Abstract
This study investigates the degradation of crystalline silicon (c-Si) solar cells under high-energy polyenergetic Bremsstrahlung radiation, relevant to space and high-radiation terrestrial environments. Cells were irradiated with doses up to 900 Gy using a clinical linear accelerator (cLINAC). Results demonstrate significant dose-dependent performance loss, with the power conversion efficiency (η) decreasing by approximately 7.6 % at the highest dose of 900 Gy. This degradation was driven mainly by reduced short-circuit current density (J sc ) and increased recombination. External quantum efficiency (EQE) measurements confirmed substantial losses at longer wavelengths, indicating bulk defect generation. Capacitance and conductance analyses revealed the accumulation of deep-level traps and interface states, further elucidating the degradation mechanisms. These findings highlight the vulnerability of c-Si solar cells to Bremsstrahlung exposure and provide critical insights for developing radiation-hardened photovoltaic technologies.
Acknowledgements
The author acknowledges the Center for Solar Energy Research and Applications (ODTÜ-GÜNAM) for sample preparation and characterization, and the Akdeniz University Nuclear Science Research and Application Center for the irradiation facility.
-
Research ethics: This study did not involve human participants or animals; therefore, no ethical approval was required.
-
Informed consent: Not applicable, as no human participants were involved.
-
Author contributions: The author was solely responsible for the conceptualization, methodology, data analysis, writing, and final approval of the manuscript.
-
Use of Large Language Models, AI and Machine Learning Tools: Large Language Models (LLMs) were used solely for language editing and proofreading support. The scientific content, analysis, and conclusions are entirely the author’s own.
-
Conflict of interest: The author declares no conflict of interest.
-
Research funding: This research received no external funding.
-
Data availability: The data supporting the findings of this study are available from the author upon reasonable request.
References
1. Yu, S.; Rabelo, M.; Yi, J. A Brief Review on III-V/Si Tandem Solar Cells. Trans. Electr. Electron. Mater. 2022, 23, 327; https://doi.org/10.1007/s42341-022-00398-5.Suche in Google Scholar
2. Hamache, A.; Sengouga, N.; Meftah, A.; Henini, M. Modeling the Effect of 1 Mev Electron Irradiation on the Performance of n+-p-p+ Silicon Space Solar Cells. Radiat. Phys. Chem. 2016, 123, 103; https://doi.org/10.1016/j.radphyschem.2016.02.025.Suche in Google Scholar
3. Sahin, R.; Kabacelik, I. Effects of Iionizing Radiation on the Properties of Mono-Crystalline Si Solar Cells. Radiat. Phys. Chem. 2018, 150, 90; https://doi.org/10.1016/j.radphyschem.2018.04.033.Suche in Google Scholar
4. Kabacelik, I.; Kutaruk, H.; Yaltkaya, S.; Sahin, R. Γ Irradiation Induced Effects on the TCO Thin Films. Radiat. Phys. Chem. 2017, 134, 89; https://doi.org/10.1016/j.radphyschem.2017.01.042.Suche in Google Scholar
5. Nikolić, D.; Vasić-Milovanović, A.; Obrenović, M.; Dolićanin, E. Effects of Successive Gamma and Neutron Irradiation on Solar Cells. J. Optoelectronics. Advanced. Mater 2015, 17, 351.Suche in Google Scholar
6. Yang, S. S.; Gao, X.; Wang, Y. F.; Feng, Z. Z. Displacement Damage Characterization of Electron Radiation in Triple-Junction Gaas Solar Cells. J. Spacecr. Rockets 2011, 48, 23; https://doi.org/10.2514/1.48873.Suche in Google Scholar
7. Kabaçelik, İ. Investigation of the Effect of Successive Low-Dose γ-Rays on c-Si Solar Cell. Gazi. Üniversitesi. Fen. Bilimleri. Dergisi. Part C: Tasarım. ve. Teknoloji. 2023, 11, 582; https://doi.org/10.29109/gujsc.1199922.Suche in Google Scholar
8. Bhat, P. S.; Rao, A.; Krishnan, S.; Sanjeev, G.; Puthanveettil, S. E. A Study on the Variation of c-Si Solar Cell Parameters Under 8 Me Electron Irradiation. Sol. Energy. Mater. Sol. Cells 2014, 120, 191; https://doi.org/10.1016/j.solmat.2013.08.043.Suche in Google Scholar
9. Zhang, Y.; Qi, C.; Wang, T.; Ma, G.; Tsai, H. S.; Liu, C.; Zhou, J.; Wei, Y.; Li, H.; Xiao, L.; Ma, Y.; Wang, D.; Tang, C.; Li, J.; Wu, Z.; Huo, M. Electron Irradiation Effects and Defects Analysis of the Inverted Metamorphic Four-Junction Solar Cells. IEEE. J. Photovolt 2020, 10, 1712; https://doi.org/10.1109/jphotov.2020.3025442.Suche in Google Scholar
10. Bodunrin, J. O.; Oeba, D. A.; Moloi, S. J. Current-Voltage and Capacitance-Voltage Characteristics of Cadmium-Doped p-Silicon Schottky Diodes. Sens. Actuators. A. Phys 2021, 331, 112957; https://doi.org/10.1016/j.sna.2021.112957.Suche in Google Scholar
11. Srour, J. R.; Marshall, C. J.; Marshall, P. W. Review of Displacement Damage Effects in Silicon Devices. IEEE. Trans. Nucl. Sci. 2003, 50, 653; https://doi.org/10.1109/tns.2003.813197.Suche in Google Scholar
12. Sathyanarayana Bhat, P.; Rao, A.; Sanjeev, G.; Usha, G.; Priya, G. K.; Sankaran, M.; Puthanveettil, S. E. Capacitance and Conductance Studies on Silicon Solar Cells Subjected to 8MeV Electron Irradiations. Radiat. Phys. Chem. 2015, 111, 28; https://doi.org/10.1016/j.radphyschem.2015.02.010.Suche in Google Scholar
13. Danilchenko, B.; Budnyk, A.; Shpinar, L.; Poplavskyy, D.; Zelensky, S. E.; Barnham, K. W. J.; Ekins-Daukes, N. J. 1 MeV Electron Irradiation Influence on Gaas Solar Cell Performance. Sol. Energy. Mater. Sol. Cells 2008, 92, 1336; https://doi.org/10.1016/j.solmat.2008.05.006.Suche in Google Scholar
14. Summers, G. P.; Burke, E. A.; Shapiro, P.; Messenger, S. R.; Walters, R. J. Damage Correlations in Semiconductors Exposed to Gamma, Electron and Proton Radiations. IEEE. Trans. Nucl. Sci. 1993, 40, 1372; https://doi.org/10.1109/23.273529.Suche in Google Scholar
15. Xapsos, M. A.; Summers, G. P.; Blatchley, C. C.; Colerico, C. W.; Burke, E. A.; Messenger, S. R.; Shapiro, P. Co60 Gamma Ray and Electron Displacement Damage Studies of Semiconductors. IEEE. Trans. Nucl. Sci. 1994, 41, 1945; https://doi.org/10.1109/23.340528.Suche in Google Scholar
16. Zhang, Y.; Zhang, H.; Yu, B.; Wang, W.; Hou, R.; Chen, B.; Xu, Q.; Zhou, Y.; Qin, G. Gamma-Ray Irradiation Hardness of Arrayed Silicon Microhole-Based Radial p-n Junction Solar Cells. J. Phys. D Appl. Phys. 2014, 47, 065101; https://doi.org/10.1088/0022-3727/47/6/065101.Suche in Google Scholar
17. Ali, K.; Khan, S. A.; Matjafri, M. Z. Co γ-irradiation Effects on Electrical Characteristics of Monocrystalline Silicon Solar Cell. Int. J. Electrochem. Sci. 2013, 8, 7831; https://doi.org/10.1016/s1452-3981-23-12850-1.Suche in Google Scholar
18. Sinha, A.; Qian, J.; Moffitt, S. L.; Hurst, K.; Terwilliger, K.; Miller, D. C.; Schelhas, L. T.; Hacke, P. UV-induced Degradation of High-Efficiency Silicon PV Modules with Different Cell Architectures. Progress. Photovoltaics: Research. Applications 2023, 31, 36; https://doi.org/10.1002/pip.3606.Suche in Google Scholar
19. Yang, L.; Hu, Z.; He, Q.; Liu, Z.; Zeng, Y.; Yang, L.; Yu, X.; Yang, D. Insights into Mechanism of UV-induced Degradation in Silicon Heterojunction Solar Cells. Sol. Energy Mater. Sol. Cells 2024, 275, 113022; https://doi.org/10.1016/j.solmat.2024.113022.Suche in Google Scholar
20. Yang, J.; Tang, Y.; Zhou, C.; Chen, S.; Cheng, S.; Wang, L.; Zhou, S.; Jia, X.; Wang, W.; Xu, X.; Xiao, J.; Wei, W. Unveiling the Mechanism of Ultraviolet-Induced Degradation in Silicon Heterojunction Solar Cells. Sol. Energy Mater. Sol. Cells 2024, 276, 113062; https://doi.org/10.1016/j.solmat.2024.113062.Suche in Google Scholar
21. Arjhangmehr, A.; Feghhi, S. A. H. Displacement Damage Analysis and Modified Electrical Equivalent Circuit for Electron and Photon-Irradiated Silicon Solar Cells. Radiat. Eff. Defects Solids 2014, 169, 874; https://doi.org/10.1080/10420150.2014.958743.Suche in Google Scholar
22. Es, F.; Kulakci, M.; Turan, R. An Alternative Metal-Assisted Etching Route for Texturing Silicon Wafers for Solar Cell Applications. IEEE. J. Photovolt 2016, 6, 440; https://doi.org/10.1109/jphotov.2016.2520207.Suche in Google Scholar
23. Kulakci, M.; Es, F.; Ozdemir, B.; Unalan, H. E.; Turan, R. Application of Si Nanowires Fabricated by Metal-Assisted Etching to Crystalline Si Solar Cells. IEEE. J. Photovolt 2013, 3, 548; https://doi.org/10.1109/jphotov.2012.2228300.Suche in Google Scholar
24. Boztosun, I.; Ðapo, H.; Karakoç, M.; Özmen, S. F.; Çeçen, Y.; Çoban, A.; Caner, T.; Bayram, E.; Saito, T. R.; Akdoğan, T.; Bozkurt, V.; Kuçuk, Y.; Kaya, D.; Harakeh, M. N. Photonuclear Reactions with Zinc: a Case for Clinical Linacs. Eur. Phys. J. Plus 2015, 130, 185; https://doi.org/10.1140/epjp/i2015-15185-2.Suche in Google Scholar
25. Bodunrin, J. O.; Moloi, S. J. Suppression of Irradiation Effect on Electrical Properties of Silicon Diodes by Iron in p-Silicon. Radiat. Eff. Defects. Solids 2024, 180, 506; https://doi.org/10.1080/10420150.2024.2382269.Suche in Google Scholar
26. Oeba, D. A.; Bodunrin, J. O.; Moloi, S. J. Enhancing Radiation-Hardness of Si-Based Diodes: An Investigation of Al-doping Effects in Si Using I–V Measurements. Radiat. Phys. Chem. 2024, 223, 111873; https://doi.org/10.1016/j.radphyschem.2024.111873.Suche in Google Scholar
27. Giesecke, J. A.; Michl, B.; Schindler, F.; Schubert, M. C.; Warta, W. Minority Carrier Lifetime of Silicon Solar Cells from Quasi-Steady-State Photoluminescence. Sol. Energy. Mater. Sol. Cells 2011, 95, 1979; https://doi.org/10.1016/j.solmat.2011.02.023.Suche in Google Scholar
28. Horiuchi, N.; Nozaki, T.; Chiba, A. Improvement in Electrical Performance of Radiation-Damaged Silicon Solar Cells by Annealing. Nucl. Instrum. Methods. Physi. Res. A 2000, 443, 186; https://doi.org/10.1016/s0168-9002-99-01013-x.Suche in Google Scholar
29. Zdravković, M. R.; Vasić, A. I.; Radosavljević, R. L.; Vujisić, M. L.; Osmokrović, P. V. Influence of Radiation on the Properties of Solar Cells. Nucl. Technol. Radiat. Protec 2011, 26, 158; https://doi.org/10.2298/ntrp1102158z.Suche in Google Scholar
30. Srour, J. R.; McGarrity, J. M. Radiation Effects on Microelectronics in Space. Proceedings. of. the. IEEE 1988, 76, 1443; https://doi.org/10.1109/5.90114.Suche in Google Scholar
31. Messenger, S. R.; Summers, G. P.; Burke, E. A.; Walters, R. J.; Xapsos, M. A. Modeling Solar Cell Degradation in Space: a Comparison of the NRL Displacement Damage Dose and the JPL Equivalent Fluence Approaches. Progress. Photovoltaics: Research. Applications 2001, 9, 103; https://doi.org/10.1002/pip.357.Suche in Google Scholar
32. Kabacelik, I.; Kulakci, M. Observation of self-healing and blue response enhancement in c-Si solar cells exposed to electron irradiation. Radiat. Phys. Chem. 2026, 238, 113173; https://doi.org/10.1016/j.radphyschem.2025.113173.Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston