Abstract
Mercury (Hg) is a global contaminant whose presence in the biosphere has been increased by human activity, particularly coal burning/energy production, mining, especially artisanal scale gold mining, and other industrial activities. Mercury input to the surface ocean has doubled over the past century leading governments and organizations to take actions to protect humans from the harmful effects of this toxic element. Recently, the UN Environmental Program led 128 countries to negotiate and sign a legally binding agreement, the 2013 Minimata Convention, to control Hg emissions and releases to land and water globally. In an effort to communicate science to this emerging international policy, the Dartmouth Superfund Research Program formed the Coastal and Marine Mercury Ecosystem Research Collaborative (C-MERC) in 2010 that brought together more than 70 scientists and policy experts to analyze and synthesize the science on Hg pollution in the marine environment from Hg sources to MeHg in seafood. The synthesis of the science revealed that the sources and inputs of Hg and their pathways to human exposure are largely determined by ecosystem spatial scales and that these spatial scales determine the organizational level of policies. The paper summarizes the four major findings of the report.
Acknowledgments
This publication was made possible by NIH Grant Number P42 ES007373 to B. Stanton from the National Institute of Environmental Health Sciences (www.niehs.nih.gov/).
References
1. Driscoll CT, Han YJ, Chen CY, Evers DC, Lambert KF, et al. Mercury contamination in forest and freshwater ecosystems in the Northeastern United States. Bioscience 2007;57:17–28.10.1641/B570106Suche in Google Scholar
2. Mason RP, Fitzgerald WF, Morel FMM. The biogeochemical cycling of elemental mercury – anthropogenic influences. Geochimica Et Cosmochimica Acta 1994;58:3191–8.10.1016/0016-7037(94)90046-9Suche in Google Scholar
3. Selin NE, Jacob DJ, Yantosca RM, Strode S, Jaegle L, et al. Global 3-D land-ocean-atmosphere model for mercury: Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition. Global Biogeochem Cy 2008;22:1–13.10.1029/2007GB003040Suche in Google Scholar
4. ATSDR. Priority list of hazardous substances Agency for Toxic Substances and Disease Registry. 2015.Suche in Google Scholar
5. Karagas MR, Choi AL, Oken E, Horvat M, Schoeny R, et al. Evidence on the human health effects of low level methylmercury exposure. Environ Health Perspect 2012;120:799–806.10.1289/ehp.1104494Suche in Google Scholar
6. Mahaffey KR, Sunderland EM, Chan HM, Choi AL, Grandjean P, et al. Balancing the benefits of n-3 polyunsaturated fatty acids and the risks of methylmercury exposure from fish consumption. Nutr Rev 2011;69:493–508.10.1111/j.1753-4887.2011.00415.xSuche in Google Scholar
7. Mergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, et al. Methylmercury exposure and health effects in humans: A worldwide concern. Ambio 2007;36:3–11.10.1579/0044-7447(2007)36[3:MEAHEI]2.0.CO;2Suche in Google Scholar
8. Nyland JF, Wang SB, Shirley DL, Santos EO, Ventura AM, et al. Fetal and maternal immune responses to methylmercury exposure: A cross-sectional study. Environ Res 2011;111:584–9.10.1016/j.envres.2011.02.010Suche in Google Scholar
9. Chen CY, Stemberger RS, Kamman NC, Mayes BM, Folt CL. Patterns of Hg bioaccumulation and transfer in aquatic food webs across multi-lake studies in the northeast US. Ecotoxicology 2005;14:135–47.10.1007/s10646-004-6265-ySuche in Google Scholar
10. Kirk JL, Louis VLS, Hintelmann H, Lehnherr I, Else B, et al. Methylated mercury species in marine waters of the canadian high and sub arctic. Environ Sci Technol 2008;42:8367–73.10.1021/es801635mSuche in Google Scholar
11. Riget F, Braune B, Bignert A, Wilson S, Aars J, et al. Temporal trends of Hg in Arctic biota, an update. Sci Total Environ 2011;409:3520–6.10.1016/j.scitotenv.2011.05.002Suche in Google Scholar
12. UNEP. Global Mercury Assessment 2013L Sources, Emissions, Releases and Environmental Transport. UNEP Chemicals Branch, Geneva, Switzerland, 2013.Suche in Google Scholar
13. Bhavsar SP, Gewurtz SB, McGoldrick DJ, Keir MJ, Backus SM. Changes in mercury levels in Great Lakes fish between 1970s and 2007. Environ Sci Technol 2010;44:3273–9.10.1021/es903874xSuche in Google Scholar PubMed
14. Carrie J, Wang F, Sanei H, Macdonald RW, Outridge PM, et al. Increasing contaminant burdens in an Arctic fish, Burbot (Lota lota), in a warming climate. Environ Sci Technol 2010;44:316–22.10.1021/es902582ySuche in Google Scholar PubMed
15. Conaway CH, Ross JRM, Looker R, Mason RP, Flegal AR. Decadal mercury trends in San Francisco Estuary sediments. Environ Res 2007;105:53–66.10.1016/j.envres.2006.10.006Suche in Google Scholar PubMed
16. Gratz LE, Keeler GJ, Miller EK. Long-term relationships between mercury wet deposition and meteorology. Atmos Environ 2009;43:6218–29.10.1016/j.atmosenv.2009.08.040Suche in Google Scholar
17. Greenfield BK, Davis JA, Fairey R, Roberts C, Crane D, et al. Seasonal, interannual, and long-term variation in sport fish contamination, San Francisco Bay. Sci Total Environ 2005;336:25–43.10.1016/j.scitotenv.2004.05.023Suche in Google Scholar PubMed
18. Macdonald RW, Harner T, Fyfe J. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Sci Total Environ 2005;342:5–86.10.1016/j.scitotenv.2004.12.059Suche in Google Scholar PubMed
19. Sunderland EM, Dalziel J, Heyes A, Branfireun BA, Krabbenhoft DP, et al. Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000. Environ Sci Technol 2010;44:1698–704.10.1021/es9032524Suche in Google Scholar PubMed
20. Chen CY, Driscoll CT, Lambert KF, Mason RP, Rardin LR, et al. Sources to seafood: Mercury pollution in the marine environment. Hanover, NH: Toxic Metals Superfund Research Program, Dartmouth College. 2012. Available at: http://www.dartmouth.edu/~toxmetal/C-MERC/.Suche in Google Scholar
21. Minimata Convention on Mercury: Texts and Annexes. 2014. United Nation Environment Programme GE.14-00280 UNEP/CHEMICALS/2014/1, Publishing Service, United Nations, Geneva Switzerland.Suche in Google Scholar
22. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. Mercury as a global pollutant: Sources, pathways, and effects. Environ Sci Technol 2013;47:4967–83.10.1021/es305071vSuche in Google Scholar PubMed PubMed Central
©2016 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Editorial
- Traditional and emerging environmental hazards in South-East Asia: double-trouble in the 21st century
- A quarter century of the Pacific Basin Consortium: looking back to move forward
- Exposure to Metals
- Arsenic projects in SE Asia
- Lead exposure from battery recycling in Indonesia
- Connecting mercury science to policy: from sources to seafood
- Mercury exposure in the work place and human health: dental amalgam use in dentistry at dental teaching institutions and private dental clinics in selected cities of Pakistan
- Protecting health from metal exposures in drinking water
- Exposure assessment of lead from food and airborne dusts and biomonitoring in pregnant mothers, their fetus and siblings in Karachi, Pakistan and Shimotsuke, Japan
- Mining
- Reconciling PM10 analyses by different sampling methods for Iron King Mine tailings dust
- The “CHILD” framework for the study of artisanal mercury mining communities
- Hydraulic fracturing for natural gas: impact on health and environment
- Hazardous Waste
- Searching bioremediation patents through Cooperative Patent Classification (CPC)
- Proteomics of Sphingobium indicum B90A for a deeper understanding of hexachlorocyclohexane (HCH) bioremediation
- Novel industrial wastewater treatment integrated with recovery of water and salt under a zero liquid discharge concept
- Water
- Connecting science with industry: lessons learned transferring a novel plasmonic mercury sensor from the bench to the field
- Pilot-scale UV/H2O2 study for emerging organic contaminants decomposition
- Nanotechnology: a clean and sustainable technology for the degradation of pharmaceuticals present in water and wastewater
- Solar-driven membrane distillation demonstration in Leupp, Arizona
- What works in water supply and sanitation projects in developing countries with EWB-USA
- Natural Disasters and a Changing Environment
- Environmental exposures due to natural disasters
- Changing exposures in a changing world: models for reducing the burden of disease
- Sustainable development through a gendered lens: climate change adaptation and disaster risk reduction
- Environmental Justice and Human Rights
- Creating healthy and just bioregions
- Worm-free children: an integrated approach to reduction of soil-transmitted helminth infections in Central Java
- Diabetes in Native Americans: elevated risk as a result of exposure to polychlorinated biphenyls (PCBs)
- Pollution, health and development: the need for a new paradigm
- EcoSystem
- Pacific connections for health, ecosystems and society: new approaches to the land-water-health nexus
- Exposure to e-waste
- E-waste: the growing global problem and next steps
- Global challenges for e-waste management: the societal implications
- E-waste issues in Sri Lanka and the Basel Convention
- E-waste interventions in Ghana
- CALUX bioassay: a cost-effective rapid screening technique for screening dioxins like compounds
- Cancer
- Cancer surveillance and research on environmental contributions to cancer
- Domestic incense use and lung cancer in Asia: a review
- Children
- Inadequate water, sanitation and hygiene in the South Pacific: how might it be impacting children?
- Children’s environmental health indicators in Australia: are we collecting the right information?
- Community-based efforts in health promotion in indigenous villages on the Thailand-Myanmar border
- Emerging issues
- Bayesian networks in infectious disease eco-epidemiology
- Health co-benefits in mortality avoidance from implementation of the mass rapid transit (MRT) system in Kuala Lumpur, Malaysia
- Particulate matter 2.5 (PM2.5) personal exposure evaluation on mechanics and administrative officers at the motor vehicle testing center at Pulo Gadung, DKI Jakarta
- Life cycle assessment of dairy farms
Artikel in diesem Heft
- Frontmatter
- Editorial
- Traditional and emerging environmental hazards in South-East Asia: double-trouble in the 21st century
- A quarter century of the Pacific Basin Consortium: looking back to move forward
- Exposure to Metals
- Arsenic projects in SE Asia
- Lead exposure from battery recycling in Indonesia
- Connecting mercury science to policy: from sources to seafood
- Mercury exposure in the work place and human health: dental amalgam use in dentistry at dental teaching institutions and private dental clinics in selected cities of Pakistan
- Protecting health from metal exposures in drinking water
- Exposure assessment of lead from food and airborne dusts and biomonitoring in pregnant mothers, their fetus and siblings in Karachi, Pakistan and Shimotsuke, Japan
- Mining
- Reconciling PM10 analyses by different sampling methods for Iron King Mine tailings dust
- The “CHILD” framework for the study of artisanal mercury mining communities
- Hydraulic fracturing for natural gas: impact on health and environment
- Hazardous Waste
- Searching bioremediation patents through Cooperative Patent Classification (CPC)
- Proteomics of Sphingobium indicum B90A for a deeper understanding of hexachlorocyclohexane (HCH) bioremediation
- Novel industrial wastewater treatment integrated with recovery of water and salt under a zero liquid discharge concept
- Water
- Connecting science with industry: lessons learned transferring a novel plasmonic mercury sensor from the bench to the field
- Pilot-scale UV/H2O2 study for emerging organic contaminants decomposition
- Nanotechnology: a clean and sustainable technology for the degradation of pharmaceuticals present in water and wastewater
- Solar-driven membrane distillation demonstration in Leupp, Arizona
- What works in water supply and sanitation projects in developing countries with EWB-USA
- Natural Disasters and a Changing Environment
- Environmental exposures due to natural disasters
- Changing exposures in a changing world: models for reducing the burden of disease
- Sustainable development through a gendered lens: climate change adaptation and disaster risk reduction
- Environmental Justice and Human Rights
- Creating healthy and just bioregions
- Worm-free children: an integrated approach to reduction of soil-transmitted helminth infections in Central Java
- Diabetes in Native Americans: elevated risk as a result of exposure to polychlorinated biphenyls (PCBs)
- Pollution, health and development: the need for a new paradigm
- EcoSystem
- Pacific connections for health, ecosystems and society: new approaches to the land-water-health nexus
- Exposure to e-waste
- E-waste: the growing global problem and next steps
- Global challenges for e-waste management: the societal implications
- E-waste issues in Sri Lanka and the Basel Convention
- E-waste interventions in Ghana
- CALUX bioassay: a cost-effective rapid screening technique for screening dioxins like compounds
- Cancer
- Cancer surveillance and research on environmental contributions to cancer
- Domestic incense use and lung cancer in Asia: a review
- Children
- Inadequate water, sanitation and hygiene in the South Pacific: how might it be impacting children?
- Children’s environmental health indicators in Australia: are we collecting the right information?
- Community-based efforts in health promotion in indigenous villages on the Thailand-Myanmar border
- Emerging issues
- Bayesian networks in infectious disease eco-epidemiology
- Health co-benefits in mortality avoidance from implementation of the mass rapid transit (MRT) system in Kuala Lumpur, Malaysia
- Particulate matter 2.5 (PM2.5) personal exposure evaluation on mechanics and administrative officers at the motor vehicle testing center at Pulo Gadung, DKI Jakarta
- Life cycle assessment of dairy farms