Startseite Ion beam activation of natCu, natTi, natNi and measurement of product formation cross sections at low energy (<10 MeV)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ion beam activation of natCu, natTi, natNi and measurement of product formation cross sections at low energy (<10 MeV)

  • Mahwish Anwer , Anam Naz , Ishaq Ahmad , Muhammad Usman , Javed Hussain , Syed Zafar Ilyas und Muhammad Shahid EMAIL logo
Veröffentlicht/Copyright: 23. Mai 2022

Abstract

In this study we investigated the production cross sections of natCu(p, x)63,65Zn, natTi(p, x)48V, natNi(p, x)55Co,61Cu and natCu(α, x)66,67,68Ga, natTi(α, x)49,51Cr, natNi(α, x)63,65Zn reactions in the low energy range using the foil activation technique. The samples were activated in vacuum at 5 MV tandem (Pelletron) accelerator installed at National Centre for Physics (NCP), Islamabad, Pakistan. The reaction products were identified with the help of off-line gamma ray spectroscopy system connected with Genie 2000 software. The data analysis revealed the production of different radioisotopes that have valuable importance in monitoring charged-particle beams and medical applications. The measured results were verified by comparing them with earlier evaluated data as well as with the theoretical values given in the TENDL-library based on TALYS-1.9 code calculations.


Corresponding author: Muhammad Shahid, National Institute of Safety and Security, Pakistan Nuclear Regulatory Authority, G-8/1, P.O. Box No. 1912, Islamabad, 44080, Pakistan, E-mail:

Acknowledgments

The authors feels grateful for the joint collaboration between Allama Iqbal Open University, (Physics Department) Islamabad, Pakistan and National Centre for Physics, (Experimental Physics Department) in the field of research. The dedicated support of the directors of both institutes and of other technical and supporting staff made it possible to successfully reach the first milestone. There are many others who supported in the activation of the samples, analysis and provision of resources; they also deserve thank and gratitude. The technical advice and strong editorial support of Prof. Dr. Syed M. Qaim from Germany is gratefully acknowledged.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Clayton, D. D., Woosley, S. E. Thermonuclear astrophysics. Rev. Mod. Phys. 1974, 46, 755; https://doi.org/10.1103/revmodphys.46.755.Suche in Google Scholar

2. Sauter, T., Käppeler, F. (p, γ) rate of 92Mo, 94Mo, 95Mo, 98Mo: towards an experimentally founded database for p-process studies. Phys. Rev. C 1997, 55, 3127; https://doi.org/10.1103/physrevc.55.3127.Suche in Google Scholar

3. Uddin, M. S., Sudár, S., Spahn, I., Shariff, M. A., Qaim, S. M. Excitation function of the 60Ni(p, γ)61Cu reaction from threshold to 16 MeV. Phys. Rev. C 2016, 93, 044606.10.1103/PhysRevC.93.044606Suche in Google Scholar

4. Basunia, M. S., Norman, E. B., Shugart, H. A., Smith, A. R., Dolinski, M. J., Quiter, B. J. Measurement of cross sections for the 63Cu(α, γ)67Ga reaction from 5.9 to 8.7 MeV. Phys. Rev. C 2005, 71, 035801.10.1063/1.1945258Suche in Google Scholar

5. Quinn, S. J., Spyrou, A., Bravo, E., Rauscher, T., Simon, A., Battaglia, A., Bowers, M., Bucher, B., Casarella, C., Couder, M., DeYoung, P. A., Dombos, A. C., Görres, J., Kontos, A., Li, Q., Long, A., Moran, M., Paul, N., Pereira, J., Robertson, D., Smith, K., Smith, M. K., Stech, E., Talwar, R., Tan, W. P., Wiescher, M. Measurement of the 58Ni(α, γ)62Zn reaction and its astrophysical impact. Phys. Rev. C 2014, 89, 054611; https://doi.org/10.1103/physrevc.89.054611.Suche in Google Scholar

6. Qaim, S. M. Nuclear data for medical applications: an overview. Radiochim. Acta 2001, 89, 189; https://doi.org/10.1524/ract.2001.89.4-5.189.Suche in Google Scholar

7. Qaim, S. M. Radiochemical determination of nuclear data for theory and applications. J. Radioanal. Nucl. Chem. 2010, 284, 489; https://doi.org/10.1007/s10967-010-0460-5.Suche in Google Scholar

8. Uddin, M. S., Scholten, B., Basunia, M. S., Sudár, S., Spellerberg, S., Voyles, A. S., Morrell, J. T., Zaneb, H., Rios, J. A., Spahn, I., Bernstein, L. A., Neumaier, B., Qaim, S. M. Accurate determination of production data of the non-standard positron emitter 86Y via the 86Sr(p, n) reaction. Radiochim. Acta 2020, 108, 747; https://doi.org/10.1515/ract-2020-0021.Suche in Google Scholar

9. Stöcklin, G., Qaim, S. M., Rösch, F. The impact of radioactivity on medicine. Radiochim. Acta 1995, 70–71, 249.10.1524/ract.1995.7071.special-issue.249Suche in Google Scholar

10. Qaim, S. M. Therapeutic radionuclides and nuclear data. Radiochim. Acta 2001, 89, 297; https://doi.org/10.1524/ract.2001.89.4-5.297.Suche in Google Scholar

11. Qaim, S. M. Development of novel positron emitters for medical applications: nuclear and radiochemical aspects. Radiochim. Acta 2011, 99, 611; https://doi.org/10.1524/ract.2011.1870.Suche in Google Scholar

12. Qaim, S. M. Nuclear data for medical radionuclides. J. Radioanal. Nucl. Chem. 2015, 305, 233.10.1007/s10967-014-3923-2Suche in Google Scholar

13. Qaim, S. M. Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl. Med. Biol. 2017, 44, 31; https://doi.org/10.1016/j.nucmedbio.2016.08.016.Suche in Google Scholar PubMed

14. Tárkányi, F., Ditroi, F., Takács, S., Csikai, J., Hermanne, A., Uddin, M. S., Baba, M. Activation cross- sections of proton induced nuclear reactions on palladium up to 80 MeV. Appl. Radiat. Isot. 2016, 114, 128.10.1016/j.apradiso.2016.05.022Suche in Google Scholar

15. Charged Particle Cross Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions, TECDOC-1211; International Atomic Energy Agency: Vienna, 2001.Suche in Google Scholar

16. Hermanne, A., Ignatyuk, A. V., Capote, R., Carlson, B. V., Engle, J. W., Kellett, M. A., Verpelli, M. Reference cross sections for charged-particle monitor reactions. Nucl. Data Sheets 2018, 148, 382; https://doi.org/10.1016/j.nds.2018.02.009.Suche in Google Scholar

17. Uddin, M. S., Chakraborty, A. K., Spellerberg, S., Shariff, M. A., Das, S., Rashid, M. A., Qaim, S. M. Experimental determination of proton induced reaction cross sections on natNi near threshold energy. Radiochim. Acta 2016, 104, 305; https://doi.org/10.1515/ract-2015-2527.Suche in Google Scholar

18. Qaim, S. M., Hussain, M., Spahn, I., Neumaier, B. Continuing nuclear data research for production of accelerator-based novel radionuclides for medical use: mini-review. Front. Phys. 2021, 9, 639290; https://doi.org/10.3389/fphy.2021.639290.Suche in Google Scholar

19. Ali, A., Javaid, H., Usman, M., Waheed, A., Kashif, S., Turab, A., Ishaq, A., Maaza, M. The charge state distribution of B, C, Si, Ni, Cu and Au ions on 5 MV pelletron accelerator. Nucl. Sci. Tech. 2017, 28, 64.10.1007/s41365-017-0211-1Suche in Google Scholar

20. National Nuclear Data Center; Brookhaven National Laboratory, 2013. http://www.nndc.bnl.gov/.Suche in Google Scholar

21. Los Alamos National Laboratory – Copper. http://periodic.lanl.gov/elements/29.html.Suche in Google Scholar

22. Los Alamos National Laboratory – Nickel. http://periodic.lanl.gov/elements/28.html.Suche in Google Scholar

23. Los Alamos National Laboratory – Titanium. https://periodic.lanl.gov/22.shtml.Suche in Google Scholar

24. Sangsingkeow, P., Berry, K. D., Dumas, E. J., Raudorf, T. W., Underwood, T. A. Advances in germanium detector technology. Nucl. Instr. Meth. 2003, 505, 183; https://doi.org/10.1016/s0168-9002(03)01047-7.Suche in Google Scholar

25. Sonzogni, A. NuDat 2.8; National Nuclear Data Center, Brookhaven National Laboratory. https://www.nndc.bnl.gov/nudat2/.Suche in Google Scholar

26. Gilmore, G., Hemingway, J. D. Practical Gamma-Ray Spectrometry; John Wiley & Sons: England, 1995; p 17. Chapter 1.Suche in Google Scholar

27. Ziegler, J. F. SRIM. Nucl. Instr. Meth. A. 2004, 219–220, 1027. http://www.srim.org/.10.1016/j.nimb.2004.01.208Suche in Google Scholar

28. Koning, A. J., Rochman, D., Marck van der, S. C., Kopecky, J., Sublet, J. Ch., Pomp, S., Sjostrand, H., Forrest, R., Bauge, E., Henriksson, H., Cabellos, O., Goriely, S., Leppanen, J., Leeb, H., Plompen, A., Mills, R. TENDL-2017: TALYS-Based Evaluated Nuclear Data Library; Nuclear Research and Consultancy Group (NRG): Petten. https://tendl.web.psi.ch/tendl_2017/tendl2017.html.Suche in Google Scholar

29. Barrandon, J. N., Debrun, J. L., Kohn, A., Spear, R. H. Étude du dosage de Ti, V, Cr, Fe, Ni, Cu et Zn par activation avec des protons d’énergie limitée a 20 MeV. Nucl. Instr. Meth. 1975, 127, 269; https://doi.org/10.1016/0029-554x(75)90499-1.Suche in Google Scholar

30. Michel, R., Brinkmann, G. On the depth-dependent production of radionuclides (44≤ A≤ 59) by solar protons in extraterrestrial matter. J. Radioanal. Nucl. Chem. 1980, 59, 467; https://doi.org/10.1007/bf02517298.Suche in Google Scholar

31. Tárkányi, F., Szelecsenyi, F., Kopecky, P. Excitation functions of proton induced nuclear reactions on natural nickel for monitoring beam energy and intensity. Appl. Radiat. Isot. 1991, 42, 513.10.1016/0883-2889(91)90154-SSuche in Google Scholar

32. Al Saleh, F. S., Al Mugren, K. S., Azzam, A. Excitation functions of (p,x) reactions on natural nickel between proton energies of 2.7 and 27.5 MeV. Appl. Radiat. Isot. 2007, 65, 104; https://doi.org/10.1016/j.apradiso.2006.06.013.Suche in Google Scholar PubMed

33. Khandaker, M. U., Kim, K., Lee, M., Kim, K. S., Kim, G. Excitation functions of (p, x) reactions on natural nickel up to 40 MeV. Nucl. Instr. Meth. A. 2011, 269, 1140; https://doi.org/10.1016/j.nimb.2011.02.082.Suche in Google Scholar

34. Amjed, N., Tárkányi, F., Hermanne, A., Ditroi, F., Takács, S., Hussain, M. Activation cross sections of proton induced reactions on natNi up to 65 MeV. Appl. Radiat. Isot. 2014, 92, 73; https://doi.org/10.1016/j.apradiso.2014.06.008.Suche in Google Scholar PubMed

35. Hermanne, A., Adam, R. R., Tárkányi, F., Takács, S. Excitation functions of proton induced reactions on natOs up to 65 MeV: experiments and comparison with results from theoretical codes. Nucl. Instr. Meth. A 2015, 345, 58; https://doi.org/10.1016/j.nimb.2014.12.051.Suche in Google Scholar

36. Adel, D., Mohamed, G. Y., Yousef, Z., Abd El Wahab, M., Ditroi, F., Takács, S., Al-Abyad, M. Experimental investigation and theoretical evaluation of proton induced nuclear reactions on nickel. Appl. Radiat. Isot. 2020, 159, 109094; https://doi.org/10.1016/j.apradiso.2020.109094.Suche in Google Scholar PubMed

37. Tárkányi, F. T., Ignatyuk, A. V., Hermanne, A., Capote, R., Carlson, B. V., Engle, J. W., Kellett, M. A., Kibédi, T., Kim, G. N., Kondev, F. G., Hussain, M., Lebeda, O., Luca, A., Nagai, Y., Naik, H., Nichols, A. L., Nortier, F. M., Suryanarayana, S. V., Takács, S., Verpelli, M. Recommended nuclear data for medical radioisotope production: diagnostic positron emitters. J. Radioanal. Nucl. Chem. 2019, 319, 533.10.1007/s10967-018-6380-5Suche in Google Scholar

38. Reimer, P., Qaim, S. M. Excitation functions of proton induced reactions on highly enriched 58Ni with special relevance to the production of 55Co and 57Co. Radiochim. Acta 1998, 80, 113; https://doi.org/10.1524/ract.1998.80.3.113.Suche in Google Scholar

39. Badwar, S., Ghosh, R., Yerraguntla, S. S., Jyrwa, B. M., Lawriniang, B. M., Naik, H., Ganesan, S.: Measurements and uncertainty propagation for the natNi(p, x)61Cu reaction cross sections up to the proton energies of 20 MeV. Nucl. Phy. A. 2018, 977, 112; https://doi.org/10.1016/j.nuclphysa.2018.06.006.Suche in Google Scholar

40. Aslam, M. N., Qaim, S. M. Nuclear model analysis of excitation functions of proton, deuteron and α-particle induced reactions on nickel isotopes for production of the medically interesting copper-61. Appl. Radiat. Isot. 2014, 89, 65; https://doi.org/10.1016/j.apradiso.2014.02.007.Suche in Google Scholar PubMed

41. Bryant, E. A., Cochran, D. R. F., Knight, J. D. Excitation functions of reactions of 7 to 24-MeV He3 ions with Cu63 and Cu65. Phy. Rev. 1963, 130, 1512; https://doi.org/10.1103/physrev.130.1512.Suche in Google Scholar

42. Stelson, P. H., McGowan, F. K. Cross sections for (α, n) reactions for medium-weight nuclei. Phy. Rev. 1964, 133, B911; https://doi.org/10.1103/physrev.133.b911.Suche in Google Scholar

43. Bhardwaj, H. D., Gautam, A. K., Prasad, R. Measurement and analysis of excitation functions for alpha-induced reactions in copper. Pramana 1988, 31, 109; https://doi.org/10.1007/bf02846965.Suche in Google Scholar

44. Bonesso, O., Ozafran, M. J., Mosca, H. O., Vazquez, M. E., Capurro, O. A., Nassiff, S. J. Study of pre-equilibrium effects on α-induced reactions on copper. J. Radioanal. Nucl. Chem. 1991, 15, 189; https://doi.org/10.1007/bf02042152.Suche in Google Scholar

45. Levkovski, V. N. Cross Sections of Medium Mass Nuclide Activation (A=40-100) by Medium Energy Protons and Alpha Particles (E=10-50 MeV); Intervesy: Moscow, 1991.Suche in Google Scholar

46. Singh, N. L., Patel, B. J., Somayajulu, D. R. S., Chintalapudi, S. N. Analysis of the excitation functions of (α, xnyp) reactions on natural copper. Pramana 1994, 42, 349; https://doi.org/10.1007/bf02847761.Suche in Google Scholar

47. Szelecsényi, F., Kovács, Z., Nagatsu, K., Fukumura, K., Suzuki, K., Mukai, K. Investigation of direct production of 68Ga with low energy multiparticle accelerator. Radiochim. Acta 2012, 100, 5.10.1524/ract.2011.1896Suche in Google Scholar

48. Hermanne, A., Rebeles, R. A., Tárkányi, F., Takács, S. Alpha particle induced reactions on natCr up to 39 MeV: experimental cross sections, comparison with theoretical calculations and thick target yields for medically relevant 52gFe production. Nucl. Instr. Meth. A. 2015, 356, 28; https://doi.org/10.1016/j.nimb.2015.04.025.Suche in Google Scholar

49. Mann, W. B. Nuclear transformations produced in copper by alpha-particle bombardment. Phys. Rev. 1937, 52, 405; https://doi.org/10.1103/physrev.52.405.Suche in Google Scholar

50. Porges, K. G. Alpha excitation functions of silver and copper. Phys. Rev. 1956, 101, 225; https://doi.org/10.1103/physrev.101.225.Suche in Google Scholar

51. Aslam, M. T., Ali, W., Hussain, M. Nuclear model analysis of the 65Cu(α, n)68Ga reaction for the production of Ga up to 40 MeV. Appl. Radiat. Isot. 2021, 170, 109590; https://doi.org/10.1016/j.apradiso.2021.109590.68.Suche in Google Scholar

52. Vlieks, A. E., Morgan, J. F., Blatt, S. L. Total cross sections for some (α, n) and (α, p) reactions in medium-weight nuclei. Nucl. Phys. A 1974, 224, 492; https://doi.org/10.1016/0375-9474(74)90551-x.Suche in Google Scholar

53. Howard, A. J., Jensen, H. B., Rios, M., Fowler, W. A., Zimmerman, B. A. Measurement and theoretical analysis of some reaction rates of interest in silicon burning. Astrophys. J. 1974, 188, 131; https://doi.org/10.1086/152694.Suche in Google Scholar

54. Usman, A. R., Khandaker, M. U., Haba, H., Otuka, N., Murakami, M. Excitation functions of alpha particles induced nuclear reactions on natural titanium in the energy range of 10.4–50.2 MeV. Nucl. Instr. Meth. A 2017, 399, 34; https://doi.org/10.1016/j.nimb.2017.03.120.Suche in Google Scholar

55. Ghoshal, S. N. An experimental verification of the theory of compound nucleus. Phys. Rev. 1950, 80, 939; https://doi.org/10.1103/physrev.80.939.Suche in Google Scholar

56. Cumming, J. B. Decay of Zn61. Phys. Rev. 1959, 114, 1600; https://doi.org/10.1103/physrev.114.1600.Suche in Google Scholar

57. Tanaka, S. Reactions of nickel with alpha-particles. J. Phys. Soc. Jpn. 1960, 15, 2159; https://doi.org/10.1143/jpsj.15.2159.Suche in Google Scholar

58. Stelson, P. H., McGowan, F. K. Cross sections for (α, n) reactions for medium-weight nuclei. Phys. Rev. 1964, 133, B911; https://doi.org/10.1103/physrev.133.b911.Suche in Google Scholar

59. Muramatsu, H., Shirai, E., Nakahara, H., Murakami, Y. Alpha particle bombardment of natural nickel target for the production of 61Cu. Appl. Radiat. Isot. 1978, 29, 611; https://doi.org/10.1016/0020-708x(78)90094-7.Suche in Google Scholar

60. Takács, S., Tárkányi, F., Kovacs, Z. Excitation functions of alpha-particle induced nuclear reactions on natural nickel. Nucl. Instr. Meth. 1996, 113, 424.10.1016/0168-583X(95)01349-0Suche in Google Scholar

61. Uddin, M. S., Kim, K. S., Nadeem, M., Sudár, S., Kim, G. N. Excitation functions of alpha-particle-induced reactions on natNi from threshold to 44 MeV. Eur. Phy. J. A 2017, 53, 1; https://doi.org/10.1140/epja/i2017-12287-4.Suche in Google Scholar

Received: 2021-11-25
Accepted: 2022-05-02
Published Online: 2022-05-23
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1132/pdf
Button zum nach oben scrollen