Startseite Evaluation of Mn bioaccumulation and biosorption by bacteria isolated from spent nuclear fuel pools using 54Mn as a radioindicator
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Evaluation of Mn bioaccumulation and biosorption by bacteria isolated from spent nuclear fuel pools using 54Mn as a radioindicator

  • Martin Pipíška EMAIL logo , Zuzana Trajteľová , Miroslav Horník und Vladimír Frišták
Veröffentlicht/Copyright: 21. Oktober 2017

Abstract

Bioaccumulation and biosorption characteristics of Mn2+ ions by both dead and living, non-growing biomass of Gram-positive bacteria Kocuria palustris and Micrococcus luteus isolated from spent nuclear fuel pools were compared. The radioindicator method using radionuclide 54Mn was applied to obtain precise and reliable data characterizing both processes as well as manganese distribution in bacterial cells. Manganese was mainly found on the surface (biosorption) of live cells of both bacteria and surface sorption capacity increased with Mn concentration in solution. Only 10.0% (M. luteus) and 6.3% (K. palustris) of uptaken Mn were localized in the cytoplasm (bioaccumulation). Biosorption of Mn by dead bacterial biomass was a rapid process strongly affected by solution pH. Maximum sorption capacities Qmax calculated from the Langmuir isotherm and characterizing Mn binding represented 316±15 μmol/g for M. luteus and 282±16 μmol/g for K. palustris. Results indicate that living, non-growing cells showed a higher efficiency of Mn removal than dead biomass. Based on FTIR spectra examination with aim to characterize the surface of K. palustris and M. luteus cells, we confirmed that the phosphate and carboxyl functional groups are involved in manganese sorption onto cell surface by both live and dead bacterial biomass.

References

1. Jensen, A. N., Jensen, L. T.: Manganese transport, trafficking and function in invertebrates. In: L. G. Costa, M. Aschner, (Eds.), Issues in Toxicology No 22. Manganese in Health and Disease (2015), The Royal Society for Chemistry, Cambridge.10.1039/9781782622383-00001Suche in Google Scholar

2. Roccaro, P., Barone, C., Mancini, G., Vagliasindi, F. G. A.: Removal of manganese from water supplies intended for human consumption: a case study. Desalination 210, 205 (2007).10.1016/j.desal.2006.05.045Suche in Google Scholar

3. Tong, Y., Wang, G., Tian, F., Liu, X., Zhao, J., Zhang, H., Chen, W.: Systematic understanding of the potential manganese-adsorption components of a screened: Lactobacillus plantarum CCFM436. RSC Adv. 6, 102804 (2016).10.1039/C6RA23877GSuche in Google Scholar

4. O’Neal, S. L., Zheng, W.: Manganese toxicity upon overexposure: a decade in review. Curr. Environ. Health Rep. 2, 315 (2015).10.1007/s40572-015-0056-xSuche in Google Scholar PubMed PubMed Central

5. Pinsino, A., Matranga, V., Roccheri, M. C.: Manganese: a new emerging contaminant in the environment. In: J. Srivastava (Ed.), Environmental Contamination (2012), InTech.10.5772/31438Suche in Google Scholar

6. Bamforth, S. M., Manning, D. A. C., Singleton, I., Younger, P. L., Johnson, K. L.: Manganese removal from mine waters – investigating the occurrence and importance of manganese carbonates. Appl. Geochem. 21, 1274 (2006).10.1016/j.apgeochem.2006.06.004Suche in Google Scholar

7. Bohu, T., Akob, D. M., Abratis, M., Lazar, C. S., Küsel, K.: Biological low-pH Mn(II) oxidation in a manganese deposit influenced by metal-rich groundwater. Appl. Environ. Microbiol. 82, 3009 (2006).10.1128/AEM.03844-15Suche in Google Scholar PubMed PubMed Central

8. Akob, D. M., Bohu, T., Beyer, A., Schäffner, F., Händel, M., Johnson, C. A., Merten, D., Büchel, G., Totsche, K. U., Küsel, K.: Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine. Appl. Environ. Microbiol. 80, 5086 (2014).10.1128/AEM.01296-14Suche in Google Scholar PubMed PubMed Central

9. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E.: The manganese-oxidizing bacteria. In: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, E. Stackebrandt (Eds.), The Prokaryotes (2006), Springer, New York.10.1007/0-387-30741-9Suche in Google Scholar

10. Baudish, P.: Biological manganese removal – a very sustainable water treatment technology. 4th Annual WIOA NSW Water Industry Engineers & Operators Conference, Bathurst, Australia, 115–120 (2010).Suche in Google Scholar

11. Vail, W., Riley, R.: The pyrolusite process: a bioremediation process for the abatement of acid mine drainage. Green Lands 30, 40 (2000).Suche in Google Scholar

12. Barboza, N. R., Amorim, S. S., Santos, P. A., Reis, F. D., Cordeiro, M. M., Guerra-Sá, R., Leão, V. A.: Indirect manganese removal by Stenotrophomonas sp. and Lysinibacillus sp. isolated from Brazilian mine water. BioMed Res. Int. 2015, Article ID 925972 (2015).10.1155/2015/925972Suche in Google Scholar PubMed PubMed Central

13. Özdemir, S., Kilinc, E., Poli, A., Nicolaus, B., Güven, K.: Cd, Cu, Ni, Mn and Zn resistance and bioaccumulation by thermophilic bacteria, Geobacillus toebii subsp. decanicus and Geobacillus thermoleovorans subsp. stromboliensis. World J. Microbiol. Biotechnol. 28, 155 (2012).10.1007/s11274-011-0804-5Suche in Google Scholar PubMed

14. Vázquez-Ortega, A., Fein, J. B.: Thermodynamic modeling of Mn(II) adsorption onto manganese oxidizing bacteria. Chem. Geol. 464, 147 (2017).10.1016/j.chemgeo.2016.12.040Suche in Google Scholar

15. Hou, Y., Cheng, K., Li, Z., Ma, X., Wei, Y., Zhang, L., Wang, Y.: Biosorption of cadmium and manganese using free cells of Klebsiella sp. isolated from waste water. PLoS One 10, e0140962 (2015).10.1371/journal.pone.0140962Suche in Google Scholar PubMed PubMed Central

16. Michalak, I., Chojnacka, K.: The comparison of biosorption and bioaccumulation of microelemnt by macroalga Vaucheria sessilis. Biotechnologia 1, 132 (2010).Suche in Google Scholar

17. Kaduková, J., Virčíková, E.: Comparison of differences between copper bioaccumulation and biosorption. Environ. Int. 31, 227 (2005).10.1016/j.envint.2004.09.020Suche in Google Scholar PubMed

18. Romaidi, Ueki, T.: Bioaccumulation of vanadium by vanadium-resistant bacteria isolated from the intestine of Ascidia sydneiensis samea. Mar. Biotechnol. 18, 359 (2016).10.1007/s10126-016-9697-5Suche in Google Scholar PubMed

19. Tišáková, L., Pipíška, M., Godány, A., Horník, M., Vidová, B., Augustín, J.: Bioaccumulation of 137Cs and 60Co by bacteria isolated from spent nuclear fuel pools. J. Radioanal. Nucl. Chem. 295, 737 (2013).10.1007/s10967-012-1932-6Suche in Google Scholar

20. Pabst, W. M., Miller, Ch. D., Dimkpa, Ch., Anderson, A. J., Mclean, J. E.: Defining the surface adsorption and internalization of copper and cadmium in a soil bacterium, Pseudomonas putida. Chemosphere 81, 904 (2010).10.1016/j.chemosphere.2010.07.069Suche in Google Scholar PubMed

21. McLean, J. E., Pabst, M. W., Miller, C. D., Dimkpa, C. O., Anderson, A. J.: Effect of complexing ligands on the surface adsorption, internalization, and bioresponse of copper and cadmium in a soil bacterium, Pseudomonas putida. Chemosphere 91, 374 (2013).10.1016/j.chemosphere.2012.11.071Suche in Google Scholar PubMed

22. Huang, F., Guo, Ch. L., Lu, G. N., Yi, X. Y., Zhu, L. D., Dang, Z.: Bioaccumulation characterization of cadmium by growing Bacillus cereus RC-1 and its mechanism. Chemosphere 109, 134 (2014).10.1016/j.chemosphere.2014.01.066Suche in Google Scholar PubMed

23. Martin, J. E., Waters, L. S., Storz, G., Imlay, J. A.: The Escherichia coli small protein MntS and exporter MntP optimize the intracellular concentration of manganese. PLoS Genet. 11, e1004977 (2015).10.1371/journal.pgen.1004977Suche in Google Scholar PubMed PubMed Central

24. Pipíška, M., Trajtelová, Z., Horník, M.: Compartmentalization of Co and Mn in live cells of Escherichia coli: investigation using 60Co and 54Mn as radioindicators. J. Radioanal. Nucl. Chem. (2017). https://doi.org/10.1007/s10967-017-5480-y.10.1007/s10967-017-5480-ySuche in Google Scholar

25. Teodorovic, I., Planojevic, I., Knezevic, P., Radak, S., Nemet, I.: Sensitivity of bacterial vs. acute Daphnia magna toxicity tests to metals. Cent. Eur. J. Biol. 4, 482 (2009).10.2478/s11535-009-0048-7Suche in Google Scholar

26. Ray B., Bhunia A.: Fundamental Food Microbiology (2007), 4th ed., CRC Press, Boca Raton, p. 492.Suche in Google Scholar

27. Masoumi, F., Khadivinia, E., Alidoust, L., Mansourinejad, Z., Shahryari, S., Safaei, M., Mousavi, A., Salmanian, A.-H., Zahiri, H. S., Vali, H., Noghabi, K. A.: Nickel and lead biosorption by Curtobacterium sp. FM01, an indigenous bacterium isolated from farmland soils of northeast Iran. J. Environ. Chem. Eng. 4, 950 (2016).10.1016/j.jece.2015.12.025Suche in Google Scholar

28. Ahmady-Asbchin, S., Safari, M., Tabaraki, R.: Biosorption of Zn (II) by Pseudomonas aeruginosa isolated from a site contaminated with petroleum. Desalin. Water Treat. 54, 3372 (2015).10.1080/19443994.2014.913202Suche in Google Scholar

29. Thomas, K. J., Rice, C. V.: Equilibrium binding behavior of magnesium to wall teichoic acid. Biochim. Biophys. Acta – Biomembranes 1848, 1981 (2015).10.1016/j.bbamem.2015.05.003Suche in Google Scholar

30. Chubar, N., Avramut, C., Visser, T.: Formation of manganese phosphate and manganese carbonate during long-term sorption of Mn2+ by viable Shewanella putrefaciens: effects of contact time and temperature 2015) Environ. Sci. Process. Impacts 17, 780 (2015).10.1039/C4EM00634HSuche in Google Scholar

31. Dohnalkova, A., Bilskis, C., Kennedy, D. W.: TEM Study of manganese biosorption by cyanobaterium Synechocystis 6803. Microsc. Microanal. 12, 444CD (2006).10.1017/S1431927606064051Suche in Google Scholar

32. Gialamouidis, D., Mitrakas, M., Liakopoulou-Kyriakides, M.: Equilibrium, thermodynamic and kinetic studies on biosorption of Mn(II) from aqueous solution by Pseudomonas sp., Staphylococcus xylosus and Blakeslea trispora cells. J. Hazard. Mater. 182, 672 (2010).10.1016/j.jhazmat.2010.06.084Suche in Google Scholar PubMed

33. Machalová, L., Pipíška, M., Trajteľová, Z., Horník, M.: Comparison of Cd2+ biosorption and bioaccumulation by bacteria- A radiometric study. Nova Biotechnol. Chim. 14, 158 (2015).10.1515/nbec-2015-0024Suche in Google Scholar

34. Boyanov, M. I., Kelly, S. D., Kemner, K. M., Bunker, B. A., Fein, J. B., Fowle, D. A.: Adsorption of cadmium to Bacillus subtilis bacterial cell walls: a pH-dependent X-ray absorption fine structure spectroscopy study. Geochim. Cosmochim. Acta 67, 3299 (2003).10.1016/S0016-7037(02)01343-1Suche in Google Scholar

35. García, R., Campos, J., Cruz, J. A., Calderón, E., Raynal, E., Buitrón, G.: Biosorption of Cd, Cr, Mn, and Pb from aqueous solutions by Bacillus sp strains isolated from industrial waste activate sludge. TIP Rev. Esp. Cienc. Quím. Biol. 19, 5 (2016).10.1016/j.recqb.2016.02.001Suche in Google Scholar

36. Wu, Y., Zhou, J., Wen, Y., Jiang, L., Wu, Y.: Biosorption of heavy metal ions (Cu2+, Mn2+, Zn2+, and Fe3+) from aqueous solutions using activated sludge: comparison of aerobic activated sludge with anaerobic activated sludge. Appl. Biochem. Biotechnol. 168, 2079 (2012).10.1007/s12010-012-9919-xSuche in Google Scholar PubMed

37. Sheng, P. X., Ting, Y. P., Chen, J. P.: Biosorption of heavy metal ions (Pb, Cu, and Cd) from aqueous solutions by marine alga Sargassum sp. in single- and multiple-metal systems. Ind. Eng. Chem. Res. 46, 2438 (2007).10.1021/ie0615786Suche in Google Scholar

38. Hrynkiewicz, K., Zloch, M., Kowalkowski, T., Baum, Ch., Niedojadlo, K., Buszewski, B.: Strain-specific bioaccumulation and intracellular distribution of Cd2+ in bacteria isolated from the rhizosphere, ectomycorrhizae, and fruitbodies of ectomycorrhizal fungi. Environ. Sci. Pollut. Res. 4, 3055 (2015).10.1007/s11356-014-3489-0Suche in Google Scholar PubMed PubMed Central

39. Pérez Silva, R. M., Ábalos Rodríguez, A., Gómez Montes De Oca, J. M., Cantero Moreno, D.: Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresour. Technol. 100, 1533 (2009).10.1016/j.biortech.2008.06.057Suche in Google Scholar PubMed

40. Hasan, H. A., Abdullah, S. R. S., Kofli, N. T., Kamarudin, S. K.: Isotherm equilibria of Mn2+ biosorption in drinking water treatment by locally isolated Bacillus species and sewage activated sludge. J. Environ. Manag. 111, 34 (2012).10.1016/j.jenvman.2012.06.027Suche in Google Scholar PubMed

41. Garip, S., Gozen, A. C., Severcan, F.: Use of Fourier transform infrared spectroscopy for rapid comparative analysis of Bacillus and Micrococcus isolates. Food Chem. 113, 1301 (2009).10.1016/j.foodchem.2008.08.063Suche in Google Scholar

42. Davis, R., Mauer, L. J.: Fourier tansform infrared (FT-IR) spectroscopy: A rapid tool for detection and analysis of foodborne pathogenic bacteria. In: A. Méndez-Vilas (Ed.), Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology (2010), Formatex Research Center, Badajoz.Suche in Google Scholar

43. Jiang, W., Saxena, A., Song, B., Ward, B. B., Beveridge, T. J., Myneni, S. C. B.: Elucidation of functional groups on Gram-positive and Gram-negative bacterial surfaces using infrared spectroscopy. Langmuir 20, 11433 (2004).10.1021/la049043+Suche in Google Scholar PubMed

44. Naumann, D.: Infrared spectroscopy in microbiology. In: R. A. Meyers (Ed.), Encyclopedia of Analytical Chemistry (2000) John Wiley & Sons, Chichester.10.1002/9780470027318.a0117Suche in Google Scholar

45. Brown, S., Santa-Maria, J. P., Walker, S.: Wall teichoic acids of Gram-positive bacteria. Annu. Rev. Microbiol. 67, 313 (2013).10.1146/annurev-micro-092412-155620Suche in Google Scholar PubMed PubMed Central

46. Thomas, K. J., Rice, C. V.: Revised model of calcium and magnesium binding to the bacterial cell wall. Biometals 27, 1361 (2014).10.1007/s10534-014-9797-5Suche in Google Scholar PubMed PubMed Central

47. Vijayaraghavan, K., Lee, M. W., Yun, Y.-S.: Evaluation of fermentation waste (Corynebacterium glutamicum) as a biosorbent for the treatment of nickel(II)-bearing solutions. Biochem. Eng. J. 41, 228 (2008).10.1016/j.bej.2008.04.019Suche in Google Scholar

Received: 2017-6-13
Accepted: 2017-9-13
Published Online: 2017-10-21
Published in Print: 2018-3-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2017-2836/html
Button zum nach oben scrollen