Startseite Design and evaluation of multi-layer polybenzoxazine composites for enhanced gamma and neutron shielding
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Design and evaluation of multi-layer polybenzoxazine composites for enhanced gamma and neutron shielding

  • Hasan Oğul EMAIL logo
Veröffentlicht/Copyright: 8. September 2025
Radiochimica Acta
Aus der Zeitschrift Radiochimica Acta

Abstract

This study investigates the gamma and neutron shielding performance of novel polybenzoxazine (PBz) based composites reinforced with Mo2C, Boron, and WS2 additives. The additives are mixed into the matrix at various mass ratios and then each sample is evaluated in terms of radiation interactions. A three-layered shielding structure was further designed with PBz-Mo2C-25 as the front layer, PBz-B-25 as the intermediate layer, and PBz-WS2-25 as the rear layer. The obtained results show that multi-layer configuration, PBz-3L, further enhanced low-energy neutron attenuation, achieving substantially greater reductions in thermal and epithermal flux compared to single-layer Mo2C- and WS2-reinforced composites. For photons, the multilayer structure achieves radiation protection efficiency (RPE) values exceeding 99 % at low gamma energies. Total ionizing dose (TID) and displacement per atom (DPA) analyses are also reported. These findings confirm the superior shielding capability of the three-layer composite, highlighting its potential for advanced radiation protection applications in nuclear and aerospace environments.


Corresponding author: Hasan OĞUL, Department of Nuclear Engineering, Sinop University, Sinop, Türkiye, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The author states no conflict of interest.

References

1. Zito, R. Ionizing Radiation Hazards: Dangerous Goods IV. J. Syst. Saf. 2021, 56, 12–33; https://doi.org/10.56094/jss.v56i3.16.Suche in Google Scholar

2. Sayyadi, A.; Mohammadi, Y.; Adlparvar, M. R. Mechanical, Durability, and Gamma Ray Shielding Characteristics of Heavyweight Concrete Containing Serpentine Aggregates and Lead Waste Slag. Adv. Civ. Eng. 2023, 2023, 7873637; https://doi.org/10.1155/2023/7873637.Suche in Google Scholar

3. Wu, Y.; Wang, Z. Progress in Ionizing Radiation Shielding Materials. Adv. Eng. Mater. 2024, 26, 2400855; https://doi.org/10.1002/adem.202400855.Suche in Google Scholar

4. Toto, E.; Lambertini, L.; Laurenzi, S.; Santonicola, M. G. Recent Advances and Challenges in Polymer-Based Materials for Space Radiation Shielding. Polymers 2024, 16, 382; https://doi.org/10.3390/polym16030382.Suche in Google Scholar PubMed PubMed Central

5. Al-asadi, M.; Miskolczi, N. Hydrogen Rich Products from Waste HDPE/LDPE/PP/PET over Me/Ni-ZSM-5 Catalysts Combined with Dolomite. J. Energy Inst. 2021, 96, 251–259; https://doi.org/10.1016/j.joei.2021.03.004.Suche in Google Scholar

6. Abdous, S.; Derradji, M.; Mekhalif, Z.; Khiari, K.; Mehelli, O.; Cherif, Y. B. Exploring the Potential of Benzoxazine-Based Nanocomposites for Lightweight Neutron Shielding Applications. High Perform. Polym. 2023, 35, 812–826; https://doi.org/10.1177/09540083231179114.Suche in Google Scholar

7. Cha, J. H.; Jang, W. H.; Kumar, S. K. S.; Noh, J. E.; Choi, J. S.; Kim, C. G. Functionalized Multi-Walled Carbon Nanotubes/hydrogen-Rich Benzoxazine Nanocomposites for Cosmic Radiation Shielding with Enhanced Mechanical Properties and Space Environment Resistance. Compos. Sci. Technol. 2022, 228, 109634.10.1016/j.compscitech.2022.109634Suche in Google Scholar

8. Rilwan, U.; Abdulazeez, M. A.; Maina, I.; Olasoji, O. W.; Olukotun, S. F.; El-Taher, A.; Sayyed, M. I.; Nimchang, C. G. Y.; Guto, J. A.; Adeyeba, O. A.; Marashdeh, M. W. Gamma Radiation Shielding and Thermal Performance of Concrete with Coconut Shell Ash Replacement. NIPES J. Sci. Technol. Res. 2025, 7, 254–262; https://doi.org/10.37933/nipes/7.2.2025.27.Suche in Google Scholar

9. Idris, M. M.; Olarinoye, I. O.; Kolo, M. T.; Ibrahim, S. O.; Rilwan, U.; Sayyed, M. I. A Comparative Study of the Radiation Dose Response of (ZnO) X (TeO2) 1-x Thin Films for High Energy X-Ray Application. Ceram. Int. 2025, 51, 26059–26069; https://doi.org/10.1016/j.ceramint.2025.03.290.Suche in Google Scholar

10. Kaika, Y. K.; Umaru, I.; Idris, M. M.; Rilwan, U.; Guto, J. A.; Sayyed, M. I.; Maisalatee, A.U.; Mundi, A. A.; Mahmoud, K. A. Microstructural, Thermal Analysis, and Gamma-Ray Shielding Properties of Bricks Made of Various Local Natural Materials. Radiat. Phys. Chem. 2025, 236, 112742; https://doi.org/10.1016/j.radphyschem.2025.112742.Suche in Google Scholar

11. Sayyed, M. I.; Rilwan, U.; Mahmoud, K. A.; Elsafi, M. Experimental Study of the Radiation Shielding Characteristics of New PbO–Na2O–B2o3–BaO Glasses. Nucl. Eng. Technol. 2024, 56, 2437–2443; https://doi.org/10.1016/j.net.2024.01.058.Suche in Google Scholar

12. Almuqrin, A. H.; Mahmoud, K. A.; Rilwan, U.; Sayyed, M. I. Influence of Various Metal Oxides (PbO, Fe2O3, MgO, and Al2O3) on the Mechanical Properties and γ-ray Attenuation Performance of Zinc Barium Borate Glasses. Nucl. Eng. Technol. 2024, 56, 2711–2717; https://doi.org/10.1016/j.net.2024.02.032.Suche in Google Scholar

13. Almuqrin, A. H.; Sayyed, M. I.; Kumar, A.; Rilwan, U. Characterization of Glasses Composed of PbO, ZnO, MgO, and B2O3 in Terms of Their Structural, Optical, and Gamma Ray Shielding Properties. Nucl. Eng. Technol. 2024, 56, 2842–2849; https://doi.org/10.1016/j.net.2024.02.047.Suche in Google Scholar

14. Sayyed, M. I.; Almuqrin, A. H.; Elsafi, M.; Rilwan, U. Evaluation of Incorporation of Granite Waste and SnO2-NPs into Coating Mortar for Gamma-Ray Shielding. Radiat. Phys. Chem. 2024, 222, 111818; https://doi.org/10.1016/j.radphyschem.2024.111818.Suche in Google Scholar

15. Alasali, H. J.; Rilwan, U.; Mahmoud, K. A.; Hanafy, T. A.; Sayyed, M. I. Comparative Analysis of TiO2, Fe2O3, CaO and CuO in Borate Based Glasses for Gamma Ray Shielding. Nucl. Eng. Technol. 2024, 56, 4050–4055; https://doi.org/10.1016/j.net.2024.05.006.Suche in Google Scholar

16. Sayyed, M. I.; Almuqrin, A. H.; More, C. V.; Rilwan, U.; Rashad, M.; Elsafi, M. Exploring Gamma Radiation Shielding: the Role of BaO in Borosilicate Glasses. Silicon 2024, 16, 4857–4866; https://doi.org/10.1007/s12633-024-03045-1.Suche in Google Scholar

17. Rilwan, U.; Abdulazeez, M. A.; Maina, I.; Olasoji, O. W.; El-Taher, A.; Adeshina, I. S.; Sayyed, M. I. Sustainable Gamma Radiation Shielding: Coconut Shell Ash Modified Concrete for Radiation Protection Applications. J. Radiat. Nucl. Appl. 2025, 10, 33–44.10.18576/jrna/100106Suche in Google Scholar

18. Oğul, H.; Agar, O.; Bulut, F.; Kaçal, M. R.; Dilsiz, K.; Polat, H.; Akman, F. A Comparative Neutron and Gamma-Ray Radiation Shielding Investigation of Molybdenum and Boron Filled Polymer Composites. Appl. Radiat. Isot. 2023, 194, 110731; https://doi.org/10.1016/j.apradiso.2023.110731.Suche in Google Scholar PubMed

19. Mehelli, O.; Derradji, M.; Habes, A.; Leblalta, N. E.; Belgacemi, R.; Abdous, S.; Izri, Y.; Liu, W. Benzoxazine Resin as an Interesting Building Block for Advanced Neutrons Shields. High Perform. Polym. 2021, 33, 1116–1123; https://doi.org/10.1177/09540083211021881.Suche in Google Scholar

20. Abdous, S.; Derradji, M.; Mekhalif, Z.; Khiari, K.; Mehelli, O.; Cherif, Y. B. Advances in Polymeric Neutron Shielding: the Role of Benzoxazine-H-BN Nanocomposites in Nuclear Protection. Radiat. Res. 2023, 200, 242–255; https://doi.org/10.1667/rade-23-00060.1.Suche in Google Scholar PubMed

21. Özdemir, H. G.; Demirkol, İ.; Erkoyuncu, İ.; Yılmaz, M.; Kaçal, M. R.; Akman, F. Investigation of Gamma Shielding Properties of Some Tungsten-Containing Minerals in a Wide Energy Range. JIST 2022, 12, 2175–2187.10.21597/jist.1141320Suche in Google Scholar

22. Deliormanlı, A. M.; Ensoylu, M.; Issa, S. A.; Elshami, W.; Al-Baradi, A. M.; Al-Buriahi, M. S.; Tekin, H. O. WS2/bioactive Glass Composites: Fabrication, Structural, Mechanical and Radiation Attenuation Properties. Ceram. Int. 2021, 47, 29739–29747; https://doi.org/10.1016/j.ceramint.2021.07.146.Suche in Google Scholar

23. Elafandi, S.; Christiansen, R.; Azam, N.; Cichon, M.; Park, M.; Hamilton, M. C.; Mahjouri-Samani, M. Monolayer 2D Quantum Materials Subjected to Gamma Irradiation in High-Vacuum for Nuclear and Space Applications. Appl. Phys. Lett. 2020, 116, 21; https://doi.org/10.1063/5.0006919.Suche in Google Scholar

24. Toyen, D.; Wimolmala, E.; Saenboonruang, K. Multi-layered Composites of Natural Rubber (NR) and Bismuth Oxide (Bi2O3) with Enhanced X-Ray Shielding and Mechanical Properties. Polymers 2023, 15, 2717; https://doi.org/10.3390/polym15122717.Suche in Google Scholar PubMed PubMed Central

25. Zhou, L.; Zhu, X.; Shen, P.; Huang, C.; Guo, S.; Zhou, W.; Zhang, X.; Gao, Y Constructing Multilayered WB2/Bi/poly (Ethylene-co-1-octene) Composites with Excellent Nuclear Radiation Shielding Efficiency and Radiation Damage Prevention. J. Chem. Eng. 2023, 464, 142625; https://doi.org/10.1016/j.cej.2023.142625.Suche in Google Scholar

26. Al-Saleh, W. M.; Almutairi, H. M.; Sayyed, M. I.; Elsafi, M. Multilayer Radiation Shielding System with Advanced Composites Containing Heavy Metal Oxide Nanoparticles: A Free-Lead Solution. Sci. Rep. 2023, 13, 18429; https://doi.org/10.1038/s41598-023-45621-2.Suche in Google Scholar PubMed PubMed Central

27. Gilys, L.; Griškonis, E.; Griškevičius, P.; Adlienė, D. Lead Free Multilayered Polymer Composites for Radiation Shielding. Polymers 2022, 14, 1696; https://doi.org/10.3390/polym14091696.Suche in Google Scholar PubMed PubMed Central

28. Hu, G.; Hu, H.; Yang, Q.; Yu, B.; Sun, W. Study on the Design and Experimental Verification of Multilayer Radiation Shield against Mixed Neutrons and γ-rays. Nucl. Eng. Technol. 2020, 52, 178–184; https://doi.org/10.1016/j.net.2019.07.016.Suche in Google Scholar

29. Iguchi, D.; Ohashi, S.; Abarro, G. J.; Yin, X.; Winroth, S.; Scott, C.; Gleydura, M.; Jin, L.; Kanagasegar, N.; Lo, C.; Arza, C. R.; Froimowicz, P.; Ishida, H. Development of Hydrogen-Rich Benzoxazine Resins with Low Polymerization Temperature for Space Radiation Shielding. ACS omega 2018, 3, 11569–11581; https://doi.org/10.1021/acsomega.8b01297.Suche in Google Scholar PubMed PubMed Central

30. Bîru, E. I.; Gârea, S. A.; Iovu, H. Developing Polybenzoxazine Composites Based on Various Carbon Structures. Macromol. Chem. Phys. 2019, 1800322; https://doi.org/10.1002/macp.201800322.Suche in Google Scholar

31. Polat, E.; Gültekin, B.; Canoğl, M. C.; Altınbaş, M.; Oğul, H. Production and Characterization of Ionizing Radiation Shielding Material from Algal Biomass. Radiat. Phys. Chem. 2024, 223, 111933.10.1016/j.radphyschem.2024.111933Suche in Google Scholar

32. Han, I.; Demir, L.; Şahin, M. Determination of Mass Attenuation Coefficients, Effective Atomic and Electron Numbers for Some Natural Minerals. Radiat. Phys. Chem. 2009, 78, 760–764; https://doi.org/10.1016/j.radphyschem.2009.03.077.Suche in Google Scholar

33. Sazali, M. A.; Alang Md Rashid, N. K.; Hamzah, K. A Review on Multilayer Radiation Shielding. IOP Conf. Ser. Mater. Sci. Eng. 2019, 555, 012008.10.1088/1757-899X/555/1/012008Suche in Google Scholar

34. Spadaro, G.; Alessi, S.; Dispenza, C. Ionizing radiation-induced crosslinking and degradation of polymers. In Applications of ionizing radiation in materials processing; Sun, Y., Chmielewski, A. G., Eds.; Institute of Nuclear Chemistry and Technology: Warszawa, 2017; pp. 167–182.Suche in Google Scholar

35. Stoller, R. E.; Toloczko, M. B.; Was, G. S.; Certain, A. G.; Dwaraknath, S.; Garner, F. A. On the Use of SRIM for Computing Radiation Damage Exposure. Nucl. Instrum. Methods Phys. Res. B 2013, 310, 75–80; https://doi.org/10.1016/j.nimb.2013.05.008.Suche in Google Scholar

36. Zaharescu, T.; Mariş, M. Irradiation Effects in Polymer Composites for Their Conversion into Hybrids. J. Compos. Sci. 2022, 6 (4), 109; https://doi.org/10.3390/jcs6040109.Suche in Google Scholar

37. GEANT Collaboration GEANT4–a Simulation Toolkit. Nucl. Instrum. Meth. A 2003, 506, 10.Suche in Google Scholar

38. Böhlen, T. T.; Cerutti, F.; Chin, M. P. W.; Fassò, A.; Ferrari, A.; Ortega, P. G.; Mairani, A.; Sala, P. R.; Smirnov, G.; Vlachoudis, V. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nucl. Data Sheets 2014, 120, 211–214; https://doi.org/10.1016/j.nds.2014.07.049.Suche in Google Scholar

39. Şakar, E.; Özpolat, Ö. F.; Alım, B.; Sayyed, M. I.; Kurudirek, M. Phy-X/PSD: Development of a User Friendly Online Software for Calculation of Parameters Relevant to Radiation Shielding and Dosimetry. Radiat. Phys. Chem. 2020, 166, 108496.10.1016/j.radphyschem.2019.108496Suche in Google Scholar

40. Rilwan, U.; Abdulazeez, M. A.; Maina, I.; Olasoji, O. W.; El-Taher, A.; Alhindawy, I. G.; Mahmoud, K.A.; Sayyed, M.I.; Elsafi, M.; Rashad, M.; Maghrbi, Y. The Use of Coconut Shell Ash as Partial Replacement of Cement to Improve the Thermal Properties of Concrete and Waste Management Sustainability in Nigeria and Africa, for Radiation Shielding Application. Sci. Afr. 2025, 27, e02578; https://doi.org/10.1016/j.sciaf.2025.e02578.Suche in Google Scholar

41. Rilwan, U.; Abdulazeez, M. A.; Maina, I.; Olasoji, O. W.; El-Taher, A.; Maisalatee, A. U.; Sarki, M.U.; Mohammed, G.; Sayyed, M. I. Feasibility Study on the Possibility of Utilizing E-Nut Shell Ashes for Gamma-Radiation Protection Application. Radiat. Phys. Chem. 2025, 233, 112748; https://doi.org/10.1016/j.radphyschem.2025.112748.Suche in Google Scholar

42. Rilwan, U.; Edeh, S. A.; Idris, M. M.; Fatima, I. I.; Olukotun, S. F.; Arinseh, G. Z.; Bonat, P.Z.; El-Taher, A.; Mahmoud, K.A.; Hanafy, T. A.; Sayyed, M. I. Influence of Waste Glass on the Gamma-Ray Shielding Performance of Concrete. Ann. Nucl. Energy 2025, 210, 110876; https://doi.org/10.1016/j.anucene.2024.110876.Suche in Google Scholar

43. Rilwan, U.; Aliyu, G. M.; Olukotun, S. F.; Idris, M. M.; Mundi, A. A.; Bello, S.; Umar, I.; El-Taher, A.; Mahmoud, K. A; Sayyed, M. I. Recycling and Characterization of Bone Incorporated with Concrete for Gamma-Radiation Shielding Applications. Nucl. Eng. Technol. 2024, 56, 2828–2834; https://doi.org/10.1016/j.net.2024.02.045.Suche in Google Scholar

44. Sayyed, M. I.; Mahmoud, K. A.; Biradar, S.; Rilwan, U.; Najam, L. A. Dual-Purpose Borate Based Glasses: Optical Features and Monte Carlo Simulations of Gamma Radiation Shielding. Nucl. Eng. Technol. 2025, 57, 103752; https://doi.org/10.1016/j.net.2025.103752.Suche in Google Scholar

45. Almutery, A.; Rahman, W. N.; Mohamed, F.; Hua, C. C.; Razak, K. A.; Rashid, R.; Rilwan, U.; Sayyed, M. I.; Maghrbi, Y. Enhancing the Gamma Radiation Shielding Performance: The Impact of Bi2O3 and MgO Nanoparticles on PMMA. Radiat. Phys. Chem. 2025, 113070; https://doi.org/10.1016/j.radphyschem.2025.113070.Suche in Google Scholar

Received: 2025-07-17
Accepted: 2025-08-27
Published Online: 2025-09-08

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2025-0067/html
Button zum nach oben scrollen