Startseite Investigating diffusion mechanism for HTO and Se(IV)/Se(VI) in compacted Tamusu clay rock with different column lengths
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigating diffusion mechanism for HTO and Se(IV)/Se(VI) in compacted Tamusu clay rock with different column lengths

  • Yuzhen Sun , Zhenxing Liu , Rongjing Tang , Chuan-Pin Lee , Zhifen Wang , Mingbiao Luo EMAIL logo , Rong Hua EMAIL logo , Qifeng Jiang und Xuebin Su
Veröffentlicht/Copyright: 6. September 2022

Abstract

Due to continuous self-sealing and good mechanical properties, the Tamusu clay rock of Inner Mongolia has been identified as the pre-selected site for high-level radioactive waste geological disposal site in China. The study of chemical behaviors related to Tamusu clay rock, such as nuclide migration, will be an important content of the performance assessment and safety assessment of the disposal repository in the future. The diffusion behavior of HTO and Se(IV)/Se(VI) with different compacted column lengths in Tamusu clay rock is discussed by the through-diffusion method. The diffusion coefficient, rock capacity factor, effective porosity, and other diffusion parameters closely related to nuclide migration are calculated, and the mechanism of nuclide diffusion is preliminarily discussed. The results show that D a (6.23 × 10−11∼17.96 × 10−11 m2 s−1), D e (1.62 × 10−11∼4.67 × 10−11 m2 s−1) for HTO increase with the increase of the compacted column length, and it is proposed that the diffusion process of HTO is affected by the change of geometrical factor and path tortuosity. D a (7.29 × 10−13∼1.74 × 10−13 m2 s−1), D e (5.15 × 10−12∼2.15 × 10−12 m2 s−1) for Se(IV), D a (3.11 × 10−12∼1.09 × 10−12 m2 s−1), D e (2.53 × 10−12∼1.09 × 10−12 m2 s−1) for Se(VI), which decrease with the increase of the compacted column length, it is mainly due to the existence of anion repulsion effect.


Corresponding authors: Mingbiao Luo, State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China, E-mail: ; and Rong Hua, College of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, Jiangxi, China, E-mail:
Yuzhen Sun and Zhenxing Liu contributed equally to this work.
  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research is supported by grants from China National Uranium Co., Ltd.-State Key Laboratory of Nuclear Resources and Environment (East China University of Technology) Joint innovation fund project (2022NRE-LH-15), the Nuclear Energy Development Project (technology for the mining and metallurgy of associated uranium resources – on the demonstration of uranium co-mining in Bayan Ura, Inner Mongolia).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Chen, Z. Y., Wang, S. Y., Hou, H. J., Chen, K., Gao, P. Y., Zhang, Z., Jin, Q., Pan, D. Q., Guo, Z. J., Wu, W. S. China’s progress in radionuclide migration study over the past decade (2010–2021): sorption, transport and radioactive colloid. Chin. Chem. Lett. 2022, 7, 3405–3412; https://doi.org/10.1016/j.cclet.2022.02.054.Suche in Google Scholar

2. China Nuclear Energy Association (China Nuclear Power Evaluation Department). National Nuclear Power Operation (January-March 2022), Nuclear Power Information Release, 2022. http://www.china-nea.cn/site/content/40689.html.Suche in Google Scholar

3. Xiang, L., Liu, X. D., Liu, P. H., Jiang, X. F., Dai, C. C. Mineralogical and hydraulic characteristics of mudstone in the Tamusu candidate area in northwest China for high-level radioactive waste geological disposal. Clay Miner. 2020, 55, 71–82; https://doi.org/10.1180/clm.2020.12.Suche in Google Scholar

4. Lu, C., Yu, H. D., Li, H. H., Chen, W. Z. Experimental study on the physico-mechanical properties of Tamusu mudstone – a potential host rock for high-level radioactive waste in Inner Mongolia of China. J. Rock Mech. Geotech. 2021; https://doi.org/10.1016/j.jrmge.2021.12.016.Suche in Google Scholar

5. Liang, H. A., Hu, Q. B., Wang, Y., Chen, H. K., Zhang, L. P., Liu, C. Study on hydro-mechanical coupling properties of clay rock in Tamusu - the pre-selected area of high-level radioactive waste repository. IOP Conf. Ser. Earth Environ. Sci. 2019, 358, 1–8; https://doi.org/10.1088/1755-1315/358/2/022020.Suche in Google Scholar

6. Rao, Z., Li, G. R., Liu, X. D., Liu, P. H., Li, H. H., Liu, S., Zhu, M. Q., Guo, C., Li, F. J., Gong, Z. J., Asghar, F. Fault activity in clay rock site candidate of high-level radioactive waste repository, Tamusu, inner Mongolia. Minerals 2021, 11, 941; https://doi.org/10.3390/min11090941.Suche in Google Scholar

7. Jorg, G., Buhnemann, R., Hollas, S., Kivel, N., Kossert, K., Van Winckel, S., V. Gostomsk, C. L. Preparation of radiochemically pure Se-79 and highly precise determination of its half-life. Appl. Radiat. Isot. 2010, 68, 2339–2351; https://doi.org/10.1016/j.apradiso.2010.05.006.Suche in Google Scholar PubMed

8. Vogel, M., Fischer, S., Maffert, A., Hübner, R., Scheinost, A. C., Franzen, C., Steudtner, R. Biotransformation and detoxification of selenite by microbial biogenesis of selenium-sulfur nanoparticles. J. Hazard Mater. 2018, 344, 749–757; https://doi.org/10.1016/j.jhazmat.2017.10.034.Suche in Google Scholar PubMed

9. Ullah, H., Liu, G. J., Yousaf, B., Ubaid Ali, M., Irshad, S., Abbas, Q., Ahmad, R. A comprehensive review on environmental transformation of selenium: recent advances and research perspectives. Environ. Geochem. Hlth. 2019, 41, 1003–1035; https://doi.org/10.1007/s10653-018-0195-8.Suche in Google Scholar PubMed

10. Zhong, X. L., Gan, Y. Q., Deng, Y. M. Distribution, origin and speciation of soil selenium in the black soil region of Northeast China. Environ. Geochem. Hlth. 2021, 43, 1257–1271; https://doi.org/10.1007/s10653-020-00691-3.Suche in Google Scholar PubMed

11. Li, R., Yang, J. Q., Sun, X. J., Shi, K. L., Wu, W. S. Analytical methods of Selenite(IV)/Selenate(VI) in environmental water samples: a review. Environ. Chem. 2017, 36, 939–950; https://doi.org/10.7524/j.issn.0254-6108.2017.05.2016111302.Suche in Google Scholar

12. Lee, C. P., Hu, Y. Q., Tien, N. C., Tsai, S. C., Shi, Y. F., Liu, W. G., Kong, J., Sun, Y. Z. Molecule diffusion behavior of tritium and selenium in Mongolia clay rock by numerical analysis of the spatial and temporal variation. Minerals 2021, 11, 875; https://doi.org/10.3390/min11080875.Suche in Google Scholar

13. Wu, T., Wang, H., Zheng, Q., Zhao, Y. L., Luc, R. V. L. Diffusion behavior of Se(IV) and Re(VII) in GMZ bentonite. Appl. Clay Sci. 2014, 101, 136–140; https://doi.org/10.1016/j.clay.2014.07.028.Suche in Google Scholar

14. Wu, T., Wang, Z. F., Wang, H., Zhang, Z. Q., Luc, R. V. L. Salt effects on Re(VII) and Se(IV) diffusion in bentonite[J]. Appl. Clay Sci. 2017, 141, 104–110; https://doi.org/10.1016/j.clay.2017.02.021.Suche in Google Scholar

15. He, H. Y., Liu, J., Dong, Y., Li, H. H., Zhao, S. W., Wang, J., Jia, M. L., Zhang, H., Liao, J. L., Yang, J. J., Yang, Y. Y., Liu, N. Sorption of selenite on Tamusu clay in simulated groundwater with high salinity under aerobic/anaerobic conditions. J. Environ. Radioact. 2019, 203, 210–219; https://doi.org/10.1016/j.jenvrad.2019.03.020.Suche in Google Scholar PubMed

16. Sun, Y. Z., Zhang, H., Lee, C. P., Luo, M. B., Hua, R., Liu, W. G., Kong, J., Hu, Y. Q. Diffusion behavior of Se(IV) in Tamusu clayrock core by through-diffusion method. J. Radioanal. Nucl. Chem. 2021, 329, 149–158; https://doi.org/10.1007/s10967-021-07780-2.Suche in Google Scholar

17. Wang, Z. F., Wu, T., Ren, P., Hua, R., Wu, H., Xu, M. H., Tong, Y. H. Through-diffusion study of Se(IV) in γ-irradiated bentonite and bentonite–magnetite. J. Radioanal. Nucl. Chem. 2019, 322, 801–808; https://doi.org/10.1007/s10967-019-06802-4.Suche in Google Scholar

18. Wang, Z. F., Wang, H., Li, Q. M., Xu, M. H., Guo, Y. H., Li, J. Y., Wu, T. pH effect on Re(VII) and Se(IV) diffusion in compacted GMZ bentonite. Appl. Geochem. 2016, 73, 1–7; https://doi.org/10.1016/j.apgeochem.2016.07.015.Suche in Google Scholar

19. Jan, Y. L., Tsai, S. H., Li, Y. Y. Determination of sorption and diffusion parameters of Se(IV) on crushed granite. J. Radioanal. Nucl. Chem. 2014, 301, 365–371; https://doi.org/10.1007/s10967-014-3177-z.Suche in Google Scholar

20. Kong, J., Lee, C. P., Sun, Y. Z., Hua, R., Liu, W. G., Wang, Z. F., Li, Y., Wang, Y. D. Anion exclusion and sorption effect for compacted bentonite: the dependency of diffusion coeffcients and capacity of HTO and Se(IV). J. Radioanal. Nucl. Chem. 2021, 328, 717–725; https://doi.org/10.1007/s10967-021-07688-x.Suche in Google Scholar

21. Lida, Y., Yamaguchi, T., Tanaka, T. Experimental and modeling study on diffusion of selenium under variable bentonite content and porewater salinity. J. Nucl. Sci. Technol. 2011, 48, 1170–1183; https://doi.org/10.1080/18811248.2011.9711805.Suche in Google Scholar

22. Rojo, I., Rovira, M., De Pablo, J. Selenate diffusion through mortar and concrete. Environ. Eng. Sci. 2014, 31, 469–473; https://doi.org/10.1089/ees.2014.0037.Suche in Google Scholar

23. Constantino, L. V., Quirino, J. N., Monteiro, A. M., Abrão, T., Parreira, P. S., Urbano, A., Santos, M. J. Sorption-desorption of selenite and selenate on Mg-Al layered double hydroxide in competition with nitrate, sulfate and phosphate. Chemosphere 2017, 181, 627–634; https://doi.org/10.1016/j.chemosphere.2017.04.071.Suche in Google Scholar PubMed

24. Bonhoure, I., Baur, I., Wieland, E., Johnson, C. A., Scheidegger, A. M. Uptake of Se(IV/VI) oxyanions by hardened cement paste and cement minerals: an X-ray absorption spectroscopy study. Cement Concr. Res. 2006, 36, 91–98; https://doi.org/10.1016/j.cemconres.2005.05.003.Suche in Google Scholar

25. Wang, J., Zhang, W. M., Xu, W. D., Zhang, Q. L., Li, X. M., He, X. H. The research of groundwater chemical and isotopes characteristics in Suhongtu, primary area for high level radioactive waste disposal repository. In Proceedings of the 7th Symposium on Underground Waste Disposal, China Atomic Energy publishing media Co., Ltd: Shanghai, China, 2018; pp. 188–194.Suche in Google Scholar

26. García, G. M., Cormenzana, J. L., Missana, T., Mingarro, M., Molinero, J. Overview of laboratory methods employed for obtaining diffusion coefficients in FEBEX compacted bentonite. J. Iber. Geol. 2006, 32, 37–53. www.ucm.es/info/estratig/journal.htm.Suche in Google Scholar

27. Wang, B. T., Lee, C. P., Wu, M. C., Tsai, T. L., Tsai, S. C., Hsu, K. C. Novel method for analyzing transport parameters in through-diffusion tests. J. Environ. Radioact. 2019, 196, 125–132; https://doi.org/10.1016/j.jenvrad.2018.11.004.Suche in Google Scholar PubMed

28. Liu, Z. X., Sun, Y. Z., Kong, J., Lee, C. P., Hua, R., Liu, W. G., Wang, Z. F., Jiang, Q. F., Li, B. P. A sensitive improved method for analyzing diffusion coefficients of Cs in compacted bentonite with different lengths. Radiochim. Acta 2022, 110, 363–372; https://doi.org/10.1515/ract-2022-0007.Suche in Google Scholar

29. Zhang, Y. D. Study On Clay Formation of Upper Bayingebi Formation in Tamusu Candidate Area—High-Level Radioactive Waste Disposal Repository; East China Institute of Technology: China, Nanchang, 2016. https://cdmd. cnki.com.cn/Article/CDMD-10405-1016758520.htm.Suche in Google Scholar

30. Rao, G. W. Study On Characteristic of Surrounding Rock of High-Level Radioactive Waste Geological Disposal Reservoir: A Case Study of Mudstone in the Upper Part of the BayinGobi Formation in the Preselected Area of Tamusu in Inner Mongolia; East China Institute of Technology: China, Nanchang, 2018. https://cdmd.cnki.com.cn/Article/CDMD-10405-1018839924.htm.Suche in Google Scholar

31. Feng, W. L. Characteristics and Origin of Clay Minerals in the Sandstone of Taiyuan Formation, Northeastern Ordos Basin; Chengdu University of Technology: China, Chengdu, 2009. https://cdmd.cnki.com.cn/Article/CDMD-10616-2009221202.htm.Suche in Google Scholar

32. Han, D. S., Batchelor, B., Abdel-Wahab, A. XPS analysis of sorption of selenium(IV) and selenium(VI) to mackinawite (FeS). Environ. Prog. Sustain. 2011, 0, 1–10; https://doi.org/10.1002/ep.10609.Suche in Google Scholar

33. He, J. G., Ma, B., Kang, M. L., Wang, C. L., Nie, Z., Liu, C. L. Migration of 75Se(IV) in crushed Beishan granite: effects of the iron content. J. Hazard Mater. 2017, 324, 564–572; https://doi.org/10.1016/j.jhazmat.2016.11.027.Suche in Google Scholar PubMed

34. Li, S. F., Lu, F., Yao, S. H., Zang, S. Y. Comparison of selenate and selenite adsorption from aqueous solutions on the mesoporous goethite: kinetics, equilibrium and mechanism. Desalin. Water Treat. 2021, 218, 220–229; https://doi.org/10.5004/dwt.2021.26938.Suche in Google Scholar

35. Tachi, Y. K., Yotsuji, K. J. Diffusion and sorption of Cs+, Na+, I- and HTO in compacted sodium montmorillonite as a function of pore water salinity: integrated sorption and diffusion model. Geochem. Cosmochim. Acta 2014, 132, 75–93; https://doi.org/10.1016/j.gca.2014.02.004.Suche in Google Scholar

36. Brakel, J. V., Heertjes, P. M. Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor. Int. J. Heat Mass Tran. 1974, 17, 1093–1103; https://doi.org/10.1016/0017-9310(74)90190-2.Suche in Google Scholar

37. Sato, H., Miyamoto, S. Diffusion behavior of selenite and hydroselenide in compacted bentonite. Appl. Clay Sci. 2004, 26, 47–55; https://doi.org/10.1016/j.clay.2003.10.007.Suche in Google Scholar

38. Molera, M., Eriksen, T. Diffusion of 22Na+, 85Sr2+, 134Cs+ and 57Co2+ in bentonite clay compacted to different densities: experiments and modeling. Radiochim. Acta 2002, 90, 753–760; https://doi.org/10.1524/ract.2002.90.9-11_2002.753.Suche in Google Scholar

39. Zhang, H. Diffusion and Adsorption of Re(VII) and Se(IV) in Tamusu Clay Rock; East China Institute of Technology: China, Nanchang, 2019.Suche in Google Scholar

40. Sylvain, G., Nicolas, C. M. M., Nicolas, M., Fabienne, W., Francis, C. Selenate sorption by Hydrated Calcium Aluminate (AFm): evidence for sorption reversibility and implication for the modeling of anion retention. ACS Earth Space Chem 2020, 4, 229–240; https://doi.org/10.1021/acsearthspacechem.9b00286.Suche in Google Scholar

Received: 2022-07-09
Accepted: 2022-08-16
Published Online: 2022-09-06
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2022-0070/html
Button zum nach oben scrollen