Startseite Behaviour of DGA and Ln resin with alpha radiation dose
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Behaviour of DGA and Ln resin with alpha radiation dose

  • Rikard Malmbeck und Nidhu Lal Banik EMAIL logo
Veröffentlicht/Copyright: 17. Januar 2022

Abstract

In this work the separation efficiency of the DGA and Ln extraction chromatographic resins has been investigated as a function of absorbed dose induced by alpha radiation. It was found that the resins show good stability towards alpha radiolysis, both maintaining high weight distribution ratios (and resin capacity factors) with the absorbed dose, calculated as if the complete alpha energy would be absorbed only in the resin material. However, the results obtained for Ln resin indicates that the method used in this work (extractive distribution ratio) to investigate alpha radiolytic behaviour is not appropriate. The reason is likely the strong acid dependency of this particular extraction system. The behaviour of the DGA resin towards alpha radiolysis was compared to alpha radiolysis in ordinary liquid-liquid extraction of an organic solvent based on the same extractant, TODGA, dissolved in n-dodecan. It was found that the alpha radiolysis rate of TODGA is about 5 times higher in liquid-liquid extraction where the complete energy of the alpha particle is deposited within the solvent, compared to the DGA resin. This indicates that in the heterogeneous DGA resin system, only 20% of the alpha energy is actually deposited to the organic solvent layered onto the particles of the DGA resin.


Corresponding author: Nidhu Lal Banik, European Commission, Joint Research Centre – JRC, Directorate G, Nuclear Safety and Security, 76125 Karlsruhe, Germany, E-mail:

Acknowledgements

The authors wish to especially thank Adrian Nicholl (JRC-Karlsruhe) for his constant support before, during and after the experiments.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Ostapenko, V., Vasiliev, A., Lapshina, E., Ermolaev, S., Aliev, R., Totskiy, Y., Kalmykov, S. Extraction chromatographic behavior of actinium and REE on DGA, Ln and TRU resins in nitric acid solutions. J. Radioanal. Nucl. Chem. 2015, 306, 707. https://doi.org/10.1007/s10967-015-4331-y.Suche in Google Scholar

2. Gharibyan, N., Dailey, A., McLain, D. R., Bond, E. M., Moody, W., Happel, S., Sudowe, R. Extraction behavior of americium and curium on selected extraction chromatography resins from pure acidic matrices. Solvent Extr. Ion Exch. 2014, 32, 391. https://doi.org/10.1080/07366299.2014.884888.Suche in Google Scholar

3. Dash, A., Pillai, M. R. A., Knapp, F. F. Production of 177Lu for targeted radionuclide therapy: available options. Nucl. Med. Mol. Imaging 2015, 49, 85. https://doi.org/10.1007/s13139-014-0315-z.Suche in Google Scholar

4. Bertelsen, E. R., Jessica, J. A., Jenifer, S. C. A survey of extraction chromatographic f-element separations developed by E. P. Horwitz. Solvent Extr. Ion Exch. 2020, 38, 251. https://doi.org/10.1080/07366299.2020.1720958.Suche in Google Scholar

5. McAlister, D. R., Horwitz, E. P. Characterization of extraction of chromatographic materials containing bis (2-ethyl-1-hexyl)phosphoric acid, 2-ethyl-1-hexyl (2-ethyl-1-hexyl) phosphonic acid, and Bis(2,4,4-- trimethyl-1-Pentyl)Phosphonic acid. Solvent Extr. Ion Exch. 2007, 25, 757. https://doi.org/10.1080/07366290701634594.Suche in Google Scholar

6. Horwitz, E. P., Bloomquist, C. A. The preparation, performance and factors affecting band spreading of high efficiency extraction chromatographic columns for actinide separations. J. Inorg. Nucl. Chem. 1972, 34, 3851. https://doi.org/10.1016/0022-1902(72)80033-2.Suche in Google Scholar

7. Horwitz, E. P., McAlister, D. R., Bond, A. H., Barrans, J. R. E. Novel extraction of chromatographic resins based on tetraalkyldiglycolamides: characterization and potential applications. Solvent Extr. Ion Exch. 2005, 23, 319. https://doi.org/10.1081/sei-200049898.Suche in Google Scholar

8. Ansari, S. A., Pathak, P., Mohapatra, P. K., Manchanda, V. K. Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem. Rev. 2012, 112, 1751. https://doi.org/10.1021/cr200002f.Suche in Google Scholar

9. Peppard, D. F., Mason, G. W., Maier, J. L., Driscoll, W. J. Fractional extraction of the lanthanides as their di-alkyl orthophosphates. J. Inorg. Nucl. Chem. 1957, 4, 334. https://doi.org/10.1016/0022-1902(57)80016-5.Suche in Google Scholar

10. Whittaker, D., Geist, A., Modolo, G., Taylor, R., Sarsfield, M., Wilden, A. Applications of diglycolamide based solvent extraction processes in spent nuclear fuel reprocessing, Part 1: TODGA. Solvent Extr. Ion Exch. 2018, 36, 223. https://doi.org/10.1080/07366299.2018.1464269.Suche in Google Scholar

11. Nilsson, M., Nash, K. L. Review article: a review of the development and operational characteristics of the TALSPEAK process. Solvent Extr. Ion Exch. 2007, 25, 665. https://doi.org/10.1080/07366290701634636.Suche in Google Scholar

12. Gelis, A. V., Lumetta, G. J. Actinide lanthanide separation process − ALSEP. Ind. Eng. Chem. 2014, 53, 1624. https://doi.org/10.1021/ie403569e.Suche in Google Scholar

13. Mincher, B. J., Modolo, G., Mezyk, S. P. Review article: the effects of radiation chemistry on solvent extraction 3: a review of actinide and lanthanide extraction. Solvent Extr. Ion Exch. 2009, 27, 579. https://doi.org/10.1080/07366290903114098.Suche in Google Scholar

14. Zhang, A., Wei, Y.-Z., Kumagai, M., Koma, Y. A new partitioning process for high-level liquid waste by extraction chromatography using silica-substrate chelating agent impregnated adsorbents. J. Alloys Compd. 2005, 390, 275. https://doi.org/10.1016/j.jallcom.2004.08.034.Suche in Google Scholar

15. Zhang, A., Wei, Y.-Z., Hoshi, H., Kumagai, M., Koma, Y., Koyama, T. Resistance properties of a macroporous silica-based N,N,N0,N0-tetraoctyl-3-oxapentane-1,5-diamide-impregnated polymeric adsorption material against nitric acid, temperature and gamma-irradiation. Radiat. Phys. Chem. 2005, 72, 669. https://doi.org/10.1016/j.radphyschem.2004.05.050.Suche in Google Scholar

16. https://www.triskem-international.com/catalog/products/resins-and-accessories/dga-resin/bl,product,399,0.Suche in Google Scholar

17. Pin, C., Gannoun, A. Miniaturized, rapid separation of Neodymium from ultramafic and chondritic samples prior to high precision measurements of 142,143Nd/144Nd isotope ratios by TIMS. J. Anal. At. Spectrom. 2019, 34, 2136. https://doi.org/10.1039/c9ja00272c.Suche in Google Scholar

18. Loktionova, N. S., Belozu, A. N., Filosofov, D. V., Zhernosekov, K. P., Wagnerc, T., T̈urler, A., Rösch, F. Improved column-based radiochemical processing of the generator produced 68Ga. Appl. Radiat. Isot. 2011, 69, 942. https://doi.org/10.1016/j.apradiso.2011.02.035.Suche in Google Scholar PubMed

19. Morgenstern, A., Bruchertseifer, F., Apostolidis, C. Bismuth-213 and actinium-225-generator performance and evolving therapeutic applications of two generator-derived alpha-emitting radioisotopes. Curr. Radiopharm. 2012, 5, 221. https://doi.org/10.2174/1874471011205030221.Suche in Google Scholar PubMed

20. C Rébufa, A., Traboulsi, V., Nathalie, L., Dupuy, N., Sergent, M. Experimental design approach for identification of the factors influencing the-radiolysis of ion exchange resins. Radiat. Phys. Chem. 2015, 106, 223.10.1016/j.radphyschem.2014.07.020Suche in Google Scholar

21. Shu, Q., Khayambashi, A., Wang, X., Wang, X., Feng, L., Wei, Y. Effects of γ irradiation on bis(2-ethylhexyl)phosphoric acid supported by macroporous silica-based polymeric resins. Radiochim. Acta 2018, 106, 249. https://doi.org/10.1515/ract-2017-2758.Suche in Google Scholar

22. Tachimori, S. Radiation effects on the extraction of americium(III) with di(2-ethylhexyl) phosphoric acid. J. Radioanal. Chem. 1979, 50, 133. https://doi.org/10.1007/bf02519950.Suche in Google Scholar

23. Magnusson, D., Christiansen, B., Malmbeck, R., Glatz, J-P. Investigation of the radiolytic stability of a CyMe4-BTBP based SANEX solvent. Radiochim. Acta 2009, 97, 497–502. https://doi.org/10.1524/ract.2009.1647.Suche in Google Scholar

24. Banik, N. L., Lützenkirchen, K., Malmbeck, R., Nicholl, A. A method for the mg separation of Cm from Am using a SCX column. J. Radioanal. Nucl. Chem. 2019, 321, 841. https://doi.org/10.1007/s10967-019-06653-z.Suche in Google Scholar

25. Malmbeck, R., Banik, N. L., Kerst, T., Soti, Z. Alpha induced liquid radioluminescence at varying alpha energies of radionuclides. New J. Chem. 2021, 45, 7766–7773. https://doi.org/10.1039/d0nj05394e.Suche in Google Scholar

26. Malmbeck, R., Banik, N. L., Nicholl, A., Lützenkirchen, K. Precise determination of Cm by Cm/Pu alpha ratio measurements. Dalton 2021.Suche in Google Scholar

27. Sasaki, Y., Kitatsuji, Y., Tsubata, Y., Sugo, Y., Morita, Y. Separation of Am, Cm and lanthanides by solvent extraction with hydrophilic and lipophilic organic ligands. Solvent Extr. Res. Dev. 2011, 18, 93–101. https://doi.org/10.15261/serdj.18.93.Suche in Google Scholar

28. Weßling, P., Trumm, M., Geist, A., Panak, P. J. Stoichiometry of An(iii)–DMDOHEMA complexes formed during solvent extraction. Dalton Trans. 2018, 47, 10906. https://doi.org/10.1039/c8dt02504e.Suche in Google Scholar PubMed

29. Galán, H., Núñez, A., Espartero, A. G., Sedano, R., Durana, A., de Mendoza, J. Radiolytic stability of TODGA: characterization of degraded samples under different experimental conditions. Procedia Chem 2012, 7, 195.10.1016/j.proche.2012.10.033Suche in Google Scholar

30. Nucleonica Nuclear Science Portal. Nucleonica GmbH, Range and Stopping Power Version 3.0.65; Karlsruhe: Nucleonica Nuclear Science Portal, 2017. www.nucleonica.com.Suche in Google Scholar

31. Malmbeck, R., Banik, N. L. Radiolytic behaviour of a TODGA based solvent under alpha irradiation. J. Radioanal. Nucl. Chem. 2020, 326, 1609–1615.10.1007/s10967-020-07444-7Suche in Google Scholar

Received: 2020-11-06
Accepted: 2021-11-05
Published Online: 2022-01-17
Published in Print: 2022-03-28

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2020-0113/html
Button zum nach oben scrollen