Abstract
Due to the relative abundance, long half-life and high mobility of radioactive cesium (Cs), new adsorbents are urgently needed to treat Cs to ensure public health. In this study, a graphene oxide (GO) based adsorbent for Cs(I) adsorption was prepared by 1-aza-18-crown-6 ether modification. XRD, FT-IR, XPS and SEM results showed that the properties of 1-aza-18-crown 6 ether modified GO (18C6-GO) changed dramatically compared with that of raw graphite. The adsorption properties of 18C6-GO for Cs(I) were studied by batch static adsorption experiments. The results showed that the adsorption equilibrium time of 18C6-GO was 20 h. Kinetic study revealed that the adsorption rate of Cs(I) conformed to pseudo-second-order kinetic model. Langmuir adsorption isotherm simulation indicated that the adsorption arises at homogeneous adsorption sites on 18C6-GO. Therefore, crown ether modified GO may have implications for the treatment of wastewater.
Funding source: Yantai Science and technology planning project
Award Identifier / Grant number: 2021MSGY029
Funding source: University and Local Integration Development Project of Yantai
Award Identifier / Grant number: 2020XDRHXMPT36
Funding source: Academic-Industry Partnership Fund
Award Identifier / Grant number: 210F0401006
Funding source: Yantai New Growth Drivers Fund
Award Identifier / Grant number: (YTDNY20220425-02)
Acknowledgments
The authors are grateful for all your support.
- 
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission. 
- 
Research funding: This work was financially supported by the Yantai Science and technology planning project (2021MSGY029), the University and Local Integration Development Project of Yantai (2020XDRHXMPT36), and the Academic-Industry Partnership Fund (210F0401006), the Yantai New Growth Drivers Fund (YTDNY20220425-02). 
- 
Conflict of interest statement: The authors declare no conflicts of interest regarding this article. 
References
1. Chen, Z., Zhao, Y., Tong, D., Nie, S., Wang, Q., Nie, X., Ji, Z. Chem. Phys. 2021, 553, 111380.10.1016/j.chemphys.2021.111380Suche in Google Scholar
2. Park, B., Ghoreishian, S. M., Kim, Y., Park, B. J., Kang, S. M., Huh, Y. S. Chemosphere 2020, 263, 128266; https://doi.org/10.1016/j.chemosphere.2020.128266.Suche in Google Scholar PubMed
3. Awual, M. R., Yaita, T., Taguchi, T., Shiwaku, H., Suzuki, S., Okamoto, Y. J. Hazard Mater. 2014, 278, 227–235; https://doi.org/10.1016/j.jhazmat.2014.06.011.Suche in Google Scholar PubMed
4. Falyouna, O., Eljamal, O., Maamoun, I., Tahara, A., Sugihara, Y. J. Colloid Interface Sci. 2020, 571, 66–79; https://doi.org/10.1016/j.jcis.2020.03.028.Suche in Google Scholar PubMed
5. Lizaga, I., Gaspar, L., Quijano, L., Dercon, G., Navas, A. Sci. Total Environ. 2019, 651, 250–260; https://doi.org/10.1016/j.scitotenv.2018.09.075.Suche in Google Scholar PubMed
6. Sharavanan, V. J., Sivaramakrishnan, M., Sivarajasekar, N., Senthilrani, N., Kothandan, R., Dhakal, N., Sivamani, S., Show, P. L., Awual, M. R., Naushad, M. Environ. Chem. Lett. 2020, 18, 325–343; https://doi.org/10.1007/s10311-019-00944-3.Suche in Google Scholar
7. Hasan, M. N., Shenashen, M. A., Hasan, M. M., Znad, H., Awual, M. R. Chemosphere 2021, 270, 128668; https://doi.org/10.1016/j.chemosphere.2020.128668.Suche in Google Scholar PubMed
8. Strickland, E. IEEE Spectrum 2014, 51, 46–53; https://doi.org/10.1109/mspec.2014.6745884.Suche in Google Scholar
9. Chen, G. R., Chang, Y. R., Liu, X., Kawamoto, T., Tanaka, H., Parajuli, D., Chen, M. L., Lo, Y. K., Lei, Z., Lee, D. J. Separ. Purif. Technol. 2015, 153, 37–42; https://doi.org/10.1016/j.seppur.2015.08.029.Suche in Google Scholar
10. Borai, E. H., Harjula, R., Malinen, L., Paajanen, A. J. Hazard Mater. 2009, 172, 416–422; https://doi.org/10.1016/j.jhazmat.2009.07.033.Suche in Google Scholar PubMed
11. Duste, T. A., Szymanowski, J., Fein, J. B. Environ. Sci. Technol. 2017, 51, 8510–8518.10.1021/acs.est.6b05776Suche in Google Scholar PubMed
12. Bao, S., Yang, W., Wang, Y., Yu, Y., Sun, Y. J. Hazard Mater. 2020, 409, 124470.10.1016/j.jhazmat.2020.124470Suche in Google Scholar PubMed
13. Qiao, D., Li, Z., Duan, J., He, X. Chem. Eng. J. 2020, 400, 125952; https://doi.org/10.1016/j.cej.2020.125952.Suche in Google Scholar
14. Shamsipur, M., Taherpour, A., Pashabadi, A. Analyst 2016, 141, 4227–4234; https://doi.org/10.1039/c6an00592f.Suche in Google Scholar PubMed
15. Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. B. T., Ruoff, R. S. Carbon 2007, 45, 1558–1565; https://doi.org/10.1016/j.carbon.2007.02.034.Suche in Google Scholar
16. Zhang, H., Huang, Z., Zhao, P., Hou, Y., Guo, J., Wu, Y. Mater. Res. Express 2019, 6, 125095; https://doi.org/10.1088/2053-1591/ab5d65.Suche in Google Scholar
17. Restiawaty, E., Maulana, A., Culsum, N., Aslan, C., Suendo, V., Nishiyama, N., Budhi, Y. W. RSC Adv. 2021, 11, 16500–16509; https://doi.org/10.1039/d1ra00704a.Suche in Google Scholar PubMed PubMed Central
18. Wang, J., Han, Z. Polym. Adv. Technol. 2010, 17, 335–340; https://doi.org/10.1002/pat.698.Suche in Google Scholar
19. Li, S., Yang, P., Liu, X., Zhang, J., Xie, W., Wang, C., Liu, C., Guo, Z. J. Mater. Chem. 2019, 7, 16902–16911; https://doi.org/10.1039/c9ta04562g.Suche in Google Scholar
20. Acik, M., Lee, G., Mattevi, C., Chhowalla, M., Cho, K., Chabal, Y. J. Nat. Mater. 2010, 9, 840–845; https://doi.org/10.1038/nmat2858.Suche in Google Scholar PubMed
21. Pham, V. H., Cuong, T. V., Hur, S. H., Oh, E., Kim, E. J., Shin, E. W., Chung, J. S J. Mater. Chem. 2011, 21, 3371–3377; https://doi.org/10.1039/c0jm02790a.Suche in Google Scholar
22. Khandaker, S., Kuba, T., Toyohara, Y., Kamida, S. Earth Environ. Sci. 2017, 82, 012001; https://doi.org/10.1088/1755-1315/82/1/012002.Suche in Google Scholar
23. Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Booth, T. J., Roth, S. Nature 2007, 446, 60–63; https://doi.org/10.1038/nature05545.Suche in Google Scholar PubMed
24. Sun, Y., Yang, S., Chen, Y., Ding, C., Cheng, W., Wang, X. Environ. Sci. Technol. 2015, 49, 4255–4262; https://doi.org/10.1021/es505590j.Suche in Google Scholar PubMed
25. Xing, M., Zhuang, S., Wang, J. Prog. Nucl. Energy 2019, 119, 103167.10.1016/j.pnucene.2019.103167Suche in Google Scholar
26. Tan, L., Wang, S., Du, W., Hu, T. Chem. Eng. J. 2016, 292, 92–97; https://doi.org/10.1016/j.cej.2016.01.073.Suche in Google Scholar
27. Li, S., Yang, P., Liu, X., Zhang, J., Xie, W., Wang, C., Liu, C., Guo, Z. J. Mater. Chem. 2019, 7, 16902–16911; https://doi.org/10.1039/c9ta04562g.Suche in Google Scholar
28. Yuan, L. Y., Gao, G., Feng, C. Q., Chai, Z. F., Shi, W. Q. Chem. Eng. J. 2020, 385, 123892; https://doi.org/10.1016/j.cej.2019.123892.Suche in Google Scholar
29. Khandaker, K., Toyohara, T., Kamida, S., Kuba, T. Water Resour. Ind. 2018, 19, 35–46; https://doi.org/10.1016/j.wri.2018.01.001.Suche in Google Scholar
30. Sugiura, Y., Saito, Y., Endo, T., Makita, Y. Cryst. Growth Des. 2019, 19, 4162–4171; https://doi.org/10.1021/acs.cgd.9b00656.Suche in Google Scholar
31. Awual, M. R., Yaita, T., Kobayashi, T., Shiwaku, H., Suzuki, S. J. Environ. Chem. Eng. 2020, 8, 103684; https://doi.org/10.1016/j.jece.2020.103684.Suche in Google Scholar
32. Awual, M. R., Yaita, T., Taguchi, T., Shiwaku, H., Suzuki, S., Okamoto, Y. J. Hazard Mater. 2014, 278, 227–235; https://doi.org/10.1016/j.jhazmat.2014.06.011.Suche in Google Scholar PubMed
33. Awual, M. R. Chem. Eng. J. 2016, 303, 539–546; https://doi.org/10.1016/j.cej.2016.06.040.Suche in Google Scholar
34. Qian, Y., Yuan, Y., Wang, H., Liu, H., Zhang, J., Shi, S., Guo, Z., Wang, N. J. Mater. Chem. 2018, 6, 24676–24685; https://doi.org/10.1039/c8ta09486a.Suche in Google Scholar
35. Yang, H., Ding, H., Zhang, X., Luo, X., Zhang, Y. Colloids Surf., A 2019, 583, 123914; https://doi.org/10.1016/j.colsurfa.2019.123914.Suche in Google Scholar
36. Hasan, M. N., Shenashen, M. A., Hasan, M. M., Znad, H., Awual, R. Chemosphere 2021, 270, 128668; https://doi.org/10.1016/j.chemosphere.2020.128668.Suche in Google Scholar PubMed
37. Freundlich, H. M. F. Z. Phys. Chem. 1906, 57, 385–470.10.1515/zpch-1907-5723Suche in Google Scholar
38. Pillai, S. S., Mullassery, M. D., Fernandez, N. B., Girija, N., Geetha, P., Koshy, M. Ecotoxicol. Environ. Saf. 2013, 92, 199–205; https://doi.org/10.1016/j.ecoenv.2013.01.020.Suche in Google Scholar PubMed
39. Temkin, M. J., Pyzhev, V. Acta Physiochim. USSR 1940, 12, 217–222.Suche in Google Scholar
40. Dubinin, M. M., Radushkevich, L. V. Chem. Zent 1947, 1, 875.Suche in Google Scholar
41. Helfferich, F. Ion Exchange; McGraw-Hill: New York, 1962.Suche in Google Scholar
42. Li, N., Yang, L., Wang, D., Tang, C., Deng, W., Wang, Z. Environ. Sci. Technol. 2021, 55, 9181–9188; https://doi.org/10.1021/acs.est.0c08743.Suche in Google Scholar PubMed
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review
- Progress in solid state and coordination chemistry of actinides in China
- Original Papers
- Np(V) dicyanamide complexes with electroneutral N-donor ligands
- Comparison of the performance of solvent wash reagents used for the primary cleanup of degraded PUREX solvent
- 1-aza-18-crown-6 ether tailored graphene oxide for Cs(I) removal from wastewater
- Evaluation of nuclear data analysis techniques for volume fraction prediction in the flow meter
Artikel in diesem Heft
- Frontmatter
- Review
- Progress in solid state and coordination chemistry of actinides in China
- Original Papers
- Np(V) dicyanamide complexes with electroneutral N-donor ligands
- Comparison of the performance of solvent wash reagents used for the primary cleanup of degraded PUREX solvent
- 1-aza-18-crown-6 ether tailored graphene oxide for Cs(I) removal from wastewater
- Evaluation of nuclear data analysis techniques for volume fraction prediction in the flow meter