Abstract
Water is one of the key deterioration factors for porous building materials and has the capability of enhancing the deleterious effect of other factors such as air pollution and biocolonization, among others. The focus of the paper is the interaction of water with the porous inorganic materials: how does water enter the pore system, and how does it leave it? How does the presence of clays or soluble salts in porous materials affect these mechanisms? Pairwise examples are provided to illustrate the varying behavior of water in different materials. Also addressed is the importance of the pore size distribution on the behavior of water and its transport mechanisms. The aim of the paper is to synthesize the key points required to understand why water enters a porous system, in what way it is distributed within it, and the slow manner in which it departs, since time of wetness is fundamental in enhancing the effect of co-factors.
References
1. TammesIE, VosBH. Vocht in bouwconstructies. Rotterdam: Bouwcentrum, 1966.Suche in Google Scholar
2. KlopferH. Wassertransport durch diffusion in Feststoffen. Berlin: Bauverlag Wiesbaden, 1974.Suche in Google Scholar
3. MassariG, MassariI. Damp buildings. Old and new. Rome: ICCROM, 1993.Suche in Google Scholar
4. SteigerM, CharolaAE, SterflingerK. Weathering and deterioration. In: SiegesmundS, SnethlageR, editors. Stone in architecture – properties, durability, 5th ed. Berlin-Heidelberg: Springer Verlag, 2014:225–316.Suche in Google Scholar
5. WinklerEM. Stone in architecture, 3th ed. 2nd print. Berlin-Heidelberg-New York: Springer Verlag, 1979.Suche in Google Scholar
6. KlopferH. Das Kapillarverhalten poröser Baustoffe. Lehrgang Nr. 4280–79.88 Esslingen: Technische Akademie Esslingen, 1979.Suche in Google Scholar
7. HoffmannL. Untersuchungen zur Ursache des Salzsprengphänomens an Bausteinen. Doctoral Thesis, Heidelberg: Ruprecht-Karls-Universität, 1994.Suche in Google Scholar
8. LubelliBA. Sodium chloride damage to porous building materials.Ph.D. thesis, Delft: Technische Universiteit Delft, 2006.Suche in Google Scholar
9. SiegesmundS, DürrastH. Physical and mechanical properties of rocks. In: SiegesmundS, SnethlageR, editors. Stone in architecture – properties, durability, 5th ed. Berlin-Heidelberg: Springer Verlag, 2014:97–224.Suche in Google Scholar
10. Rousset TournierB. Transferts par capillarité et évaporation dans des roches—rôle des structures de porosité. Doctoral Thesis, Strassbourg: Université Louis Pasteur, 2001.Suche in Google Scholar
11. FitznerB. Porosity properties and weathering behaviour of natural stones-methodology and examples. In: ZezzaF, editor. 2nd course stone materials in monuments: diagnosis and conservation. Bari: CUM University School of Conservation, 1993:43–54.Suche in Google Scholar
12. JeannetteD. Structures de porosité, mécanismes de transfert des solutions et principales altérations des roches des monuments. In: LefèvreRA, editor. La pietra dei monumenti in ambiente fisico e culturale: Atti 2° Corso Intensivo Europeo. Bari: Edipuglia, 1997:49–77.Suche in Google Scholar
13. WeberH. Mauerfeuchtigkeit. Ursachen und Gegenmaßnahmen, Vol. 137. Kontakt & Studium, 2nd ed. Sindelfingen: Expert Verlag, 1984.Suche in Google Scholar
14. HallC, HoffWD. Rising damp: capillary rise dynamics in walls. Proc Roy Soc A2007;463:1871–84.10.1098/rspa.2007.1855Suche in Google Scholar
15. Rousset-TournierB, MazerolleF, GéraudV, JeannetteD. Rock drying tests monitored by computerized X-ray tomography. Importance of the saturation method on the water location. In: MeesF, SwennenR, Van GeetR, JacobsP, editors. Application of X-ray computed tomography in the geosciences. Special Publication 215. London: Geological Society, 2003:117–25.Suche in Google Scholar
16. BrunauerS, DemingSL, DemingWE, TellerE. On the theory of the van der Waals adsorption of gases. J Am Chem Soc1940;62:1723–32.10.1021/ja01864a025Suche in Google Scholar
17. BadmannR, StockhausenN, SetzerMJ. The statistical thickness and the chemical potential of adsorbed water films. J Colloid Interface Sci1981;82:534–42.10.1016/0021-9797(81)90395-7Suche in Google Scholar
18. WeylWA, OrmsbyWC. Atomistic approach to the rheology of sand-water and of clay-water mixtures. In: EirichFR, editorRheology. Theory and applications, Vol. 3. New York and London: Academic Press, 1960:249–97.Suche in Google Scholar
19. SnethlageR. Steinkonservierung 1979–1983. Arbeitsheft 22. Munich: Bayerisches Landesamtes für Denkmalpflege, 1984:33–7.Suche in Google Scholar
20. RoussetB, BläuerC. Mesures in situ non-destructives de la teneur en eau des matériaux de construction pierreux. In: Conservation Préventive—pratique dans le domaine du patrimoine bâti, Actes du Colloque. Fribourg: SKR/SCR, 2009:70–78.Suche in Google Scholar
21. StockhausenN. Die Dilatation hochporöser Festkörper bei Wasseraufnahme und Eisbildung. Doctoral Thesis. Munich: Technical University, 1981.Suche in Google Scholar
22. RüdrichJ, BartelsenT, DohrmannR, SiegesmundS. Moisture expansion as a deterioration factor for sandstone used in buildings. Environ Earth Sci2011;63:1545–1514. DOI:10.1007/s12665-010-0767-0.Suche in Google Scholar
23. SnethlageR, WendlerE. Moisture cycles and sandstone degradation. In: BaerNS, SnethlageR, editors. Saving our architectural heritage. The conservation of historic stone structures. Chichester: John Wiley & Sons, 1997:7–24.Suche in Google Scholar
24. WendlerE. Contour scaling damage on natural stone: mechanisms of development – possibilities and limits of consolidation. In: DelgadoRodrigues J, MimosoJM, editors. Theory and practice in conservation. A tribute to Cesare Brandi. Lisbon: Laboratório Nacional de Engenharia Civil, 2006:463–71.Suche in Google Scholar
25. SiedelH, SiegesmundS. Characterization of stone deterioration in buildings. In: SiegesmundS, SnethlageR, editors. Stone in architecture – properties, durability, 5th ed. Berlin-Heidelberg: Springer Verlag, 2014:349–414.Suche in Google Scholar
26. CharolaAE. Salts in the deterioration of porous materials: an overview. J Am Inst Conserv2000;39:327–43.10.1179/019713600806113176Suche in Google Scholar
27. CharolaAE. Salt deterioration: open questions. In: LeitnerH, LaueS, SiedelH, editors. Mauersalze und architekturoberflächen. Dresden: Hochschule für Bildende Künste, 2003:19–24.Suche in Google Scholar
28. CharolaAE, CentenoSA. Analysis of gypsum containing lime mortars: possible errors due to the use of different drying conditions. J Am Inst Conserv2002;41:269–78.10.1179/019713602806082593Suche in Google Scholar
29. ArnoldA, ZehnderK. Monitoring wall paintings affected by soluble salts. In: CatherS, editor. The conservation of wall paintings. Los Angeles, CA: The Getty Conservation Institute, 1991:103–35.Suche in Google Scholar
30. FrankeL, GrabauJ. Influence of salt content on the drying behaviour of brick. In: BaerNS, FitzS, LivingstonRA, editors. Conservation of historic brick structures. Dorset: Donhead, 1998:59–68.Suche in Google Scholar
31. RoussetB, JeannetteD, DesrignevilleC. Stone drying: an approach of the effective evaporating surface area. In: FassinaV, editor. 9th int. congress deterioration and conservation of stone. Vol. 1, Amsterdam: Elsevier, 2000:629–35.Suche in Google Scholar
32. AngeliM, BigasJP, BenaventeD, MenéndezB, HébertR, DavidC. Salt crystallization in pores: quantification and estimation of damage. Environ Geol2007;52:205–13.10.1007/s00254-006-0474-zSuche in Google Scholar
33. Bläuer BöhmC. Auswirkungen von hydrophoben Fassadenmaterialien auf die Erhaltung und Pflegefähigkeit von Baudenkmälern. Beobachtungern aus der Praxis. In: ExnerM, JacobsD, editors. Climatic stabilization and building physics. Sustainable approaches to safeguarding the world cultural heritage. Hefte des Deutschen Nationalkomitees XLII. Munich and Berlin: ICOMOS, 2005:117–28.Suche in Google Scholar
34. FitznerB, HeinrichsK, VolkerM, Campos PerezR, Nibaldo RivasS. Investigation into petrographical properties. In: HerckenrathG, editor. IDEAS: investigations into devices against environmental attack on stones – a German-Brazilian project. Geesthacht: GKSS Forschungszentrum Geesthacht GmbH, 1994:107–26.Suche in Google Scholar
35. Von Plehwe-LeisenE, Castello BrancoDA, WendlerE, KlemmDD, SnethlageR. The prophets of Aleijadinho in Congonhas/Brasil. Considerations on a conservation program for soapstone. In: Delgado RodriguesJ, HenriquesF, Telmo JeremiasF, editors. 7th int congress on deterioration and conservation of stone. Vol. 3. Lisbon: Laboratorio Nacional de Engenharia Civil, 1992:1415–24.Suche in Google Scholar
36. PuehringerJ. Salzwanderung und Verwitterung durch Salze. In: WittmannFH, editor. Material science and restoration. Filderstadt: Ed. Lack+Chemie, 1983:361–6.Suche in Google Scholar
©2015 by Birkhäuser Verlag
Artikel in diesem Heft
- Frontmatter
- Restoration of Buildings and Monuments
- An Overview of the Water-Porous Building Materials Interactions
- Modelling the Influence of Hydrophobic Treatment on the Electrical Conductivity of Mortar and Brick
- Capillary Absorption and Chloride Penetration into High-Performance Fiber-Reinforced Cement-Based Composites (HPFRCC) as Influenced by Tensile Stress and Self-Healing
- Revalorization of Structural Floor Systems in the Twentieth Century: An Overview
- Preventive Conservation of Historic Buildings
- Short Note
- Scholarships for the Advanced Masters in Structural Analysis of Monuments and Historical Constructions
Artikel in diesem Heft
- Frontmatter
- Restoration of Buildings and Monuments
- An Overview of the Water-Porous Building Materials Interactions
- Modelling the Influence of Hydrophobic Treatment on the Electrical Conductivity of Mortar and Brick
- Capillary Absorption and Chloride Penetration into High-Performance Fiber-Reinforced Cement-Based Composites (HPFRCC) as Influenced by Tensile Stress and Self-Healing
- Revalorization of Structural Floor Systems in the Twentieth Century: An Overview
- Preventive Conservation of Historic Buildings
- Short Note
- Scholarships for the Advanced Masters in Structural Analysis of Monuments and Historical Constructions