J., Dai, G., Hou, Y., Tan, B., Zhang, Y., Li, S., Song, Y., Liu, H., Li, Y., et al. (2015). The progressive changes of filamentous actin cytoskeleton in the hippocampal neurons after pilocarpine-induced status epilepticus. Epilepsy Res. 118, 55–67.10.1016/j.eplepsyres.2015.11.002Suche in Google Scholar PubMed
Xu, J.H., Long, L., Wang, J., Tang, Y.C., Hu, H.T., Soong, T.W., and Tang, F.R. (2010). Nuclear localization of Ca(v)2.2 and its distribution in the mouse central nervous system, and changes in the hippocampus during and after pilocarpine-induced status epilepticus. Neuropathol. Appl. Neurobiol. 36, 71–85.10.1111/j.1365-2990.2009.01044.xSuche in Google Scholar PubMed
Xu, X., Hu, Y., Xiong, Y., Li, Z., Wang, W., Du, C., Yang, Y., Zhang, Y., Xiao, F., and Wang, X. (2016). Association of microtubule dynamics with chronic epilepsy. Mol. Neurobiol. 53, 5013–5024.10.1007/s12035-015-9431-8Suche in Google Scholar PubMed
Yang, J.W., Czech, T., Felizardo, M., Baumgartner, C., and Lubec, G. (2006). Aberrant expression of cytoskeleton proteins in hippocampus from patients with mesial temporal lobe epilepsy. Amino Acids 30, 477–493.10.1007/s00726-005-0281-ySuche in Google Scholar PubMed
Ye, Z.C. and Sontheimer, H. (1996). Cytokine modulation of glial glutamate uptake: a possible involvement of nitric oxide. Neuroreport 7, 2181–2185.10.1097/00001756-199609020-00025Suche in Google Scholar PubMed
Young, C.C., Stegen, M., Bernard, R., Muller, M., Bischofberger, J., Veh, R.W., Haas, C.A., and Wolfart, J. (2009). Upregulation of inward rectifier K+ (Kir2) channels in dentate gyrus granule cells in temporal lobe epilepsy. J. Physiol. 587, 4213–4233.10.1113/jphysiol.2009.170746Suche in Google Scholar PubMed PubMed Central
Zappone, C.A. and Sloviter, R.S. (2004). Translamellar disinhibition in the rat hippocampal dentate gyrus after seizure-induced degeneration of vulnerable hilar neurons. J. Neurosci. 24, 853–864.10.1523/JNEUROSCI.1619-03.2004Suche in Google Scholar PubMed PubMed Central
Zarowski, M., Loddenkemper, T., Vendrame, M., Alexopoulos, A.V., Wyllie, E., and Kothare, S.V. (2011). Circadian distribution and sleep/wake patterns of generalized seizures in children. Epilepsia 52, 1076–1083.10.1111/j.1528-1167.2011.03023.xSuche in Google Scholar PubMed
Zeng, L.H., Rensing, N.R., and Wong, M. (2009). The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J. Neurosci. 29, 6964–6972.10.1523/JNEUROSCI.0066-09.2009Suche in Google Scholar PubMed PubMed Central
Zhang, G., Raol, Y.S., Hsu, F.C., and Brooks-Kayal, A.R. (2004). Long-term alterations in glutamate receptor and transporter expression following early-life seizures are associated with increased seizure susceptibility. J. Neurochem. 88, 91–101.10.1046/j.1471-4159.2003.02124.xSuche in Google Scholar PubMed
Zhang, N., Wei, W., Mody, I., and Houser, C.R. (2007). Altered localization of GABA(A) receptor subunits on dentate granule cell dendrites influences tonic and phasic inhibition in a mouse model of epilepsy. J. Neurosci. 27, 7520–7531.10.1523/JNEUROSCI.1555-07.2007Suche in Google Scholar
Zhang, Y.F., Xiong, T.Q., Tan, B.H., Song, Y., Li, S.L., Yang, L.B., and Li, Y.C. (2014). Pilocarpine-induced epilepsy is associated with actin cytoskeleton reorganization in the mossy fiber-CA3 synapses. Epilepsy Res. 108, 379–389.10.1016/j.eplepsyres.2014.01.016Suche in Google Scholar
Zhao, D. and Leung, L.S. (1993). Partial hippocampal kindling increases paired-pulse facilitation and burst frequency in hippocampal CA1 neurons. Neurosci Lett. 154, 191–194.10.1016/0304-3940(93)90204-XSuche in Google Scholar
Zheng, X. and Sehgal, A. (2010). AKT and TOR signaling set the pace of the circadian pacemaker. Curr. Biol. 20, 1203–1208.10.1016/j.cub.2010.05.027Suche in Google Scholar
Zhu, G., Okada, M., Yoshida, S., Mori, F., Ueno, S., Wakabayashi, K., and Kaeko, S. (2006). Effects of interleukin-1beta on hippocampal glutamate and GABA releases associated with Ca2+-induced Ca2+ releasing systems. Epilepsy Res. 71, 107–116.10.1016/j.eplepsyres.2006.05.017Suche in Google Scholar
Zini, S., Roisin, M.P., Langel, U., Bartfai, T., and Ben-Ari, Y. (1993a). Galanin reduces release of endogenous excitatory amino acids in the rat hippocampus. Eur. J. Pharmacol. 245, 1–7.10.1016/0922-4106(93)90162-3Suche in Google Scholar
Zini, S., Roisin, M.P., Armengaud, C., and Ben-Ari, Y. (1993b). Effects of potassium channels modulators on the release of glutamate induced by ischaemic-like conditions in rat hippocampal slices. Neurosci. Lett. 153, 202–205.10.1016/0304-3940(93)90322-CSuche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Role of glial cell line-derived neurotrophic factor in the pathogenesis and treatment of mood disorders
- Biological bases of human musicality
- Alexithymia and automatic processing of emotional stimuli: a systematic review
- Quantitative EEG in obstructive sleep apnea syndrome: a review of the literature
- Effect of natural products on diabetes associated neurological disorders
- Leptin and adiponectin: pathophysiological role and possible therapeutic target of inflammation in ischemic stroke
- Epilepsy-associated alterations in hippocampal excitability
Artikel in diesem Heft
- Frontmatter
- Role of glial cell line-derived neurotrophic factor in the pathogenesis and treatment of mood disorders
- Biological bases of human musicality
- Alexithymia and automatic processing of emotional stimuli: a systematic review
- Quantitative EEG in obstructive sleep apnea syndrome: a review of the literature
- Effect of natural products on diabetes associated neurological disorders
- Leptin and adiponectin: pathophysiological role and possible therapeutic target of inflammation in ischemic stroke
- Epilepsy-associated alterations in hippocampal excitability