Startseite Colorants in coatings
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Colorants in coatings

  • Frank J. Maile EMAIL logo
Veröffentlicht/Copyright: 21. September 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The aim of this chapter is to provide a compact overview of colorants and their use in coatings including a brief introduction to paint technology and its raw materials. In addition, it will focus on individual colorants by collecting information from the available literature mainly for their use in coatings. Publications on colorants in coatings applications are in many cases standard works that cover the wider aspects of color chemistry and paint technology and are explicitly recommended for a more detailed study of the subject [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]. Articles or information on paint formulation using coatings which contain colorants are rare [19]. This formulation expertise is often company property as it is the result of many years of effort built up over very long series of practical “trial-and-error” optimization tests and, more recently, supported by design of experiment and laboratory process automation [20, 21]. Therefore, it is protected by rigorous secrecy agreements. Formulations are in many ways part of a paint manufacturer’s capital, because of their use in automotive coatings, coil coatings, powder coatings, and specialist knowledge is indispensable to ensure their successful industrial use [22]. An important source to learn about the use of pigments in different coating formulations are guidance or starting formulations offered by pigment, additive, and resin manufacturers. These are available upon request from the technical service unit of these companies. Coating formulations can also be found scattered in books on coating and formulation technology [4, 5, 18, 23,24,25,26,27]. This overview can in no way claim to be complete, as the literature and relevant journals in this field are far too extensive. Nevertheless, it remains the author’s hope that the reader will gain a comprehensive insight into the fascinating field of colorants for coatings, including its literature and current research activities and last but not least its scientific attractiveness and industrial relevance.

References

1. Ullmann’s Encyclopedia of Industrial Chemistry. Paints & coatings, section 4.3. 6th ed. Weinheim: VCH Verlagsgesellschaft, 2006.Suche in Google Scholar

2. Bamfield P. Chromic phenomena - technological applications of colour chemistry. The Royal Society of Chemistry, 2001.Suche in Google Scholar

3. Ghosh SK, editor. Functional coatings. Weinheim: WILEY-VCH Verlag, 2006.Suche in Google Scholar

4. Tracton AA, editor. Coating materials and surface coatings. Taylor & Francis Group; 2007.10.1201/9781420044058Suche in Google Scholar

5. Wicks ZW Jr, Jones FN, Pappas SP, Wicks DA Organic coatings science and technology. 3rd ed. John Wiley & Sons, 2007.10.1002/047007907XSuche in Google Scholar

6. Shore J, editor. Colorants and auxiliaries, vol. 1 colorants. 2nd ed. Bradford: Society of Dyers and Colourists, 2002.Suche in Google Scholar

7. Herbst W, Hunger K. Industrial organic pigments. 3rd ed . Weinheim: VCH, 2004.10.1002/3527602429Suche in Google Scholar

8. Zollinger H. Color chemistry. 2nd ed . Weinheim: VCH, 1991:347.Suche in Google Scholar

9. Gordon PF, Gregory P. Organic chemistry in colour. Berlin: Springer Verlag, 1987.10.1007/978-3-642-82959-8Suche in Google Scholar

10. Nassau K. The physics and chemistry of color. New York: Wiley-Interscience, 1983.Suche in Google Scholar

11. Tilley RJ. Colour and the optical properties of materials. Chichester: Wiley, 2000.Suche in Google Scholar

12. Hunger K. Industrial dyes. Weinheim: VCH, 2003.10.1002/3527602011Suche in Google Scholar

13. Nassau K, editor. Color for science, art and technology. Amsterdam: North-Holland, Elsevier Science, 1998.Suche in Google Scholar

14. Zollinger H. Color - a multidisciplinary approach. Weinheim: Wiley-VCH, 1999.10.1002/9783906390413Suche in Google Scholar

15. Goldschmidt A, Streitberger H-J. BASF-handbook basics of coatings technology. 2nd ed. Hannover: Vincentz Network, 2007.Suche in Google Scholar

16. Pfaff G. Inorganic pigments. Berlin/Boston: Walter de Gruyter GmbH, 2017.10.1515/9783110484519Suche in Google Scholar

17. Klöckl I. Chemie der Farbmittel, Bd. 1, Grundlagen, Pigmente und Farbmittel. 2nd Aufl. Berlin/Boston: Walter de Gruyter GmbH, 2020.10.1515/9783110649154Suche in Google Scholar

18. Winkler. Titanium dioxide. 2nd ed. Vincentz Network, 2013.Suche in Google Scholar

19. Müller B, Poth U. Coatings formulation. Hannover: Vincentz Network, 2006.Suche in Google Scholar

20. Rössler A. Lackentwicklung mit statistischer Versuchsplanung. Vincentz Network Hannover, 2011.Suche in Google Scholar

21. Gueller R. The workflow management software Arksuite, FARBE + LACK WebKonferenz Industrie 4.0. Vincentz Verlag Hannover, 2020.Suche in Google Scholar

22. Khanna AS. High-performance organic coatings. Cambridge, UK: Woodhead Publishing Limited, 2008.10.1533/9781845694739Suche in Google Scholar

23. Lin L. Book review - organic coatings science and technology. Dyes Pigm. 2000;45:85–86.10.1016/S0143-7208(99)00097-2Suche in Google Scholar

24. Streitberger H-J, Dössel K-F, editor. Automotive paints and coatings, 2nd completely revised and extended edition. Wiley-VCH, 2008.10.1002/9783527622375Suche in Google Scholar

25. Flick EW. Water-based paint formulations. Vol. 4. Westwood/USA: Noyes Publications, 1997.Suche in Google Scholar

26. Benzing G, et al. Pigmente für Anstrichmittel. Grafenau: expert verlag, 1988.Suche in Google Scholar

27. Poth U. Autolacke formulieren. Hannover: Vincentz Network, 2007.10.1515/9783748601999Suche in Google Scholar

28. Richter G. Trends bei der Farb-Applikation und Effekt-Lackierung. JOT. 2005;3:38.10.1007/BF03240960Suche in Google Scholar

29. Finkenzeller M. PPCJ. 2005;11:22.10.1177/15910199050110S212Suche in Google Scholar

30. Gangloff C. PPCJ. 2009;25.Suche in Google Scholar

31. World dyes & organic pigments. The Freedonia Group Inc., 2009.Suche in Google Scholar

32. World dyes & organic pigments. The Freedonia Group Inc., Study #3264, 2015.Suche in Google Scholar

33. Die Köpfe hinter dem Design. Automobil-Produktion. 2005;11:58.Suche in Google Scholar

34. Dworschak M. Der Spiegel. 2006;25:126.Suche in Google Scholar

35. Lindstrom M. Buyology: Truth and lies about why we buy and the new science of desire. Bantam Dell Pub Group, 2008.Suche in Google Scholar

36. Häusel H-G. Brain view - Warum Kunden kaufen. Rudolf Haufe Verlag, 2009.Suche in Google Scholar

37. Adams R. Global overview of the TiO2 & coloured pigment industries’ (page 15), Smithers TiO2 and colour science symposium. Berlin, 2019.10.1016/j.fop.2019.10.001Suche in Google Scholar

38. Koleske JV. Meyers RA, editor, In encyclopedia of analytical chemistry. Chichester: John Wiley & Sons Ltd, 2000.Suche in Google Scholar

39. De Lange PG. Powder coatings chemistry and technology. Vincentz Network: Coatings Compendia, 2004.10.1016/S1364-5439(04)00135-2Suche in Google Scholar

40. Verkholantsev VV. Functional variety. Effects and properties in surface-functional coating systems. Eur Coat J. 2003;9:18.Suche in Google Scholar

41. Wulf M, Wehling A, Reis O. Coatings with self-cleaning properties. Macromol Symp. 2002;187:459.10.1002/1521-3900(200209)187:1<459::AID-MASY459>3.0.CO;2-QSuche in Google Scholar

42. Hegedus CR. A holistic perspective of coating technology. JCT Res. 2004;1:5.10.1007/s11998-004-0020-4Suche in Google Scholar

43. Parkin IP, Palgrave RG. Self-cleaning coatings. J Mater Chem. 2005;15:1689.10.1039/b412803fSuche in Google Scholar

44. Nun E, Oles M, Schleich B. Lotus-effect-surfaces. Macromol Symp. 2002;187:677.10.1002/1521-3900(200209)187:1<677::AID-MASY677>3.0.CO;2-ISuche in Google Scholar

45. Kuhr M, Bauer S, Rothhaar U, Wolff D. Coatings on plastics with the PICVD technology. Thin Solid Films. 2003;442:107.10.1016/S0040-6090(03)00956-8Suche in Google Scholar

46. Perez M, Garcia M, Del Amo B, Blustein G, Stupak M. Core-shell pigments in antifouling paints. Surf Coat Int Part B Coat Trans. 2003;86:259.10.1007/BF02699497Suche in Google Scholar

47. Zhou LC, Koltisko B. Jct Coatings Tech. 2005;2:54.Suche in Google Scholar

48. Tiller JC, Liao CJ, Lewis K, Klibanov AM. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA. 2001;98:5981.10.1073/pnas.111143098Suche in Google Scholar

49. Johns K. Surf Coat Int Part B Coat Trans. 2003;86:91.10.1007/BF02699619Suche in Google Scholar

50. Provder T, Baghdachi J, editors. Smart coatings II; ACS symposium series, vol. 1002, Washington, D.C: American Chemical Society, 2009.10.1021/bk-2009-1002Suche in Google Scholar

51. Provder T, Baghdachi J, editors. Smart coatings; ACS symposium series, vol. 957. Washington, D.C: American Chemical Society, 2007.10.1021/bk-2007-0957Suche in Google Scholar

52. Zhang H, Zeng W, Du H, Ma Y, Ji Z, Deng Z, Zhou Q. Comparison for color change between benzodifuranone and benzodipyrrolidone based epoxy coating. Dyes Pigm. 2020;175:108171.10.1016/j.dyepig.2019.108171Suche in Google Scholar

53. Rossi S, Simeoni M, Quaranta A. Behavior of chromogenic pigments and influence of binder in organic smart coatings. Dyes Pigm. 2021;184:108879.10.1016/j.dyepig.2020.108879Suche in Google Scholar

54. Nanguo L, Brinker CJ. Smart light responsive materials - azobenzene containing polymers and liquid crystals. In Smart Light-Responsive Materials, Zhao Y, Ikeda T, editors, Hoboken: John Wiley & Sons, 2009.Suche in Google Scholar

55. Seeboth A, Lötzsch D. Thermochromic phenomena in polymers. Shrewsbury: Smithers Rapra Technology Limited, 2008.Suche in Google Scholar

56. Kaluza U. Physical/chemical fundamentals of pigment processing for paints and printing inks, edition lack und chemie. Elvira Moeller GmbH, 1981.Suche in Google Scholar

57. Mollet H, Grubenmann A. Formulierungstechnik. Wiley-VCH, 1999.10.1002/9783527625703Suche in Google Scholar

58. http://www.borchers.com.Suche in Google Scholar

59. https://solutions.covestro.com/en/materials/coatings.Suche in Google Scholar

60. http://www.basf.com/global/en/products/segments/industrial_solutions/dispersions_and_pigments.html.Suche in Google Scholar

61. https://www.byk.com/en.Suche in Google Scholar

62. Funke W. Problems and progress in organic coatings science an technology. Progr Org Coat. 1997;31:5.10.1016/S0300-9440(97)00013-1Suche in Google Scholar

63. Schulz U. Accelerated Weathering. Vincentz Network; 2008.Suche in Google Scholar

64. Taft Jr WS, Mayer JW. The science of paintings. New York: Springer-Verlag, 2000.10.1007/b97567Suche in Google Scholar

65. Welsch N, Liebmann CC. Farben – Natur, Technik, Kunst. Berlin: Spektrum Akademischer Verlag, 2003.Suche in Google Scholar

66. Reichel A, Hochberg A, Köpke C. Plaster, render, paint and coatings. Munich: Institut für internationale Architektur-Dokumentation GmbH & Co KG., an edition DETAIL book, 2004.10.11129/detail.9783034614764Suche in Google Scholar

67. Gordon PF, Gregory P. In developments in the chemistry and technology of organic dyes, Griffiths J, editor. Oxford: Blackwell Scientific Publications 1984:66.Suche in Google Scholar

68. Gray GW. Chimia. 1980;34:47.10.1515/hfsg.1980.34.2.47Suche in Google Scholar

69. Okawara M, Kitao T, Hirashima T, Matsuoka M. Organic colorants: A handbook of data of selected dyes for electro-optical applications. Oxford: Elsevier, 1988.Suche in Google Scholar

70. Matsuoka M, editor. Infrared absorbing dyes. New York: Plenum, 1990.10.1007/978-1-4899-2046-1Suche in Google Scholar

71. Dürr H, Bauas-Laurent H, editors. Photochromism molecules and systems. Elsevier B.V., 2003.Suche in Google Scholar

72. Fox R, Flory PJ. Second-order transition temperatures related properties of polystyrene. I. Influence of molecular weight. J Appl Phys. 1950;21:581.10.1063/1.1699711Suche in Google Scholar

73. Gysau D. Fillers for paints. Hannover: Vincentz Netzwerk, 2019.10.1515/9783748600312Suche in Google Scholar

74. Calbo LJ, editor. Handbook of coatings additives. New York: Marcel Dekker, 1987.Suche in Google Scholar

75. Karsa DR, editor. Additives for waterbased coatings. Cambridge: The Royal Society of Chemistry, 1991.Suche in Google Scholar

76. Shore J, editor. Colorants and auxiliaries, vol. 2 auxiliarie. 2nd ed. Bradford: Society of Dyers and Colourists, 2002.Suche in Google Scholar

77. Bieleman J, editor. Additives for coatings. Weinheim: Wiley-VCH, 2002.Suche in Google Scholar

78. Davison G, Lane B, editors. Additives in water-borne coatings. The Royal Society of Chemistry, 2003.10.1039/9781847550057Suche in Google Scholar

79. Kittel H. Lehrbuch der Lacke und Beschichtungen. vol. Band 4. Stuttgart: Hirzel-Verlag, 2006.Suche in Google Scholar

80. Boxall J, von Fraunhofer JA. Paint formulation. New York: Industrial Press Inc., 1981.Suche in Google Scholar

81. Patton TC. Paint flow and pigment dispersion. New York: J. Wiley & Sons, 1978.Suche in Google Scholar

82. Stoye D, Freitag W, editors. Paint, coatings and solvents. 2nd ed. Weinheim: VCH Verlagsgesellschaft, 1998.10.1002/9783527611867Suche in Google Scholar

83. Heilen W et al. Additives for waterborne coatings. In European coatings TECH FILES, Vincentz Network|, 2014, ISBN: 9783748602187. DOI: 10.1515/9783748602187.Suche in Google Scholar

84. Vash R. Pigment wetting and dispersinig additives for water-based coatings and inks. In Surface phenomena and additives in water-based coatings in printing technology, Sharma MK, editor. Boston, MA: Springer, 1991. DOI: 10.1007/978-1-4899-2361-5_10.Suche in Google Scholar

85. Bugnon P. Surface treatment of pigments - treatment with inorganic materials. Prog Org Coat. 1996;29:39.10.1016/S0300-9440(96)00622-4Suche in Google Scholar

86. Xiao B, Wu H, Guo S. Regulating the properties of C.I. Pigment Red 170 by surface modification via hydrous alumina. Dyes Pigm. 2016;127:87.10.1016/j.dyepig.2015.12.022Suche in Google Scholar

87. Wu H, Gao G, Zhang Y, Guo S. Coating organic pigment particles with hydrous alumina through direct precipitation. Dyes Pigm. 2011;92:548.10.1016/j.dyepig.2011.06.014Suche in Google Scholar

88. Kumar KR, Ghosh SK, Khanna AS, Waghoo G, Ansari F, Yadav K. Silicone functionalized pigment to enhance coating performance. Dyes Pigm. 2012;95:706.10.1016/j.dyepig.2012.06.020Suche in Google Scholar

89. Tadros TF. Solid/Liquid dispersions. London: Academic Press, 1987.Suche in Google Scholar

90. Lyklema J. Fundamentals of interface and colloid science. vol. 1 – 3. London: Academic Press, 1991–2000.Suche in Google Scholar

91. Parfitt GD, editor. Dispersion of powders in liquids (with special reference to pigments). London: Applied Science Publ., 1981.Suche in Google Scholar

92. Pfaff G, Maile FJ, Kieser M, Maisch R, Weitzel. In special effect pigments. Zorll U, editor. 2nd revised ed, Hannover: Vincentz Verlag, 2008.Suche in Google Scholar

93. Napper DH. Polymeric stabilisation of colloidal dispersions. London: Academic Press, 1983.Suche in Google Scholar

94. Hays BG. Am Inkmaker. 28 Jun 1984, 13 Oct 1986, 28 Nov 1990 .Suche in Google Scholar

95. Legrand P. Stabilizing properties of polymers. ECJ. 2005;3:90.Suche in Google Scholar

96. Schaller C, Schauer T, Eisenbach CD, Dirnberger K. Synthesis and stabilizing properties of amphipolar polyelectrolytes. Eur Phys J. 2001;E 6:365.10.1007/s10189-001-8050-8Suche in Google Scholar

97. Reynders P, Maile FJ. Sedimentation-behavior of substrate-based effect pigments. In: XXVII Fatipec Congress, vol. 2, Aix-en-Provence, France, Apr 2004.Suche in Google Scholar

98. Mischke P. Filmbildung. Vincentz Network, 2007.Suche in Google Scholar

99. Maile FJ, Pfaff G, Reynders P. Effect pigments – past, present and future. Progr Org Coat. 2005;54:150.10.1016/j.porgcoat.2005.07.003Suche in Google Scholar

100. Estlander T, Jolanki R. Paints, lacquers, and varnishes. In Rustemeyer T, Elsner P, John SM, Maibach HI, editors. Kanerva’s occupational dermatology. Berlin, Heidelberg: Springer, 2012. DOI: 10.1007/978-3-642-02035-3_61.Suche in Google Scholar

101. Clarke EA, Steinle D. Health and environmental safety aspects of organic colorants. Rev Prog Color. 1995;25:1.10.1111/j.1478-4408.1995.tb00098.xSuche in Google Scholar

102. https://colour-index.com/definitions-of-a-dye-and-a-pigment.Suche in Google Scholar

103. Kindly reproduced by permission of ETAD – The Ecological and Toxicological Association of Dyes and Organic Pigment Manufacturers. http://www.etad.com.Suche in Google Scholar

104. Kindly reproduced by permission of CPMA – Color Pigment Manufacturers Association, Inc. http://www.pigments.org.Suche in Google Scholar

105. Lewis PA. In color for science, art and technology, Nassau K, editor. Amsterdam: Elsevier, 1998:285.Suche in Google Scholar

106. Büchner W, Schiebs R, Winter G, Büchel KH. Industrielle anorganische Chemie. Weinheim: Verlag Chemie, 1984.Suche in Google Scholar

107. Pfaff G. In industrial inorganic pigments. Buxbaum G, Pfaff G, editors. 3rd ed, Weinheim: Wiley-VCH Verlag, 2005:230.10.1002/3527603735Suche in Google Scholar

108. Winnacker-Küchler, Chemische Technologie. 4th ed, vol. 3, München: Carl Hanser Verlag, 1983.Suche in Google Scholar

109. Lewis PA. Pigment handbook. New York: J. Wiley & Sons, 1988.Suche in Google Scholar

110. Smith AE, Comstock MC. Spectral properties of UV absorbing and Near IR reflecting blue pigment, Yin10xMnxO3. Dyes Pigm. 2016;133:214.10.1016/j.dyepig.2016.05.029Suche in Google Scholar

111. Li J, Smith AE, Jiang P, Stalick JK, Sleight AW, Subramanian MA. True composition and structure of hexagonal “YAlO3”, actually Y3Al3O8CO3. Inorg Chem Article ASAP. 2015;54:837.10.1021/ic502027kSuche in Google Scholar PubMed

112. Smith AE, Sleight AW, Subramanian MA. Synthesis and properties of solid solutions of hexagonal YCu0.5Ti0.5O3 with YMO3 (M = Mn, Cr, Fe, Al, Ga, and In). Mater Res Bull. 2011;46:1.10.1016/j.materresbull.2010.10.006Suche in Google Scholar

113. Smith AE, Mizoguchi H, Delaney K, Spaldin NA, Sleight AW, Subramanian MA. Mn3+ in trigonal bipyramidal coordination: a new blue chromophore. J Am Chem Soc. 2009;191:17084.10.1021/ja9080666Suche in Google Scholar PubMed

114. Subramanian M. Benign by design: advanced inorganic color pigment design through materials chemistry. Prague: The Pigment & Colour Science Forum, 2015.Suche in Google Scholar

115. Comstock MC, Complex inorganic colored pigments: comparison of options and relative properties when faced with elemental restrictions. In : 56th SCAA Conference, Melbourne, VIC, Sep 2016.Suche in Google Scholar

116. Baughman GL, Banerjee S, Perenich TA. Dye solubility. In Physico-chemical principles of color chemistry, advances in color chemistry series, vol. 4, Peter AT, Freeman HS editors. Dordrecht: Springer, 1996. DOI: 10.1007/978-94-009-0091-2_5.Suche in Google Scholar

117. https://colour-index.com/introduction-to-the-colour-index.Suche in Google Scholar

118. Giles CH. The surface properties of dyes. Rev Prog Color. 1981;11:89.10.1111/j.1478-4408.1981.tb03718.xSuche in Google Scholar

119. Patton TC, editor. Pigment handbook, vol. 3 . New York: Wiley-Interscience, 1973.Suche in Google Scholar

120. Lewis PA. editor. Pigment handbook. 2nd ed, vol. I, New York: Wiley-Interscience, 1988.Suche in Google Scholar

121. Solomon DH, Hawthorne DG. Chemistry of pigments and fillers. New York: Wiley-Interscience, 1983.Suche in Google Scholar

122. Braun JH. White pigments, federation of societies for coatings technology. PA: Blue Bell, 1995.Suche in Google Scholar

123. Challener C. Jct Coatings Tech. 2005;2:44.Suche in Google Scholar

124. Faulkner EB, Schwartz RJ, editors. High performance pigments. 2nd ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2009.Suche in Google Scholar

125. Büschel KH, Moretto -H-H, Woditsch P. Industrial inorganic chemistry. Weinheim: Wiley-VCH, 2000.10.1002/9783527613328Suche in Google Scholar

126. U.S. Department of Commerce, Bureau of Census, Current Industrial Reports: Paint and Coating Manufacturing. http://www.census.gov.Suche in Google Scholar

127. Lambourne R. In paints and surface coatings, theory and practice, Lambourne R, Strivens TA, editors. 2nd ed, Chem Tech Pub. Inc., 1999.10.1533/9781855737006Suche in Google Scholar

128. Pfaff G, Reynders P. Angle-dependent optical effects deriving from submicron structures of films and pigments. Chem Rev. 1999;99:1963.10.1021/cr970075uSuche in Google Scholar

129. Fasano DM. Use of small polymeric microvoids in formulating high PVC paints. J Coat Technol. 1987;59:109.Suche in Google Scholar

130. Vanderhoff JW, Park JM, El-Aasser MS. Preparation of soft hydrophilic polymer core/hard hydrophobic polymer shell particles for microvoid coatings by seeded emulsion polymerization. Polym Mater Sci Eng. 1991;64:345.10.1021/bk-1992-0492.ch017Suche in Google Scholar

131. Lewis PA. Organic pigments, federation of societies for coatings technology. PA: Blue Bell, 1995.Suche in Google Scholar

132. van den Haak HJW, Krutzer LLM. Design of pigments dispersants of high-solids paints system. Progr Org Coat. 2001; 43:56.10.1016/S0300-9440(01)00219-3Suche in Google Scholar

133. Patent US 9,062,216 (The Shepherd Color Company). 2014.Suche in Google Scholar

134. Ryan M. Expanding the durable color envelope, RTZ Orange & NTP Yellow. Rome: The Pigment & Colour Science Forum; 2013.Suche in Google Scholar

135. Cao L, Fei X, Zhao H. Environmental substitution for PbCrO4 pigment with inorganic-organic hybrid pigment. Dyes Pigm. 2017;142:100.10.1016/j.dyepig.2017.03.024Suche in Google Scholar

136. Calatayud JM, Pardo P, Alarcón J. Cr- and Sb-containing TiO2 inorganic orange nano-pigments prepared by a relative long hydrocarbon chain polyol. Dyes Pigm. 2016;134:1.10.1016/j.dyepig.2016.06.034Suche in Google Scholar

137. Tsukimori T, Oka R, Masui T. Synthesis and characterization of Bi4Zr3O12 as an environment- friendly inorganic yellow pigment. Dyes Pigm. 2017;139:808.10.1016/j.dyepig.2017.01.013Suche in Google Scholar

138. Calatayud JM, Alarcón J. V-containing ZrO2 inorganic yellow nano-pigments prepared by hydrothermal approach. Dyes Pigm. 2017;146:178.10.1016/j.dyepig.2017.07.003Suche in Google Scholar

139. Akafuah NK, Poozesk S, Salaimeh A, Patrick G, Lawler K, Saito K. Evolution of the automotive body coating process—A review. MDPI Coat. 2016;6:24.10.3390/coatings6020024Suche in Google Scholar

140. Wilker G. Praktische Anwendung der Farbrezeptierung von Automobilfarbtönen, GDCh Seminar “Pigmente”. Darmstadt, 2008.Suche in Google Scholar

141. Rosenhahn C. Highly targeted color spaces with made-to-measure iron oxide pigments. Boston: The Pigment & Colour Science Forum, 2018.Suche in Google Scholar

142. Patent US 10,570,288 (The Shepherd Color Company). 2018.Suche in Google Scholar

143. Gramm G, Fuhrmann G, Wieser M, Schottenberger H, Huppertz H. Environmentally benign inorganic red pigments based on tetragonal β-Bi2O3. Dyes Pigm. 2019;160:9.10.1016/j.dyepig.2018.07.039Suche in Google Scholar

144. Jaffe EE et al. J Coat Technol. 1994;66:47.10.1063/1.2808758Suche in Google Scholar

145. Iqbal A, Jost M, Kirchmayr R, Pfenninger J, Rochatand AC, Wallquist O. The synthesis and properties of 1, 4-diketo-pyrrolo[3, 4-c]pyrroles. Bull Soc Chim Belg. 1988;97:615.10.1002/bscb.19880970804Suche in Google Scholar

146. Zeng W, Zhou Q, Zhang H, Qi X. One-coat epoxy coating development for the improvement of UV stability by DPP pigments. Dyes Pigm. 2018;151:157.10.1016/j.dyepig.2017.12.058Suche in Google Scholar

147. Jose S, Reddy ML. Lanthanumestrontium copper silicates as intense blue inorganic pigments with high near-infrared reflectance. Dyes Pigm. 2013;98:540.10.1016/j.dyepig.2013.04.013Suche in Google Scholar

148. Kim SW, Sim GE, Ock JY, Son JH, Hesegawa T, Toda K, Bae DS. Discovery of novel inorganic Mn5+-doped sky-blue pigments based on Ca6BaP4O17: crystal structure, optical and color properties, and color durability. Dyes Pigm. 2017;139:344.10.1016/j.dyepig.2016.12.038Suche in Google Scholar

149. Kim SW, Saito Y, Hesegawa T, Toda K, Uematsu K, Sato M. Development of a novel nontoxic vivid violet inorganic pigment e Mn3+-doped LaAlGe2O7. Dyes Pigm. 2017;136:243.10.1016/j.dyepig.2016.08.038Suche in Google Scholar

150. Sheethu J, Aiswaria P, Laha S, Natarajan S, Reddy MLP. Green colored nano-pigments derived from Y2BaCuO5: NIR reflective coatings. Dyes Pigm. 2014;107:118.10.1016/j.dyepig.2014.03.025Suche in Google Scholar

151. Moser FH, Thomas AL. The phthalocyanines, vol. 1: properties. Boca Raton, Florida: CRC Press; 1983.Suche in Google Scholar

152. Moser FH, Thomas AL. The phthalocyanines, vol. 2: manufacture and applications. Boca Raton, Florida: CRC Press, 1983.Suche in Google Scholar

153. Booth G. In the chemistry of synthetic dyes. Venkataraman K, editor. Academic Press, 1971:241.10.1016/B978-0-12-717005-3.50011-5Suche in Google Scholar

154. Leznoff CC, Lever AB. Phthalocyanines: properties and applications. vol. 1/2. New York: VCH, 1989.Suche in Google Scholar

155. Musche N. Ruß - Das kleine Schwarze. FARBE LACK. 2019;01:40.Suche in Google Scholar

156. Patent EP 3283573 (Schlenk Metallic Pigments GmbH) 2016.Suche in Google Scholar

157. Huber A, Maile FJ, Binder Y. New ultra-thin effect pigments. In: European Coatings Conference, Nuremberg, 2019.Suche in Google Scholar

158. Huber A, Maile FJ. Alles Gold, was glänzt? FARBE + LACK. 2020;12:40.Suche in Google Scholar

159. Bies T, Hoffmann RC, Stöter M, Huber A, Schneider JS. Environmentally benign solution based procedure for the fabrication of metal oxide coatings on metallic pigments. Chem Open. 2020;9:1251.10.1002/open.202000223Suche in Google Scholar PubMed PubMed Central

160. Maile FJ, Reynders P. A colourful menagerie of platelets for transparent effect pigments. APCJ. 2010;14.Suche in Google Scholar

161. Maile FJ, Reynders P. Substrates for Pearlescent Pigments. ECJ. 2003;4:124.Suche in Google Scholar

162. Maile FJ, Rösler M, Huber A. The macroscopic appearance of effect coatings and its relationship to the local spatial and angular distribution of reflected light. In: Proceedings of the American Coatings Conference. Charlotte, NC, USA, Jun 2008.Suche in Google Scholar

163. Maile FJ, Rösler M. Local gloss and sparkle caused by effect pigments: psychophysics, measurements and simulations. In: XXVI. FATIPEC-Congress, Dresden, 2002.Suche in Google Scholar

164. Kirchner E, Njo L, de Haas K, Rösler M, Gabel P. More than colour ECJ 2006;(11):46.Suche in Google Scholar

165. Siemen A. Untersuchung der Bronceverteilung bei der Hochrotationszerstäubung von Metalleffektlacken im Hinblick auf die Effektausbildung, Diplomarbeit. Universität Paderborn, 1990.Suche in Google Scholar

166. Geilen S. Korrelation zwischen den optischen Eigenschaften von Effektbeschichtungen und der Orientierung der enthaltenen Effektstoffe, Diplomarbeit. Universität Paderborn, 2002.Suche in Google Scholar

167. Filip J, Vávra R, Maile FJ. Optical analysis of coatings including diffractive pigments using a high-resolution gonioreflectometer. JCT Res. 2018.10.1007/s11998-018-0137-5Suche in Google Scholar

168. Filip J, Vavra R, Maile FJ. BRDF measurement of Highly-Specular materials using a goniometer. In proceedings of 33th Spring Conference on Computer Graphics (SCCG 2017), Mikulov, 2017:131, (Honorable mention).10.1145/3154353.3154370Suche in Google Scholar

169. Chadwick AC, Kentridge RW. The perception of gloss: A review. Vision Res. 2015;109:221.10.1016/j.visres.2014.10.026Suche in Google Scholar

170. Filip J, Vávra R, Maile FJ, Kolafová M. Framework for capturing and editing of anisotropic effect coatings. Computer Graphics Forum. 2020. DOI:10.1111/cgf.14119, https://onlinelibrary.wiley.com/doi/10.1111/cgf.14119.Suche in Google Scholar

171. Fleming RW. Visual perception of materials and their properties. Vision Res. 2014;94:62.10.1016/j.visres.2013.11.004Suche in Google Scholar

172. Cheeseman J, Ferwerda J, Maile FJ, Fleming RW. Scaling and discriminability of perceived gloss. J Opt Soc Am. 2021;A 38:203.10.1364/JOSAA.409454Suche in Google Scholar

173. Rink H-P, Mayer B. Water based coatings for automotive refinishing. Progr Org Coat 1997;34: 175.10.1016/S0300-9440(98)00038-1Suche in Google Scholar

174. Betten P. Kolloidchemische Untersuchung zur Optimierung von Autoserienlacken, Dissertation. Universität Kiel, 2003.Suche in Google Scholar

175. Slinckx M, Henry N, Krebs A, Uytterhoeven G. High-solids automotive coatings. Progr Org Coat 2000, 38: 163.10.1016/S0300-9440(00)00089-8Suche in Google Scholar

176. Hoffmann P, Duschek W. Berichtsband DFG. 1999;41:123.Suche in Google Scholar

177. Huber A. Use of pearl lustre pigments in industrial coatings. The Coatings Agenda Europe, 2003.Suche in Google Scholar

178. Maisch R, Stahlecker O, Kieser M. Mica pigments in solvent free coatings systems. ECJ. 1994;9:582.Suche in Google Scholar

179. Bendel A. Der Maler Lackierermeister. 1993;10:894.Suche in Google Scholar

180. Bendel A. Der Maler Lackierermeister. 1997;3.Suche in Google Scholar

181. Bendel A. Der Maler Lackierermeister. 1999;12 .Suche in Google Scholar

182. Bendel A. Der Maler Lackierermeister. 2000;7.Suche in Google Scholar

183. Thometzek P, Ludwig A, Karbach A, Köhler K. Effects of morphology and surface treamtent of inorganic pigments on waterborne coating properties. Progr Org Coat 1999; 36:201.10.1016/S0300-9440(99)00037-5Suche in Google Scholar

184. Brückner H-D, Glausch R, Maisch R. Neuartige helle, leitfähige Pigmente auf Glimmer/Metalloxid-Basis. Farbe + Lack. 1990;96:411.Suche in Google Scholar

185. Glausch R, Pfaff G, Maisch R. New results with light colored conductive pigments. In: XXIst FATIPEC Congr., Amsterdam, Bd. 2, 1992:33.Suche in Google Scholar

186. Wheeler IR. Metallic pigments in polymers. Rapra Technology Ltd, 1999.Suche in Google Scholar

187. Anliker R, Moser P. The limits of bioaccumulation of organic pigments in fish: Their relation to the partition coefficient and the solubility in water and octanol. Ecotox Environ Saf. 1987;13:43.10.1016/0147-6513(87)90041-8Suche in Google Scholar

188. Pfaff G, Kuntz M, Rüger R. Electro-conductive pigments for coating applications. In: 8th Int. Conf. Advances in Coatings Technology, Warsaw, Poland, Nov 2008.Suche in Google Scholar

189. Bohem ME, Pook N-P, Adam A, Tran TT, Halasyamani PS, Entenmann M, Schleid T. Luminescence and scintillation properties of La2[Si2O7]:Ce3+ functional pigment: a concept for UV-protection of coatings. Dyes Pigm. 2015;123:331.10.1016/j.dyepig.2015.08.016Suche in Google Scholar

190. Ruf J. Organischer Metallschutz. Hannover: Vincentz Verlag, 1993.Suche in Google Scholar

191. Memnetz SI et al. Jct Coatings Tech. 1989;61:47.Suche in Google Scholar

192. Christian H-D. Proc. Waterborne High-Solids Powder Coat. Symp., New Orleans, LA, 2004, Paper 17.Suche in Google Scholar

193. Matsuoka M, editor. Infrared absorbing dyes. New York: Plenum, 1990.10.1007/978-1-4899-2046-1Suche in Google Scholar

194. Fernando RH, Sung L-P, editor. Nanotechnology applications in coatings, ACS Symposium Series 1008. American Chemical Society, 2009.10.1021/bk-2009-1008Suche in Google Scholar

195. https://www.vdmi.de/en/. (Position Paper of the Pigment and Filler Industry in the Nano Discussion 9 2019). Accessed: 28 Mar .2021, 8:27.Suche in Google Scholar

196. Brown DM Johnston HJ, Gaiser BK, Pinna N, Caputo G, Culha M, Kelestemur M, Altunbek M, Stone V, Roy JC, Kinross JH, Fernandes TF. A cross-species and model comparison of the acute toxicity of nanoparticles used in the pigment and ink industries. Nano Impact. 2018; 11:20.10.1016/j.impact.2018.02.001Suche in Google Scholar

197. Delaval M, Wohlleben W, Landsiedal R, Baeza-Squiban A, Boland S. Assessment of the oxidative potential of nanoparticles by the cytochrome c assay: assay improvement and development of a high-throughtput method to predict toxicity of nanoparticles. Arch Toxicol. 2017;91:163.10.1007/s00204-016-1701-3Suche in Google Scholar

198. Brzicova T et al. Toxicol Vitro. 2019;54:178.10.1016/j.tiv.2018.09.019Suche in Google Scholar

199. Joonas E, Aruoja V, Olli K, Kahru A. Environmental safety data on Cuo and TiO2 nanoparticles for multiple agal species in natural water: Filling the data gaps for the risk assessment. Sci Total Environ. 2019;647:973.10.1016/j.scitotenv.2018.07.446Suche in Google Scholar

200. Spengler A, Wanninger L, Pflugmacher. Oxidative stress mediated toxicity of TiO2 nanoparticles after a concentration and time dependent exposure of the aquatic macrophyte Hydrilla verticillata. Aquatic Toxicology. 2017;190:32.10.1016/j.aquatox.2017.06.006Suche in Google Scholar

201. Baer DR, Burrows PE, El-Azab A. Enhancing coating functionality using nanoscience and nanotechnology. Prog Org Coat. 2003;47:342.10.1016/S0300-9440(03)00127-9Suche in Google Scholar

202. Dhoke SK, Mangalsinha TJM, Dutta P, Khanna AS. Formulation and performance study of molecular weight, alkyd-based waterborne anticorrosive coating on mild steel. Prog Org Coat. 2008;62:183.10.1016/j.porgcoat.2007.10.008Suche in Google Scholar

203. Dhoke SK, Sinha TJM, Khanna AS. Effect of nano-Al2O3 particles on the corrosion behavior of alkyd based waterborne coatings. J Coat Technol Res. 2009;6:353.10.1007/s11998-008-9127-3Suche in Google Scholar

204. Perera DY. Effect of pigmentation on organic coating characteristics. Prog Org Coat. 2004;50:247.10.1016/j.porgcoat.2004.03.002Suche in Google Scholar

205. Patent US 6,875,800 (PPG Industries Ohio, Inc.). 2005.Suche in Google Scholar

206. Patent US 6,916,368 (PPG Industries Ohio, Inc.). 2005.Suche in Google Scholar

207. Elsaeed AM, El-Fattah MA, Azzam AM. Synthesis of ZnO nanoparticles and studying its influence on the antimicrobial, anticorrosion and mechanical behavior of polyurethane composite for surface coating. Dyes Pigm. 2015;121:282.10.1016/j.dyepig.2015.05.037Suche in Google Scholar

208. Sibilia C, Benson TM, Marciniak M, Szoplik T, editors. Photonic crystals physics and technology. Italia: Springer-Verlag, 2008. DOI : 10.1007/978-88-470-0844-1 .10.1007/978-88-470-0844-1Suche in Google Scholar

209. Lourtioz J-M, Benisty H, Berger V, Jean-Michel Gerard Daniel Maystre J-MGD, Tchelnokov A, editors. Photonic crystals - towards nanoscale photonic devices. Berlin Heidelberg: Springer-Verlag, 2008. DOI: 10.1007/978-3-540-78347-3.10.1007/978-3-540-78347-3Suche in Google Scholar

210. Decker E, Purdy S, Xu X, Munro C. Polymer crystalline colloidal array color technology. Boston: The Pigment & Colour Science Forum, 2018.Suche in Google Scholar

211. Ohnuki R, Sakai M, Takeoka Y, Yoshioka S. Optical characterization of the photonic ball as a structurally colored pigment. Langmuir. 2020; 36:5579.10.1021/acs.langmuir.0c00736Suche in Google Scholar PubMed

212. Kinoshita S, Yoshioka S, Miyazaki J. Physics of structural colors. Rep Prog Phys. 2008;71:076401 30. DOI: 10.1088/0034-4885/71/7/076401.10.1088/0034-4885/71/7/076401Suche in Google Scholar

213. Kinoshita S. Structural colors in the realm of nature. World Scientific Publishing, 2008.10.1142/6496Suche in Google Scholar

214. Srinivasarao M. Nano-optics in the biological world: beetles, butterflies, birds, and moths. Chem Rev. 1999;99:1935.10.1021/cr970080ySuche in Google Scholar PubMed

215. Zhao T, Parker R, Vignolini S. Cellulose photonics: from nature to pigment applications. Berlin: The Pigment & Colour Science Forum, 2019.Suche in Google Scholar

216. Shi X, He J, Xie X, Dou R, Lu X. Photonic crystals with vivid structure color and robust mechanical strength. Dyes Pigm. 2019;165:137.10.1016/j.dyepig.2019.02.023Suche in Google Scholar

217. Yu X, Ma W, Zhang S. Hydrophobic polymer-incorporated hybrid 1D photonic crystals with brilliant structural colors via aqueous-based layer-by-layer dip-coating. Dyes Pigm. DOI 10.1016/j.diepig.2020.108961.Suche in Google Scholar

218. Dushkinaa N, Lakhtakiab A. Structural colors, cosmetics and fabrics. In Proceedings of SPIE - The International Society for Optical Engineering · Aug 2009.10.1117/12.824095Suche in Google Scholar

219. Seeboth A, Lötzsch D. In encyclopedia of polymer science and technology. Kroschwitz JI, editor. 3rd ed. vol. 12, New York, NY, USA: John Wiley & Sons, 2004:143.Suche in Google Scholar

220. Rubacha M. Thermochromic cellulose fibers. Polym Adv Technol. 2007;18:323.10.1002/pat.889Suche in Google Scholar

221. Rosenzweig M. Modern Plastics Int. 2003;338.Suche in Google Scholar

222. Day JH. Thermochromism of inorganic compounds. Chem Rev. 1968;68:649.10.1021/cr60256a001Suche in Google Scholar

223. Kirk-Othmer encyclopedia of chemical technology. 5th ed, vol. 6. New York, NY, USA: John Wiley & Sons, 2004:130.Suche in Google Scholar

224. Hughes GJ. Thermochromic solids. J Chem Educ. 1998;75:57.10.1021/ed075p57Suche in Google Scholar

225. Gaudon M, Deniard P, Demourges A, Thiry AE, Carbonera C, Nestour A, Largetea A, Létard JF, Jobic S. Unprecedented “one-finger-push”-induced phase transition with a drastic color change in an inorganic material. Adv Mater. 2007;19:3517.10.1002/adma.200700905Suche in Google Scholar

226. Lucht BL, Euler WB, Oj. Gregory in Proceedings of the 22 3rd American Chemical Society National Meeting, Orlando, FL, USA, 2002, oral contribution POLY 307.Suche in Google Scholar

227. Beildeck C, Lucht BL, Euler WB. Polym Prepr. 2001;42:211.Suche in Google Scholar

228. Green M. Chem Ind Sept. 1996;2:611.Suche in Google Scholar

229. Monk PM, Mortimer RJ, Rosseinsky DR. Electrochromism: fundamentals and applications. Monk PMS. The viologens: synthesis, physicochemical properties and applications of the salts of 4,4ʹ-bipyridine, Wiley, Chichester, 1998. Weinheim: VCH, 1995.10.1002/9783527615377Suche in Google Scholar

230. Aegerter M, Mennig M. Sol-gel technologies for glass producers and users. 2004. DOI: 10.1007/978-0-387-88953-5.10.1007/978-0-387-88953-5Suche in Google Scholar

231. Itaya K, Uchida I, Neff VD. Electrochemistry of poly nuclear transition metal cyanides: prussian blue and its analogues. Acc Chem Res. 1986;19:162.10.1021/ar00126a001Suche in Google Scholar

232. Neff VD, Electrochemical oxidation and reduction of thin films of prusian blue. Electrochem J. Soc. 125:886.10.1149/1.2131575Suche in Google Scholar

233. Dien C, Evans NA, Stapleton IW. In the chemistry of synthetic dyes. Venkataraman K, editor. vol. 8. New York: Academic Press,1978 :81.10.1016/B978-0-12-717008-4.50012-4Suche in Google Scholar

234. Patent DE 743 848 (IG Farbenindustrie AG). 1944.Suche in Google Scholar

235. Patent DE 746 839 (IG Farbenindustrie AG) . 1944.Suche in Google Scholar

236. Patent DE 12 60 652 (BASF). 1968.Suche in Google Scholar

237. Patent US 4,204,879 (Williams Hounslow Ltd). 1980.Suche in Google Scholar

238. Patent EP 0 177 138 (ICI). 1985.Suche in Google Scholar

239. Schwartz M, Baumstark R. Waterbased acrylates for decorative coatings, European coatings literature. Vincentz Network Hannover, 2001.Suche in Google Scholar

240. Dörr H, Holzinger F. Kronos Titandioxid in Dispersionsfarben. Leverkusen: Kronos Titan; 1989.Suche in Google Scholar

241. Nägele E. Dispersionsbaustoffe. Rudolf Müller Verlag, 1989.Suche in Google Scholar

242. Du Z, Wen S, Wang J, Yin C, Yu D, Luo J. The review of powder coatings. J Mater Sci Chem Eng. 2016;4:54.10.4236/msce.2016.43007Suche in Google Scholar

243. Pietschmann J. Industrielle Pulverbeschichtung, Vieweg und Teubner. Wiesbaden: GWV Fachverlage GmbH, 2010.10.1007/978-3-8348-9371-0Suche in Google Scholar

244. Kunaver M, Klanjsek Gunde M, Mozetic M, Hrovat A. The degree of dispersion of pigments in powder coatings. Dyes Pigm. 2003;57:235.10.1016/S0143-7208(03)00030-5Suche in Google Scholar

245. Shi Q, Huang W, Zhang Y, Zhang Y, Xu Y, Guo G. Curing of polyester powder coating modified with rutile nano-sized Ti-tanium dioxide studied by DSC and real-time FT-IR. J Therm Anal Calorim. 2011;108:1243. DOI:10.1007/s10973-011-1855-4.Suche in Google Scholar

246. Hadavand BS, Ataeefard M, Bafghi HF. Preparation of modified Nano ZnO/Polyester/TGIC powder coating nanocomposite and evaluation of its antibacterial activity. Compos Part B Eng. 2015;82:190. DOI: 10.1016/j.compositesb.2015.08.024.Suche in Google Scholar

247. Trottier EC, Affrossman S, Pethrick RA. Dielectric studies of Epoxy/Polyester powder coatings containing Titanium Dioxide, Silica, and Zinc Oxide pigments. JCT Res. 2012;9:525. DOI:10.1007/s11998-012-9405-y.Suche in Google Scholar

248. Puig M, Gimeno MJ, Gracenea JJ, Suay JJ. Anticorrosive properties enhancement in powder coating duplex systems by means of ZMP anticorrosive pigment. assessment by electrochemical techniques. Prog Org Coat. 2014;77:1993. DOI: 10.1016/j.porgcoat.2014.04.031.Suche in Google Scholar

249. Abd El-Ghaffer MA, Abdel-Wahab NA, Sanad MA, Sabaa MW. High performance anti-corrosive powder coatings based on phosphate pigments containing poly(o-aminophenol). Prog Org Coat. 2015;78:42. DOI: 10.1016/j.porgcoat.2014.09.021.Suche in Google Scholar

250. https://www.chinapowdercoating.com/future-development-powder-coating/.Suche in Google Scholar

251. https://www.chinapowdercoating.com/technicals/powder-coating-trends/.Suche in Google Scholar

252. Filip J, Vávra R, Maile FJ, Eibon B: Image-based discrimination and spatial non-uniformity analysis of effect coatings.In proceedings of the 8th conference on pattern recognition applications and methods. February, Prague 2019.10.5220/0007413906830690Suche in Google Scholar

253. Feng H, Xu H, Zhang F, Wang Z. Color prediction of metallic coatings from measurements at common geometries in portable multiangle spectrophotometers. JCT Res. 2018;15(22). DOI: 10.1007/s11998-017-0026-3.10.1007/s11998-017-0026-3Suche in Google Scholar

254. Dumain ED, Agawa T, Goel S, Toman A, Tse AS. Cure behavior of polyester-acrylate hybrid powder coatings. Jct Coating Tech. 1999;71:69. DOI: 10.1007/BF02697908.Suche in Google Scholar

255. Iwamura G, Agawa T, Maruyama K, Tekeda H. A novel acrylic polyester system for powder coatings. Surf Coat Int. 2000;83:285. DOI:10.1007/BF02692728.Suche in Google Scholar

256. Takeshita Y, Sawada T, Handa T, Watanuki Y, Kudo T. Influence of air-cooling time on physical properties of thermoplastic polyester powder coatings. Prog Org Coat. 2012;75:584. DOI:10.1016/j.porgcoat.2012.07.003.Suche in Google Scholar

257. Lafabrier A, Fahs A, Louarn G, Aragon E, Chailan J-F. Experimental evidence of the interface/interface formation between powder coating and composite material. Prog Org Coat. 2014;77:1137. DOI: 10.1016/j.porgcoat.2014.03.021.Suche in Google Scholar

258. Schwalm R. UV Coatings. Amsterdam: Elsevier B.V., 2007.Suche in Google Scholar

259. Menzel K, et al. UV & EB technology, RadTech North America, eI5, Charlotte, NC, May 2004. In: Technical Conference Proceedings.Suche in Google Scholar

260. Ryntz RA, Yaneff PV, editors. Coatings of polymers and plastics. Marcel Dekker Inc, 2003.10.1201/9780203912379Suche in Google Scholar

261. Stowe RW. Jct Coatings Tech. March 2003. www.radtech-europe.com.Suche in Google Scholar

262. Weber E. North American UV+EB market overview, RadTech. Orlando FL: USA, 2020.Suche in Google Scholar

263. Dvorchak MJ, Clouser ML. Aerospace UV cured coatings; yesterday, today & tomorrow, RadTech. Orlando FL: USA, 2020.Suche in Google Scholar

264. Heylen M. New developments in UV resin for metal coatings, RadTech Europe 2005. In: Conference Proceedings, Vol. I 2005, 181.Suche in Google Scholar

265. Weikard J. Urethane acrylates on metal substrates, RadTech Europe 2005. In: Conference Proceedings, Vol. I 2005, 187.Suche in Google Scholar

266. Amigo J. Innovative developments in UV pigmented low viscosity (100 % solids) for the automotive and metal coatings industry, RadTech Europe 2005. In: Conference Proceedings, Vol. I 2005, 195.Suche in Google Scholar

267. Pietschmann N. UV curable metal coatings - Special possibilities and problems, RadTech Europe 2005. In: Conference Proceedings, Vol. I, 2005, 523.Suche in Google Scholar

268. Schmitz C, Poplata T, Feilen A, Strehmel B. Radiation crosslinking of pigmented coating material by UV LEDs enabling depth curing and preventing oxygen inhibition. Prog Org Coat. 2020;144:105663.10.1016/j.porgcoat.2020.105663Suche in Google Scholar

269. Müller M. Metallpigmentierte UV-Systeme, Seminar Strahlenhärtung. Würzburg: Farbenlabor, 2019.Suche in Google Scholar

270. Beck E. Strahlenhärtung - Innovative Anwendungen, Farbenlabor: Seminar Strahlenhärtung, Würzburg, 2019.Suche in Google Scholar

271. Dvorchak MJ, Clouser ML. Aerospace UV cured coatings; Yesterday, Today & Tomorrow, RadTech 2020. Orlando FL, USA.Suche in Google Scholar

272. Meuthen B, Jandel A-S. Coil Coating: Bandbeschichtung: Verfahren, Produkte und Märkte. 2 Aufl ed. Wiesbaden: Friedrich Vieweg & Sohn Verlag, GWV Fachverlage GmbH, 2008.Suche in Google Scholar

273. Bianchi S, Broggi F. Coil coating: the advanced finishing technology. Key Eng Mater. 2016;710:181.10.4028/www.scientific.net/KEM.710.181Suche in Google Scholar

274. ASTM G173–03. Standard tables for reference solar spectral irradiance: direct normal and hemispherical on 37° tilted surface. West Conshohocken, PA: ASTM International; 2021. ASTM Home Page, http://www.astm.org. Accessed: 18 Jan 2021.Suche in Google Scholar

275. European Coil Coating Association (event): 38th Annual General Meeting (Salzburg 2004). Brussels: ECCA, 2004, N. Brown, Putting colour into coil coating.Suche in Google Scholar

276. Maile FJ, Schauer T, Eisenbach CD. Evaluation of corrosion and protection of coated metals with local ion concentration technique (LICT). Progr Org Coat. 2000;38:111.10.1016/S0300-9440(00)00080-1Suche in Google Scholar

277. Maile FJ, Schauer T, Eisenbach CD. Evaluation of the delamination of coatings with scanning reference electrode technique. Progr Org Coat. 2000;38:117.10.1016/S0300-9440(00)00081-3Suche in Google Scholar

278. Laible R. Umweltfreundliche Lackiersysteme für die industrielle Lackierung. Expert-Verlag, 1989.Suche in Google Scholar

279. Smith A. Inorganic primer pigments. Blue Bell, PA: Federation of Societies for Coatings Technology, 1989.Suche in Google Scholar

280. Wilke G, Ortmeier J. Coatings for plastics, european coatings tech files. Vincentz Network Hannover; 2012.Suche in Google Scholar

281. Gómez O, Perales E, Chorro E, Burgos FJ, Viqueira V, Vilaseca M, Martinez-verdú FM, Pujol J. Visual and instrumental assessments of color differences in automotive coatings. Color Res Appl. 2016;41:384.10.1002/col.21964Suche in Google Scholar

282. Lindstrom M. Buyology: Truth and lies about why we buy and the new science of desire. Bantam Dell Pub Group, 2008. ISBN 0-385-52388–2.Suche in Google Scholar

283. Maile FJ, Riva L, Casagrande R. Testing the repairability of Xirallic® OEM Paint finishes. Pitture e Vernici, 19/2004.Suche in Google Scholar

284. Patent US 4,346,144 (EI Du Pont de Nemours and Co). 1980.Suche in Google Scholar

285. Weiss KD. Paint and coatings: A mature industry in transition. Prog Polym Sci. 1997;22:203.10.1016/S0079-6700(96)00019-6Suche in Google Scholar

286. Farion F, Lavisse K. Tinted clear coats for mass production: challenges and success. In: Automotive Circle Conference, Vincentz Network, Nov 2020.Suche in Google Scholar

287. Heylen A., Smart and efficient single process paint method for new Yaris bi-tone design. In: Automotive Circle Conference, Vincentz Network, Nov 2020.Suche in Google Scholar

288. Steigleder T, Groenewolt M. Eco-paint process: a sustainable, lean & flexible paint process for truck cabs. In: Automotive Circle Conference, Vincentz Network, Nov 2020.Suche in Google Scholar

289. Gee P, Gilligan S. Eur Coat J. 2006;5:44.Suche in Google Scholar

290. Maile FJ, Martins A. Chrome-like appearance without using chromium. Picture E Vernici - Eur Coat. 2015;1:16.Suche in Google Scholar

291. Patent US 8,512,802 (Axalta Coating Systems). 2013.Suche in Google Scholar

292. Maile FJ, Reynders P, Sharrock S. Breathing life into cars. PPCJ. 2004; 194:15.Suche in Google Scholar

293. Liu W, Caroll JB. Jct Coatings Tech. 2006;3:82.Suche in Google Scholar

294. Seubert CM, Nichols ME. The Future of transportation mobility and its effect on coatings, color, and pigments. Boston: The Pigment & Colour Science Forum; 2018.Suche in Google Scholar

295. Plüg C. Recent developments in the field of pearlescent pigments. Berlin: Pigment & Color Science Forum; 2019.Suche in Google Scholar

296. High performance pigments, paints and coatings, market insights to 2023. Boston: Pigment & Color Science Forum, 2018.10.1016/j.fopow.2018.09.036Suche in Google Scholar

297. Schulte S. The best technical papers on pigments for high-performance coatings published in the European coatings journal within the past three years. In: EUROPEAN COATINGS dossier. Vincentz, 2018.Suche in Google Scholar

298. Gagro D. Gute Aussichten trotz Herausforderungen. Farbe Lack. 2019;125:1.Suche in Google Scholar

299. Kumar V, Bhattacharya A. The smart future of the coatings industry, paint & coatings industry PCI online. 8 Feb 2019.10.1016/j.fopow.2019.08.028Suche in Google Scholar

300. Fiuza TER, Borges FM, da Cunha JBM, Antunes SRM, de Andrade AVC, Antunes AC, de Souza ECF. Iron-based inorganic pigments from residue: Preparation and application in ceramic, Polymer, and Paint. Dyes Pigm. 2018;148:319.10.1016/j.dyepig.2017.09.025Suche in Google Scholar

301. Labaziewicz P. Cars are becoming rolling sensor platforms. In: TI E2E Community, 25 Sept 2014, Texas Instruments Inc.Suche in Google Scholar

302. The future of coatings in a world of autonomous vehicles. American Coatings Association. 2017. https://www.paint.org/article/future-coatings-world-autonomous-vehicles/.Suche in Google Scholar

303. Decker E. High-Tech coatings to enable autonomous vehicles. SAE Conference Detroit, 2018.Suche in Google Scholar

304. Liese M. Lacke für radarbasierte Fahrerassistenz-Systeme. JOT. 2019;9:36.10.1007/s35144-019-0294-zSuche in Google Scholar

305. Koerner M, Radek S. Druckfrische Autos? Farbe Lack. 2019;125:1.Suche in Google Scholar

Published Online: 2021-09-21

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2020-0160/pdf
Button zum nach oben scrollen