Startseite Quantification of sp2 carbon nanomaterials in biological systems: pharmacokinetics, biodistribution and ecological uptake
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Quantification of sp2 carbon nanomaterials in biological systems: pharmacokinetics, biodistribution and ecological uptake

  • Fumin Xue

    Fumin Xue received his BS from the College of Chemistry and Chemical Engineering at University of Jinan in 2003. He obtained his PhD at Peking University in 2010. Since 2010, he joined Shandong Provincial Analysis and Tester Center, Shandong Academy of Science in China as an assistant professor. His research interests include the preparation of multifunctional nanomaterial-based graphene oxide and lanthanide complexes and their applications in biological science and environment analysis.

    , Sheng-Tao Yang

    Sheng-Tao Yang received his BSc in 2006 and PhD in 2011 at Peking University majoring in chemistry. He was a research scholar at Clemson University from 2008 to 2009. He also worked as a visiting scholar at Hunan University during 2011–2012. Since 2011, he joined the College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities in China as an assistant professor. He was promoted to associate professor in 2013. His research interests are primarily in the preparation, environmental applications, and biosafety of carbon nanomaterials.

    EMAIL logo
    , Lingyun Chen

    Lingyun Chen is obtained his BS degree in Chemical Engineering from the Southwest University for Nationalities in 2015. He is pursuing his master’s degree at the Southwest University for Nationalities under the supervision of Prof. Sheng-Tao Yang. His research focuses on the biosafety of carbon nanomaterials.

    , Xiao Wang

    Xiao Wang received his BS and PhD at the Shandong Agricultural University in 1995 and 2005, respectively. Since 2006, he joined the Shandong Provincial Analysis and Tester Center, Shandong Academy of Science in China as a professor. He mainly engaged in the research on the traditional Chinese medicine (TCM) resources and the quality control of TCM.

    und Zhenhua Wang

    Zhenhua Wang received his PhD in 2010 at the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. He joined the Shandong Provincial Analysis and Tester Center, Shandong Academy of Science in China in 2011, and now he is an associate professor. His research interests include the preparation of multifunctional nanomaterials and their application in the environment analysis and the biogeochemical cycling of heavy metal in the environment.

Veröffentlicht/Copyright: 15. September 2015

Abstract

The sp2 carbon nanomaterials have fantastic properties and hold great potential in diverse areas, including electronics, energy, environment, biomedicine, and so on. The wide applications of sp2 carbon nanomaterials require the thorough investigations on their biosafety. The quantification of sp2 carbon nanomaterials is the first and crucial step in the biosafety evaluations. In this review, we summarized the quantification technologies for sp2 carbon nanomaterials and compared the advantages/disadvantages of these technologies. The pharmacokinetics, the biodistribution, and the ecological uptake of sp2 carbon nanomaterials were achieved by using the quantification technologies. Furthermore, the influence factors such as surface modification, size, shape, and exposure pathway were concerned, and the general rules in the biological behaviors of sp2 carbon nanomaterials were proposed. The implications to the biomedical applications and biosafety evaluations of sp2 carbon nanomaterials are discussed.


Corresponding author: Sheng-Tao Yang, College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041, China, e-mail:

About the authors

Fumin Xue

Fumin Xue received his BS from the College of Chemistry and Chemical Engineering at University of Jinan in 2003. He obtained his PhD at Peking University in 2010. Since 2010, he joined Shandong Provincial Analysis and Tester Center, Shandong Academy of Science in China as an assistant professor. His research interests include the preparation of multifunctional nanomaterial-based graphene oxide and lanthanide complexes and their applications in biological science and environment analysis.

Sheng-Tao Yang

Sheng-Tao Yang received his BSc in 2006 and PhD in 2011 at Peking University majoring in chemistry. He was a research scholar at Clemson University from 2008 to 2009. He also worked as a visiting scholar at Hunan University during 2011–2012. Since 2011, he joined the College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities in China as an assistant professor. He was promoted to associate professor in 2013. His research interests are primarily in the preparation, environmental applications, and biosafety of carbon nanomaterials.

Lingyun Chen

Lingyun Chen is obtained his BS degree in Chemical Engineering from the Southwest University for Nationalities in 2015. He is pursuing his master’s degree at the Southwest University for Nationalities under the supervision of Prof. Sheng-Tao Yang. His research focuses on the biosafety of carbon nanomaterials.

Xiao Wang

Xiao Wang received his BS and PhD at the Shandong Agricultural University in 1995 and 2005, respectively. Since 2006, he joined the Shandong Provincial Analysis and Tester Center, Shandong Academy of Science in China as a professor. He mainly engaged in the research on the traditional Chinese medicine (TCM) resources and the quality control of TCM.

Zhenhua Wang

Zhenhua Wang received his PhD in 2010 at the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. He joined the Shandong Provincial Analysis and Tester Center, Shandong Academy of Science in China in 2011, and now he is an associate professor. His research interests include the preparation of multifunctional nanomaterials and their application in the environment analysis and the biogeochemical cycling of heavy metal in the environment.

Acknowledgments

We acknowledge financial support from the China Natural Science Foundation (grant nos. 21307101 and 21277084), the Scientific Research Foundation of Shandong Province of Outstanding Young Scientist Award (grant no. BS2011SW031), and the Project of Postgraduate Degree Construction, Southwest University for Nationalities (grant no. 2015XWD-S0703).

References

Ajayan, P. M.; Zhou, O. Z. Applications of carbon nanotubes. Top. Appl. Phys. 2001, 80, 391–425.10.1007/3-540-39947-X_14Suche in Google Scholar

Bacon, M.; Bradley, S. J.; Nann, T. Graphene quantum dots. Part. Part. Syst. Char. 2014, 31, 415–428.10.1002/ppsc.201300252Suche in Google Scholar

Bullard-Dillard, R.; Creek, K.; Scrivens, W. A.; Tour, J. M. Tissue sites of uptake of 14C-labeled C60. Bioorg. Chem. 1996, 24, 376–385.10.1006/bioo.1996.0032Suche in Google Scholar

Cagle, D. W.; Kennel, S. J.; Mirzadeh, S.; Alford, J. M.; Wilson, L. J. In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. Proc. Natl. Acad. Sci. USA 1996, 96, 5182–5187.10.1073/pnas.96.9.5182Suche in Google Scholar

Campagnolo, L.; Massimiani, M.; Palmieri, G.; Bernardini, R.; Sacchetti, C.; Bergamaschi, A.; Vecchione, L.; Magrini, A.; Bottini, M.; Pietroius, A. Biodistribution and toxicity of pegylated single wall carbon nanotubes in pregnant mice. Part. Fibre. Toxicol. 2013, 10, 1–13.10.1186/1743-8977-10-21Suche in Google Scholar

Cao, L.; Meziani, M. J.; Sahu, S. S.; Sun, Y. P. Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 2013, 46, 171–180.10.1021/ar300128jSuche in Google Scholar

Chang, X.; Ruan, L.; Yang, S. T.; Sun, B.; Guo, C.; Zhou, L.; Dong, J.; Yuan, H.; Xing, G.; Zhao, Y.; Yang, M. Quantification of carbon nanomaterials in vivo: direct stable isotope labeling on the skeleton of fullerene C60. Environ. Sci. Nano. 2014, 1, 64–70.10.1039/C3EN00046JSuche in Google Scholar

Chen, C.; Xing, G.; Wang, J.; Zhao, Y.; Li, B.; Tang, J.; Jia, G.; Wang, T.; Sun, J.; Xing, L.; Yuan, H.; Gao, Y.; Meng, H.; Chen, Z.; Zhao, F.; Chai, Z.; Fang, X. Multihydroxylated [Gd@C82(OH)22]n nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nano Lett. 2005, 5, 2050–2057.10.1021/nl051624bSuche in Google Scholar

Cherukuri, P.; Gannon, C. J.; Leeuw, T. K.; Schmidt, H. K.; Smalley, R. E.; Curley, S. A.; Weisman, R. B. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl. Acad. Sci. USA 2006, 103, 18882–18886.10.1073/pnas.0609265103Suche in Google Scholar

Czarny, B.; Georgin, D.; Berthon, F.; Plastow, G.; Pinault, M.; Patriarche, G.; Thuleau, A.; L’Hermite, M. M.; Taran, F.; Dive, V. Carbon nanotube translocation to distant organs after pulmonary exposure: insights from in situ 14C-radiolabeling and tissue radioimaging. ACS Nano 2014, 8, 5715–5724.10.1021/nn500475uSuche in Google Scholar

De La Zerda, A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.; Smith, B. R.; Ma, T. J.; Oralkan, O.; Cheng, Z.; Chen, X. Y.; Dai, H. J.; Khuri-Yakub, B. T.; Gambhir, S. S. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechol. 2008, 3, 557–562.10.1038/nnano.2008.231Suche in Google Scholar

Deng, X.; Jia, G.; Wang, H.; Sun, H.; Wang, X.; Yang, S.; Wang, T.; Liu, Y. Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon 2007, 45, 1419–1424.10.1016/j.carbon.2007.03.035Suche in Google Scholar

Deng, X. Y.; Yang, S. T.; Nie, H. Y.; Wang, H. F.; Liu, Y. F. A generally adoptable radiotracing method for tracking carbon nanotubes in animals. Nanotechnology 2008, 19, 075101.10.1088/0957-4484/19/7/075101Suche in Google Scholar PubMed

Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751–758.10.1021/nl904286rSuche in Google Scholar

Fazaeli, Y.; Akhavan, O.; Rahighi, R.; Aboudzadeha, M. R.; Karimi, E.; Afarideh, H. In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures. Mater. Sci. Eng. C 2014, 45, 196–204.10.1016/j.msec.2014.09.019Suche in Google Scholar

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.10.1038/nmat1849Suche in Google Scholar

Georgin, D.; Czarny, B.; Botquin, M.; Mayne-L’Hermite, M.; Pinault, M.; Bouchet-Fabre, B.; Carriere, M.; Poncy, J. L.; Chau, Q.; Maximilien, R.; Dive, V.; Taran, F. Preparation of 14C-labeled multiwalled carbon nanotubes for biodistribution investigations. J. Am. Chem. Soc. 2009, 131, 14658–14659.10.1021/ja906319zSuche in Google Scholar

Gong, H.; Peng, R.; Liu, Z. Carbon nanotubes for biomedical imaging: the recent advances. Adv. Drug Deliv. Rev. 2013, 65, 1951–1963.10.1016/j.addr.2013.10.002Suche in Google Scholar

Guo, J. X.; Zhang, X.; Li, Q. N.; Li, W. X. Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl. Med. Biol. 2007, 34, 579–583.10.1016/j.nucmedbio.2007.03.003Suche in Google Scholar

Guo, Y.; Shi, D. L.; Cho, H. S.; Dong, Z. Y.; Kulkarni, A.; Pauletti, G. M.; Wang, W.; Lian, J.; Liu, W.; Ren, L.; Zhang, Q. Q.; Liu, G. K.; Huth, C.; Wang, L. M.; Ewing, R. C. In vivo imaging and drug storage by quantum-dot-conjugated carbon nanotubes. Adv. Funct. Mater. 2008, 18, 2489–2497.10.1002/adfm.200800406Suche in Google Scholar

Guo, X. K.; Dong, S. P.; Petersen, E. J.; Gao, S. X.; Huang, Q. G.; Mao, L. Biological uptake and depuration of radio-labeled graphene by Daphnia magna. Environ. Sci. Technol. 2013, 47, 12524–12531.10.1021/es403230uSuche in Google Scholar

Hong, S. Y.; Tobias, G.; Al-Jamal, K. T.; Ballesteros, B.; Ali-Boucetta, H.; Lozano-Perez, S.; Nellist, P. D.; Sim, R. B.; Finucane, C.; Mather, S. J.; Green, M. L. H.; Kostarelos, K.; Davis, B. G. Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat. Mater. 2010, 9, 485–490.10.1038/nmat2766Suche in Google Scholar

Hong, H.; Yang, K.; Zhang, Y.; Engle, J. W.; Feng, L. Z.; Yang, Y. N.; Nayak, T. R.; Goel, S.; Bean, J.; Theuer, C. P.; Barnhart, T. E.; Liu, Z.; Cai, W. B. In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano 2012a, 6, 2361–2370.10.1021/nn204625eSuche in Google Scholar PubMed PubMed Central

Hong, H.; Zhang, Y.; Engle, J. W.; Nayak, T. R.; Theuer, C. P.; Nickles, R. J.; Barnhart, T. E.; Cai, W. B. In vivo targeting and positron emission tomography imaging of tumor vasculature with 66Ga-labeled nano-graphene. Biomaterials 2012b, 33, 4147–4156.10.1016/j.biomaterials.2012.02.031Suche in Google Scholar PubMed PubMed Central

Hummers, W. S. Jr.; Offerman R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.10.1021/ja01539a017Suche in Google Scholar

Ji, Z. Q.; Sun, H.; Wang, H.; Xie, Q.; Liu, Y.; Wang, Z. Biodistribution and tumor uptake of C60(OH)x in mice. J. Nanopart. Res. 2006, 8, 53–63.10.1007/s11051-005-9001-5Suche in Google Scholar

Kanakia, S.; Toussaint, J. D.; Chowdhury, S. M.; Tembulkar, T.; Lee, S.; Jiang, Y. P.; Lin, R. Z.; Shroyer, K. R.; Moore, W.; Sitharaman, B. Dose ranging, expanded acute toxicity and safety pharmacology studies for intravenously administered functionalized graphene nanoparticle formulations. Biomaterials 2014, 35, 7022–7031.10.1016/j.biomaterials.2014.04.066Suche in Google Scholar

Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318: 162–163.10.1038/318162a0Suche in Google Scholar

Kubota, R.; Tahara M.; Shimizu K.; Sugimoto, N.; Hirose, A.; Nishimura, T. Time-dependent variation in the biodistribution of C60 in rats determined by liquid chromatography- tandem mass spectrometry. Toxicol. Lett. 2011, 206, 172–177.10.1016/j.toxlet.2011.07.010Suche in Google Scholar

Lacerda, L.; Soundararajan, A.; Singh, R.; Pastorin, G.; Al-Jamal, K. T.; Turton, J.; Frederik, P.; Herrero, M. A.; Li, S.; Bao, A.; Emfietzoglou, D.; Mather, S.; Phillips, W. T.; Prato, M.; Bianco, A.; Goins, B.; Kostarelos, K. Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Adv. Mater. 2008, 20, 225–230.10.1002/adma.200702334Suche in Google Scholar

Li, Q. N.; Xiu, Y.; Zhang, X. D.; Liu, R. L.; Du, Q. Q.; Sun, X. G.; Chen, S. L.; Li, W. X. Biodistribution of fullerene derivative C60(OH)x (O)y . Chin. Sci. Bull. 2001, 46, 1615–1618.10.1007/BF02900619Suche in Google Scholar

Li, Q. N.; Xiu, Y; Zhang, X. D.; Liu, R. L.; Du, Q. Q.; Shun, X. G.; Chen, S. L.; Li, W. X. Preparation of (99m)Tc-C60(OH)x and its biodistribution studies. Nucl. Med. Biol. 2002, 29, 707–710.10.1016/S0969-8051(02)00313-XSuche in Google Scholar

Li, Y. G.; Huang, X.; Liu, R. L.; Li, Q. N.; Zhang, X. D.; Li, W. X. Preparation of 67Ga-C60(OH)x and its biodistribution. J. Radioanal. Nucl. Chem. 2005, 265, 127–131.Suche in Google Scholar

Li, D.; Fortner, G. D.; Johnson, D. R.; Chen, C.; Li, Q. L.; Alvarez, P. J. J. Bioaccumulation of 14C60 by the earthworm Eisenia fetida. Environ. Sci. Technol. 2010, 44, 9170–9175.10.1021/es1024405Suche in Google Scholar

Li, B.; Yang, J. Z.; Huang, Q.; Zhang, Y.; Peng, C.; Zhang, Y. J.; He, Y.; Shi, J. Y.; Li, W. X.; Hu, J.; Fan, C. H. Biodistribution and pulmonary toxicity of intratracheally instilled graphene oxide in mice. NPG Asia Mater. 2013a, 5, e44.10.1038/am.2013.7Suche in Google Scholar

Li, S. B.; Irin, F.; Atore, F. O.; Green, M. J.; Cañas-Carrell, J. E. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique. Sci. Total Environ. 2013b, 9, 445–446.10.1016/j.scitotenv.2012.12.037Suche in Google Scholar

Li, B.; Zhang, X. Y.; Yang, J. Z.; Zhang, Y. J.; Li, W. X.; Fan, C. H.; Huang, Q. Influence of polyethylene glycol coating on biodistribution and toxicity of nanoscale graphene oxide in mice after intravenous injection. Int. J. Nanomed. 2014a, 9, 4697–4707.10.2147/IJN.S66591Suche in Google Scholar

Li, J.; Panta, A.; Chin, C. F.; Ang, W. H.; Menard-Moyon, C.; Nayak, T. R.; Gibson, D.; Ramaprabhu, S.; Panczyk, T.; Bianco, A.; Pastorin, G. In vivo biodistribution of platinum-based drugs encapsulated into multi-walled carbon nanotubes. Nanomedicine 2014b, 10, 1465–1475.10.1016/j.nano.2014.01.004Suche in Google Scholar PubMed

Liang, G. Y.; Zhang, T.; Liu, R.; Ye, B.; Yin, L. H.; Pu, Y. P. Preparation and biodistribution of tyrosine modified multiwall carbon nanotubes. J. Nanosci. Nanotechnol. 2010, 10, 8508–8515.10.1166/jnn.2010.2683Suche in Google Scholar

Lin, Z. Q.; Zhang, H. S.; Huang, J. H.; Xi, Z. G.; Liu, L. H.; Lin, B. C. Biodistribution of single-walled carbon nanotubes in rats. Toxicol. Res. 2014, 3, 497–502.10.1039/C3TX50059DSuche in Google Scholar

Liu, L.; Fan, S. S. Isotope labeling of carbon nanotubes and formation of 12C-13C nanotube junctions. J. Am. Chem. Soc. 2001, 123, 11502–11503.10.1021/ja0167304Suche in Google Scholar

Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2007, 2, 47–52.10.1038/nnano.2006.170Suche in Google Scholar

Liu, Z.; Davis, C.; Cai, W. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2008a, 105, 1410–1415.10.1073/pnas.0707654105Suche in Google Scholar PubMed PubMed Central

Liu, Z.; Li, X. L.; Tabakman, S. M.; Jiang, K. L.; Fan, S. S.; Dai, H. J. Multiplexed multicolor raman imaging of live cells with isotopically modified single walled carbon nanotubes. J. Am. Chem. Soc. 2008b, 130, 13540–13541.10.1021/ja806242tSuche in Google Scholar

Liu, J.-H.; Yang, S. T.; Wang, H.; Liu, Y. Advances in biodistribution study and tracing methodology of carbon nanotubes. J. Nanosci. Nanotechnol. 2010, 10, 8469–8481.10.1166/jnn.2010.2689Suche in Google Scholar

Liu, J. H.; Yang, S.-T.; Wang, H.; Chang, Y.; Cao, A.; Liu, Y. Effect of size and dose on the biodistribution of graphene oxide in mice. Nanomedicine 2012, 7, 1801–1812.10.2217/nnm.12.60Suche in Google Scholar

Liu, Y.; Zhao, Y. L.; Sun, B. Y.; Chen, C. Y. Understanding the toxicity of carbon nanotubes. Acc. Chem. Res. 2013, 46, 702–713.10.1021/ar300028mSuche in Google Scholar

Lu, Y. J.; Lin, C. W.; Yang, H. W.; Lin, K. J.; Wey, S. P.; Sun, C. L.; Wei, K. C.; Yen, T. C.; Lin, C. I.; Ma, C. M.; Chen, J. P. Biodistribution of PEGylated graphene oxide nanoribbons and their application in cancer chemo-photothermal therapy. Carbon 2014, 74, 83–95.10.1016/j.carbon.2014.03.007Suche in Google Scholar

Luo, P. G.; Yang, F.; Yang, S.-T.; Sonkar, S. K.; Yang, L.; Broglie, J. J.; Liu, Y.; Sun, Y.-P. Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv. 2014, 4, 10791–10807.10.1039/c3ra47683aSuche in Google Scholar

Maksin, T.; Djokic, D.; Jankovic, D.; Djordjevic, A.; Neskovic, O. Comparison of some physic-chemical parameters and biological behaviour of fullerenol labelled with technetium-99m. J. Optoelectron. Adv. Mater. 2007, 9, 2571–2577.Suche in Google Scholar

Matsumura, S.; Yuge, R.; Sato, S.; Tomida, A.; Ichihashi, T.; Irie, H.; Iijima, S.; Shiba, K.; Yudasaka, M. Ultrastructural localization of intravenously injected carbon nanohorns in tumor. Int. J. Nanomed. 2014, 9, 3499–3508.10.2147/IJN.S62688Suche in Google Scholar

McDevitt, M. R.; Chattopadhyay, D.; Jaggi, J. S.; Finn, R. D.; Zanzonico, P. B.; Villa, C.; Rey, D.; Mendenhall, J.; Batt, C. A.; Njardarson, J. T.; Scheinberg, D. A. PET imaging of soluble yttrium-86-labeled carbon nanotubes in Mice. PLoS One 2007a, 9, e907.10.1371/journal.pone.0000907Suche in Google Scholar PubMed PubMed Central

McDevitt, M. R.; Chattopadhyay, D.; Kappel, B. J.; Jaggi, J. S.; Schiffman, S. R.; Antczak, C.; Njardarson, J. T.; Brentjens, R.; Scheinberg, D. A. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J. Nucl. Med. 2007b, 48, 1180–1189.10.2967/jnumed.106.039131Suche in Google Scholar

Michael, F. L.; De-Volder, S. H.; Tawfick, R. H.; Baughman, A.; John, H. Carbon nanotubes: present and future commercial applications. Science 2013, 339, 535–539.10.1126/science.1222453Suche in Google Scholar

Miyawaki, J.; Matsumura, S.; Yuge, R.; Murakami, T.; Sato, S.; Tomida, A.; Tsuruo, T.; Ichihashi, T.; Fujinami, T.; Irie, H.; Tsuchida, K.; Iijima, S.; Shiba, K.; Yudasaka, M. Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd2O3 labels. ACS Nano 2009, 3, 1399–1406.10.1021/nn9004846Suche in Google Scholar

Moussa, F.; Pressac, M.; Genin, E.; Roux, S.; Trivin, F.; Rassat, A.; Ceolin, R.; Szwarc, H. Quantitative analysis of C60 fullerene in blood and tissues by high performance liquid chromatography with photodiode-array and mass spectrometric detection. J. Chromatogr. B 1997, 696, 153–159.10.1016/S0378-4347(97)00228-4Suche in Google Scholar

Mulvey, J. J.; Feinberg, E. N.; Alidori, S.; McDevitt, M. R.; Heller, D. A.; Scheinberg, D. A. Synthesis, pharmacokinetics, and biological use of lysine-modified single-walled carbon nanotubes. Int. J. Nanomed. 2014, 9, 4245–4255.10.2147/IJN.S66050Suche in Google Scholar

Nahain, A. A.; Lee, J. E.; In, I.; Lee, H.; Lee, K. D.; Jeong, J. H.; Park, S. Y. Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots. Mol. Pharm. 2013a, 10, 3736–3744.10.1021/mp400219uSuche in Google Scholar

Nahain, A. A.; Lee, J. E.; Jeong, J. H.; Park, S. Y. Photoresponsive fluorescent reduced graphene oxide by spiropyran conjugated hyaluronic acid for in vivo imaging and target delivery. Biomacromolecules 2013b, 10, 3736–3744.10.1021/bm4012166Suche in Google Scholar

Nakamura, M.; Tahara, Y.; Murakami, T.; Iijima, S.; Yudasaka, M. Gastrointestinal actions of orally-administered single-walled carbon nanohorns. Carbon 2014, 69, 409–416.10.1016/j.carbon.2013.12.043Suche in Google Scholar

Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic potential of materials at the nanolevel. Science 2006, 311, 622–627.10.1126/science.1114397Suche in Google Scholar

Nikolic, N.; Ðuric, S. V.; Jankovic, D.; Ðokic, D.; Mirkovic, M.; Bibi, N.; Trajkovic, V. Preparation and biodistribution of radiolabeled fullerene C60 nanocrystals. Nanotechnology 2009, 20, 385102.10.1088/0957-4484/20/38/385102Suche in Google Scholar PubMed

Nurunnabi, M.; Khatun, Z.; Huh, K. M.; Park, S. Y.; Lee, D. Y.; Cho, K. J.; Lee, Y. K. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 2013a, 7, 6858–6867.10.1021/nn402043cSuche in Google Scholar PubMed

Nurunnabi, M.; Khatun, Z.; Reeck, G. R.; Lee, D. Y.; Lee, Y. K. Near infra-red photoluminescent graphene nanoparticles greatly expand their use in noninvasive biomedical imaging. Chem. Commun. 2013b, 49, 5079–5081.10.1039/c3cc42334dSuche in Google Scholar

Oberdorster, G.; Oberdorster, E.; Oberdorster, J. An emerging disciplineevolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839.10.1289/ehp.7339Suche in Google Scholar

Owens, D. E.; Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006, 307, 93–102.10.1016/j.ijpharm.2005.10.010Suche in Google Scholar

Parks, A. N.; Portis, L. M.; Ariette Schierz, P.; Washburn, K. M.; Perron, M. M.; Burgess, R. M.; Ho, K. T.; Thomas Chandler, G.; Lee Ferguson, P. Bioaccumulation and toxicity of single-walled carbon nanotubes to benthic organisms at the base of the marine food chain. Environ. Toxicol. Chem. 2013, 32, 1270–1277.10.1002/etc.2174Suche in Google Scholar

Petersen, E. J.; Huang, Q. G.; Weber Jr., W. J. Bioaccumulation of radio-labeled carbon nanotubes by Eisenia foetida. Environ. Sci. Technol. 2008a, 42, 3090–3095.10.1021/es071366fSuche in Google Scholar

Petersen, E. J.; Huang, Q. G.; Weber, W. J., Jr. Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus. Environ. Health. Perspect. 2008b, 116, 496–500.10.1289/ehp.10883Suche in Google Scholar

Petersen, E. J.; Akkanen, J.; Kukkonen, J. V. K.; Weber, W. J. Biological uptake and depuration of carbon nanotubes by Daphnia magna. Environ. Sci. Technol. 2009, 43, 2969–2975.10.1021/es8029363Suche in Google Scholar

Petersen, E. J.; Huang, Q. G.; Weber, W. J., Jr. Relevance of octanol-water distribution measurements to the potential ecological uptake of multui-walled carbon nanotubes. Environ. Toxicol. Chem. 2010, 29, 1106–1112.10.1002/etc.149Suche in Google Scholar

Petersen, E. J.; Pinto, R. A.; Mai, D. J.; Landrum, P. F.; Weber, W. J. Influence of polyethyleneimine graftings of multi-walled carbon nanotubes on their accumulation and elimination by and toxicity to Daphnia magna. Environ. Sci. Technol. 2011a, 45, 1133–1138.10.1021/es1030239Suche in Google Scholar

Petersen, E. J.; Pinto, R. A.; Zhang, L. W.; Huang, Q. G.; Landrum, P. F.; Weber, W. J. J. Effects of polyethyleneimine-mediated functionalization of multi-walled carbon nanotubes on earthworm bioaccumulation and sorption by soils. Environ. Sci. Technol. 2011b, 45, 3718–3724.10.1021/es103004rSuche in Google Scholar

Prato, M. Fullerene chemistry for materials science applications. J. Mater. Chem. 1997, 7, 1097–1109.10.1039/a700080dSuche in Google Scholar

Prencipe, G.; Tabakman, S. M.; Welsher, K. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J. Am. Chem. Soc. 2009, 131, 4783–4787.10.1021/ja809086qSuche in Google Scholar

Qi, W.; Bi, J. J.; Zhang, X. Y.; Wang, J.; Wang, J. J.; Liu, P.; Li, Z.; Wu, W. S. Damaging effects of multi-walled carbon nanotubes on pregnant mice with different pregnancy times. Sci. Rep. 2014, 4, 101038.10.1038/srep04352Suche in Google Scholar

Rajagopalan, P.; Wudl, F.; Schinazi, R. F.; Boudinot, F. D. Pharmacokinetics of a water-soluble fullerene in rats. Antimicrob. Agents Chemother. 1996, 40, 2262–2265.10.1128/AAC.40.10.2262Suche in Google Scholar

Riviere, J. E. Pharmacokinetics of nanomaterials: an overview of carbon nanotubes, fullerenes and quantum dots. Wiley Interdisciplinary Rev. Nanomed. Nanobiotechnol. 2009, 1, 26–34.10.1002/wnan.24Suche in Google Scholar

Singh, R.; Pantarotto, D.; Lacerda, L.; Pastorin, G.; Klumpp, C.; Prato, M.; Bianco, A.; Kostarelos, K. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. USA 2006, 103, 3357–3362.10.1073/pnas.0509009103Suche in Google Scholar

Song, H.; Luo, S. Z.; Wei, H. Y.; Song, H. T.; Yang, Y. Q.; Zhao, W. W. In vivo biological behavior of 99mTc(CO)3 labeled fullerol. J. Radioanal. Nucl. Chem. 2010, 285, 635–639.10.1007/s10967-010-0588-3Suche in Google Scholar

Sumner, S. C. J.; Fennell, T. R.; Snyder, R. W.; Taylor, G. F.; Lewin, A. H. Distribution of carbon-14 labeled C60 ([14C]C60) in the pregnant and in the lactating dam and the effect of C60 exposure on the biochemical profile of urine. J. Appl. Toxicol. 2010, 30, 354–360.10.1002/jat.1503Suche in Google Scholar

Uo, M.; Akasaka, M.; Watari, F.; Sato, Y.; Tohji, K. Toxicity evaluations of various carbon nanomaterials. Dent. Mater. J. 2011, 30, 245–263.10.4012/dmj.2010-039Suche in Google Scholar

Wang, H. F.; Wang, J.; Deng, X. Y.; Sun, H. F.; Shi, Z. J.; Gu, Z. N.; Liu, Y. F.; Zhao, Y. L. Biodistribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotechnol. 2004, 4, 1019–1024.10.1166/jnn.2004.146Suche in Google Scholar

Wang, J. X.; Chen, C. Y.; Li, B.; Yu, H. W.; Zhao, Y. L.; Sun, J.; Li, Y. F.; Xing, G. G.; Yuan, H.; Tang, J.; Chen, Z.; Meng, H.; Gao, Y. X.; Ye, C.; Chai, Z. F.; Zhu, C. F.; Ma, B. C.; Fang, X. H.; Wan, L. J. Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochem. Pharmacol. 2006, 71, 872–881.10.1016/j.bcp.2005.12.001Suche in Google Scholar

Wang, J.; Deng, X. Y.; Yang, S. T.; Wang, H. F.; Zhao, Y. L.; Liu, Y. F. Rapid translocation and pharmacokinetics of hydroxylated single-walled carbon nanotubes in mice. Nanotoxicology 2008, 2, 28–32.10.1080/17435390701851747Suche in Google Scholar

Wang, B.; He, X.; Zhang, Z.; Zhao, Y.; Feng, W. Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc. Chem. Res. 2012a, 46, 761–769.10.1021/ar2003336Suche in Google Scholar

Wang, H.; Yang, S. T.; Cao, A.; Liu, Y. Quantification of carbon nanomaterials in vivo. Acc. Chem. Res. 2012b, 46, 750–760.10.1021/ar200335jSuche in Google Scholar

Wang, J. T. W.; Fabbro, C.; Venturelli, E.; Menard-Moyon, C.; Chaloin, O.; Ros, T. D.; Methven, L.; Nunes, A.; Sosabowski, J. K.; Mather, S. J.; Robinson, M. K.; Amadou, J.; Prato, M.; Bianco, A.; Kostarelos, K.; Al-Jamal, K. T. The relationship between the diameter of chemically-functionalized multi-walled carbon nanotubes and their organ biodistribution profiles in vivo. Biomaterials 2014a, 35, 9517–9528.10.1016/j.biomaterials.2014.07.054Suche in Google Scholar PubMed

Wang, J. T.; Cabana, L.; Bourgognon, M.; Kafa, H.; Protti, A.; Venner, K.; Shah, A. M.; Sosabowski, J. K.; Mather, S. J.; Roig, A.; Ke, X. X.; Tendeloo, G. V.; Rosales, R. T. M.; Tobias, G.; Al-Jamal, K. T. Magnetically decorated multiwalled carbon nanotubes as dual MRI and SPECT contrast agents. Adv. Funct. Mater. 2014b, 24, 1880–1894.10.1002/adfm.201302892Suche in Google Scholar

Weber, G. E. B.; Bosco, L. D.; Gonçalves, C. O. F.; Santos, A. P.; Fantini, C.; Furtado, C. A.; Parfitt, G. M.; Peixoto, C.; Romano, L. A.; Vaz, B. S.; Barros, D. M. Biodistribution and toxicological study of PEGylated single-wall carbon nanotubes in the zebra fish (Danio rerio) nervous system. Toxicol. Appl. Pharmacol. 2014, 280, 484–492.10.1016/j.taap.2014.08.018Suche in Google Scholar

Wu, X.; Yang, S.-T.; Wang, H.; Wang, L.; Hu, W.; Cao, A.; Liu, Y. Influences of the size and hydroxyl number of fullerenes/fullerenols on their interactions with proteins. J. Nanosci. Nanotechnol. 2010, 10, 6298–6304.10.1166/jnn.2010.2623Suche in Google Scholar

Xie, Q. Y.; Sun, H. F.; Liu, Y. F.; Ding, X. F.; Fu, D. P.; Liu, K. Adduction of biomacromolecules with acrylamide (AA) in mice at environmental dose levels studied by accelerator mass spectrometry. Toxicol. Lett. 2006, 163, 101–108.10.1016/j.toxlet.2005.09.041Suche in Google Scholar

Xing, G. G.; Yuan, H.; He, R.; Gao, X. Y.; Jing, L.; Zhao, F.; Chai, Z. F.; Zhao, Y. L. The strong MRI relaxivity of paramagnetic nanoparticles. J. Phys. Chem. B 2008, 112, 6288–6291.10.1021/jp8012706Suche in Google Scholar

Xu, J. Y.; Li, Q. N.; Li, J. G.; Ran, T. C.; Wu, S. W.; Song, W. M.; Chen, S. L.; Li, W. X. Biodistribution of 99mTc-C60(OH)x in Sprague-Dawley rats after intratracheal instillation. Carbon 2007, 45, 1865–1870.10.1016/j.carbon.2007.04.030Suche in Google Scholar

Yamago, S.; Tokuyama, H.; Nakamuralr, E.; Kikuchi, K.; Kananishl, S.; Sueki, K.; Nakahara, H.; Enomoto, S.; Ambe, F. In viva biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem. Biol. 1995, 2, 385–389.10.1016/1074-5521(95)90219-8Suche in Google Scholar

Yang, S.-T.; Guo, W.; Lin, Y.; Deng, X. Y.; Wang, H. F.; Sun, H. F.; Liu, Y. F.; Wang, X.; Wang, W.; Chen, M.; Huang, Y. P.; Sun, Y. P. Biodistribution of pristine single-walled carbon nanotubes in vivo. J. Phys. Chem. C 2007, 111, 17761–17764.10.1021/jp070712cSuche in Google Scholar

Yang, S.-T.; Shiral Fernando, K. A.; Liu, Y. H.; Wang, J.; Sun, H. F.; Liu, Y. F.; Chen, M.; Huang, Y. P.; Wang, X.; Wang, H. F.; Sun, Y. P. Covalently PEGylated carbon nanotubes with stealth character in vivo. Small 2008a, 4, 940–944.10.1002/smll.200700714Suche in Google Scholar PubMed

Yang, S.-T.; Wang, X.; Jia, G.; Gu, Y.; Wang, T.; Nie, H.; Ge, C.; Wang, H.; Liu, Y. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol. Lett. 2008b, 181, 182–189.10.1016/j.toxlet.2008.07.020Suche in Google Scholar

Yang, D.; Zhao, Y. L.; Guo, H.; Li, Y.; Tewary, P.; Xing, G. G.; Hou, W.; Oppenheim, J. J.; Zhang, N. [Gd@C82(OH)22]n nanoparticles induce dendritic cell maturation and activate Th1 immune responses. ACS Nano 2010a, 4, 1178–1186.10.1021/nn901478zSuche in Google Scholar PubMed PubMed Central

Yang, K.; Wan, J. M.; Zhang, S.; Zhang, Y. J.; Lee, S. T.; Liu, Z. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 2010b, 5, 516–522.10.1021/nn1024303Suche in Google Scholar PubMed

Yang, S.-T.; Luo, J.; Zhou, Q.; Wang, H. Pharmacokinetics, metabolism and toxicity of carbon nanotubes for biomedical purposes. Theranostics 2012, 2, 271–282.10.7150/thno.3618Suche in Google Scholar

Yang, K.; Gong, H.; Shi, X. Z.; Wan, J. M.; Zhang, Y. J.; Liu, Z. In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials 2013a, 34, 2787–2795.10.1016/j.biomaterials.2013.01.001Suche in Google Scholar PubMed

Yang, S.-T.; Liu, Y.; Wang, Y.; Cao, A. Biosafety and bioapplication of nanomaterials by designing protein-nanoparticle interactions. Small 2013b, 9, 1635–1653.10.1002/smll.201201492Suche in Google Scholar PubMed

Yang, S.-T.; Wang, Y.; Liu, J.; Wang, H. Biodistribution of multi-walled carbon nanotubes functionalized by hydroxyl terminated poly(ethylene glycol) in mice. J. Radioanal. Nucl. Chem. 2013c, 295, 1181–1186.10.1007/s10967-012-1901-0Suche in Google Scholar

Zhang, X. Y.; Yin, J. L.; Peng, C.; Hu, W. Q.; Zhu, Z. Y.; Li, W. X.; Fan, C. H.; Huang, Q. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon 2011, 49, 986–995.10.1016/j.carbon.2010.11.005Suche in Google Scholar

Zhang, M. F.; Yamaguchi, T.; Iijimaa, S.; Yudasaka, M. Size-dependent biodistribution of carbon nanohorns in vivo. Nanomedicine 2013a, 9, 657–664.10.1016/j.nano.2012.11.011Suche in Google Scholar PubMed

Zhang, Y.; Wu, C. Y.; Guo, S. W.; Zhang, J. Y. Interactions of graphene and graphene oxide with proteins and peptides. Nanotechnol. Rev. 2013b, 2, 27–45.10.1515/ntrev-2012-0078Suche in Google Scholar

Zhang, M. F.; Tahara, Y.; Yang, M.; Zhou, X.; Iijima, S.; Yudasaka, M. Quantification of whole body and excreted carbon nanohorns intravenously injected into mice. Adv. Healthc. Mater. 2014, 3, 239–244.10.1002/adhm.201300192Suche in Google Scholar

Received: 2015-7-3
Accepted: 2015-8-15
Published Online: 2015-9-15
Published in Print: 2015-12-1

©2015 by De Gruyter

Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revic-2015-0013/pdf
Button zum nach oben scrollen