Abstract
This article introduces the general characteristics of the diarylethene class of photochromic dye and the structural features that make photochromism possible. It touches on the methodologies employed to synthesize these compounds as well as the influences that typical substitution patterns exert on photocoloration. A demonstration is then given of the great diversity pertaining to the potential applications in which researchers are seeking to exploit them as functional colorants.
References
[1] Irie M. Discovery and development of photochromic diarylethenes. Pure Appl Chem. 2015;87:617–26.10.1515/pac-2015-0208Suche in Google Scholar
[2] Towns A. Photochromic Dyes. to be submitted.Suche in Google Scholar
[3] Towns A. Naphthopyran dyes. Phys Sci Rev. 2020;5:20190085.10.1515/psr-2019-0085Suche in Google Scholar
[4] Takame S, Kobatake S, Kawai T, Irie M. Extraordinarily high thermal stability of the closed-ring isomer of 1,2-Bis(5-methyl-2-phenylthiazol-4-yl)perfluorocyclopentene. Chem Lett. 2003;32:892–3.10.1246/cl.2003.892Suche in Google Scholar
[5] Animoto K, Kawato T. Photochromism of organic compounds in the crystal state. J Photochem Photobiol C Photochem Rev. 2005;6:207–26.10.1016/j.jphotochemrev.2005.12.002Suche in Google Scholar
[6] Irie M. Photoswitchable Molecular Systems based on Diarylethenes. In: Feringa BL, editor(s). Molecular switches, 1st ed. Weinheim: Wiley-VCH. Chapter 2. 2001:37–62.10.1002/3527600329.ch2Suche in Google Scholar
[7] Nakatani K, Piard J, Yu P, Métivier R. Chapter 1 Introduction: organic photochromic molecules. In: Tian H, Zhang J editors, Photochromic materials: preparation, properties and applications, 1–45. Weinheim: Wiley-VCH, 2016.Suche in Google Scholar
[8] Irie M. Diarylethenes for memories and switches. Chem Rev. 2000;100:1685–716.10.1021/cr980069dSuche in Google Scholar PubMed
[9] Irie M, Fukaminato T, Matsuda K, Kobatake S. Photochromism of diarylethene molecules and crystals: memories, switches and actuators. Chem Rev. 2014;114:12174–277.10.1021/cr500249pSuche in Google Scholar PubMed
[10] Nakashima T, Kawai T. Chapter 10 Photochromic terarylenes. In: Irie M, Yokoyama Y, Seki T editors, New frontiers in photochromism, 183–204. Tokyo: Springer, 2013.10.1007/978-4-431-54291-9_10Suche in Google Scholar
[11] Lvov AG, Khusniyarov MM, Shirinian VZ. Azole-based diarylethenes as the next step towards advanced photochromic materials. J Photochem Photobiol C Photochem Rev. 2018;36:1–23.10.1016/j.jphotochemrev.2018.04.002Suche in Google Scholar
[12] Uchida K, Nakayama Y, Irie M. Thermally irreversible photochromic systems. reversible photocyclisation of 1,2-Bis(benzo[b]thiophen-3-yl)ethene derivatives. Bull Chem Soc Jpn. 1990;63:1311–15.10.1246/bcsj.63.1311Suche in Google Scholar
[13] Kitagawa D, Sasaki K, Kobatake S. Correlation between steric substituent constants and thermal cycloreversion reactivity of diarylethene closed-ring isomers. Bull Chem Soc Jpn. 2011;84:141–7.10.1246/bcsj.20100274Suche in Google Scholar
[14] Kitagawa D, Kobatake S. Strategy for molecular design of photochromic diarylethenes having thermal functionality. Chem Rec. 2016;16:2005–15.10.1002/tcr.201600060Suche in Google Scholar
[15] Uchida K, Tsuchida E, Aoi Y, Nakamura S, Irie M. Substitution effect on the coloration quantum yield of a photochromic bisbenzothienylethene. Chem Lett. 1999;28:63–4.10.1246/cl.1999.63Suche in Google Scholar
[16] For example, Tokyo Chemical Industry. Photochromic dyes. www.tcichemicals.com/eshop/en/gb/category_index/12989/ Accessed: 25 Feb 2020.Suche in Google Scholar
[17] Lucas LN, de Jong JJ, van Esch JH, Kellogg RM, Feringa BL. Syntheses of dithienylcyclopentene optical molecular switches. Eur J Org Chem. 2003;155–66.10.1002/1099-0690(200301)2003:1<155::AID-EJOC155>3.0.CO;2-SSuche in Google Scholar
[18] Szalóki G, Pozzo J-L. Synthesis of symmetrical and non-symmetrical bisthienylcyclopentenes. Chem Eur J. 2013;19:11124–32.10.1002/chem.201301645Suche in Google Scholar
[19] Chen S, Li W, Zhu W-H. Chapter 2 Novel ethene-bridged diarylethene photochromic systems: self-assembly, photoswitcher, and molecular logic gates. In: Yokoyama Y, Nakatani K editors, Photon-working switches, 37–62. Tokyo: Springer, 2017.10.1007/978-4-431-56544-4_2Suche in Google Scholar
[20] Nakayama Y, Hayashi K, Irie M. Themally irreversible photochromic systems. reversible photocyclisation of non-symmetric diarylethene derivatives. Bull Chem Soc Jpn. 1991;64:789–95.10.1246/bcsj.64.789Suche in Google Scholar
[21] Uchida K, Irie M. A photochromic dithienylethene that turns yellow by UV irradiation. Chem Lett. 1995;24:969–70.10.1246/cl.1995.969Suche in Google Scholar
[22] Hanazawa M, Sumiya R, Horikawa Y, Irie M. Thermally irreversible photochromic systems. reversible photocyclization of 1,2-bis (2-methylbenzo[b]thiophen-3-yl)perfluorocycloalkene derivatives. J Chem Soc Chem Commun. 1992;206–7.10.1039/c39920000206Suche in Google Scholar
[23] Irie M, Sakemura K, Okinaka M, Uchida K. Photochromism of dithienylethenes with electron-donating substituents. J Org Chem. 1995;60:8305–9.10.1021/jo00130a035Suche in Google Scholar
[24] Gilat SL, Kawai SH, Lehn J-M. Light-triggered electrical and optical switching devices. J Chem Soc Chem Commun. 1993;1439–42.10.1039/c39930001439Suche in Google Scholar
[25] Zhang Z, Wang W, Jin P, Xue J, Sun L, Huang J, et al. A building-block design for enhanced visible-light switching of diarylethenes. Nat Commun. 2019;10:4232.10.1038/s41467-019-12302-6Suche in Google Scholar
[26] Jia S, Fong W-K, Graham B, Boyd BJ. Photoswitchable molecules in long-wavelength light-responsive drug delivery: from molecular design to applications. Chem Mater. 2018;30:2873–87.10.1021/acs.chemmater.8b00357Suche in Google Scholar
[27] Fredrich S, Goestl R, Herder M, Grubert L, Hecht S. Switching diarylethenes reliably in both directions with visible light. Angew Chem Intl Ed Engl. 2016;55:1208–12.10.1002/anie.201509875Suche in Google Scholar
[28] Irie M, Lifka T, Kobatake S, Kato N. Photochromism of 1,2-Bis(2-methyl-5-phenyl-3-thienyl)perfluorocyclopentene in a Single-Crystalline Phase. J Am Chem Soc. 2000;122:4871–6.10.1021/ja993181hSuche in Google Scholar
[29] Takami S, Kawai T, Irie M. Photochromism of dithiazolylethenes having methoxy groups at the reaction centers. Eur J Org Chem. 2002;22:3796–800.10.1002/1099-0690(200211)2002:22<3796::AID-EJOC3796>3.0.CO;2-XSuche in Google Scholar
[30] Yamaguchi T, Irie M. Photochromic and fluorescent properties of bisfurylethene derivatives. J Mater Chem. 2006;16:4690–4.10.1039/b611294cSuche in Google Scholar
[31] Kuroki L, Takami S, Shibata K, Irie M. Photochromism of single crystals composed of dioxazolylethene and dithiazolylethene. Chem Commun. 2005;6005–7.10.1039/b512873kSuche in Google Scholar
[32] Uchida K, Ishikawa T, Takeshita M, Irie M. Thermally irreversible photochromic systems. reversible photocyclization of 1,2-Bis(thiazolyl) perfluorocydopentenes. Tetrahedron. 1998;54:6627–38.10.1016/S0040-4020(98)00330-5Suche in Google Scholar
[33] Hohlneicher G, Mueller M, Demmer M, Lex J, Penn JH, Gan L-X, et al. 1,2-diphenylcycloalkenes: electronic and geometric structures in the gas phase, solution, and solid state. J Am Chem Soc. 1988;110:4483–94.10.1021/ja00222a001Suche in Google Scholar
[34] Zhu W, Yang Y, Métivier R, Zhang Q, Guillot R, Xie Y, et al. Unprecedented stability of a photochromic bisthienylethene based on benzobisthiadiazole as an ethene bridge. Angew Chem Intl Ed. 2011;50:10986–90.10.1002/anie.201105136Suche in Google Scholar
[35] Wu Y, Guo Z, Zhu W-H, Wan W, Zhang J, Li W, et al. Photoswitching between black and colourless spectra exhibits resettable spatiotemporal logic. Mater Horiz. 2016;3:124–9.10.1039/C5MH00223KSuche in Google Scholar
[36] Irie M, Lifka T, Uchida K, Kobatake S, Shindo Y. Fatigue resistant properties of photochromic dithienylethenes: by-product formation. Chem Commun. 1999;747–50.10.1039/a809410aSuche in Google Scholar
[37] Jean-Ruel H, Cooney RR, Gao M, Lu C, Kochman MA, Morrison CA, et al. Femtosecond dynamics of the ring closing process of diarylethene: a case study of electrocyclic reactions in photochromic single crystals. J Phys Chem A. 2011;115:13158–68.10.1021/jp205818hSuche in Google Scholar
[38] Kellogg RM, Groen B, Wynberg H. Photochemically induced cyclization of some furyl- and thienylethenes. J Org Chem. 1967;32:3093–100.10.1021/jo01285a035Suche in Google Scholar
[39] Irie M. Chapter 5 Diarylethenes with heterocyclic aryl groups. In: Crano JC, Guglielmetti RJ editors, Organic photochromic and thermochromic compounds volume 1: main photochromic families, 207–22. New York: Plenum, 1999.Suche in Google Scholar
[40] Matsuda K, Irie M. Diarylethene as a photoswitching unit. J Photochem Photobiol C Photochem Rev. 2004;5:169–82.10.1016/S1389-5567(04)00023-1Suche in Google Scholar
[41] Warford CC, Lemieux V, Branda NR. Chapter 1. Multifunctional diarylethenes. In: Feringa BL, Browne WR, editors. Molecular switches. 2nd ed. Weinheim: Wiley-VCH, 2011:3–35.Suche in Google Scholar
[42] Zhang J, Tian H. The endeavor of diarylethenes: new structures, high performance, and bright future. Adv Opt Mater. 2018;6:1701278.10.1002/adom.201701278Suche in Google Scholar
[43] Yokoyama Y, Nakatani K, eds. Photon-working switches. Tokyo: Springer, 2017.10.1007/978-4-431-56544-4Suche in Google Scholar
[44] Stellacci F, Bertarelli C, Toscano F, Gallazzi MC, Zerbi G. Diarylethene-based photochromic rewritable optical memories: on the possibility of reading in the mid-infrared. Chem Phys Lett. 1999;302:563–70.10.1016/S0009-2614(99)00129-3Suche in Google Scholar
[45] Minkin VI. Bistable organic, organometallic, and coordination compounds for molecular electronics and spintronics. Russ Chem Bull Int Ed. 2008;57:687–717.10.1007/s11172-008-0111-ySuche in Google Scholar
[46] Bertarelli C, Bianco A, Castagna R, Pariani G. Photochromism into optics: opportunities to develop light-triggered optical elements. J Photochem Photobiol C Photochem Rev. 2011;12:106–25.10.1016/j.jphotochemrev.2011.05.003Suche in Google Scholar
[47] Feringa BL, van Delden RA, Koumura N, Geertsema EM. Chiroptical molecular switches. Chem Rev. 2000;100:1789–816.10.1002/3527600329.ch5Suche in Google Scholar
[48] Nakagawa T, Ubukata T, Yokoyama Y. Chirality and stereoselectivity in photochromic reactions. J Photochem Photobiol C Photochem Rev. 2018;34:152–91.10.1016/j.jphotochemrev.2017.12.004Suche in Google Scholar
[49] Bisoyi HK, Li Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to application. Chem Rev. 2016;116:15089–166.10.1021/acs.chemrev.6b00415Suche in Google Scholar PubMed
[50] Göstl R, Senf A, Hecht S. Remote-controlling chemical reactions by light: Towards chemistry with high spatio-temporal resolution. Chem Soc Rev. 2014;43:1982–96.10.1039/c3cs60383kSuche in Google Scholar PubMed
[51] Wang L, Li Q. Photochromism into nanosystems: towards lighting up the future nanoworld. Chem Soc Rev. 2018;47:1044–97.10.1039/C7CS00630FSuche in Google Scholar
[52] Hüll K, Morstein J, Trauner D. In vivo photopharmacology. Chem Rev. 2018;118:10710–47.10.1021/acs.chemrev.8b00037Suche in Google Scholar PubMed
[53] Ihrig SP, Eisenreich F, Hecht S. Photoswitchable polymerization catalysis: state of the art, challenges, and perspectives. Chem Commun. 2019;55:4290–8.10.1039/C9CC01431DSuche in Google Scholar PubMed
[54] Mostafavi SH, Tong F, Dugger TW, Kisailus D, Bardeen CJ. Noncovalent photochromic polymer adhesion. Macromol. 2018;51:2388–94.10.1021/acs.macromol.8b00036Suche in Google Scholar
[55] Pu S-Z, Sun Q, Fan C-B, Wang R-J, Liu G. Recent advances in diarylethene-based multi-responsive molecular switches. J Mater Chem C. 2016;4:3075–93.10.1039/C6TC00110FSuche in Google Scholar
[56] Nevskyi O, Sysoiev D, Dreier J, Stein SC, Oppermann A, Lemken F, et al. Fluorescent diarylethene photoswitches – A universal tool for super-resolution microscopy in nanostructured materials. Small. 2018;14:1703333.10.1002/smll.201703333Suche in Google Scholar
[57] Tsivgoulis GM, Lehn J-M. Photonic molecular devices: reversibly photoswitchable fluorophores for nondestructive readout for optical memory. Angew Chem Int Ed. 1995;34:1119–22.10.1002/anie.199511191Suche in Google Scholar
[58] Guo F, Guo Z. Inspired smart materials with external stimuli responsive wettability: a review. RSC Adv. 2016;6:36623–41.10.1039/C6RA04079ASuche in Google Scholar
[59] Dunne A, Francis W, Delaney C, Florea L, Diamond D. Stimuli-controlled fluid control and microvehicle movement in microfluidic channels, reference module in materials science and materials engineering. Elsevier, 2017. http://doi.org/10.1016/B978-0-12-803581-8.04043-1 Accessed: 25 Feb 2020.10.1016/B978-0-12-803581-8.04043-1Suche in Google Scholar
[60] Towns A. Colorants: general survey. Phys Sci Rev. 2019;4. DOI: 10.1515/psr-2019-0008.Suche in Google Scholar
[61] Norsten TB, Branda NR. Axially coordinated porphyrinic photochromes for non-destructive information processing. Adv Mater. 2001;13:347–9.10.1002/1521-4095(200103)13:5<347::AID-ADMA347>3.0.CO;2-9Suche in Google Scholar
[62] Higashiguchi K, Matsuda K, Tanifuji N, Irie M. Full-color photochromism of a fused dithienylethene trimer. J Am Chem Soc. 2005;127:8922–3.10.1021/ja051467iSuche in Google Scholar
[63] Tsujioka T, Irie M. Electrical functions of photochromic molecules. J Photochem Photobio C Photochem Rev. 2010;11:1–14.10.1016/j.jphotochemrev.2010.02.001Suche in Google Scholar
[64] Gilat SL, Kawai SH, Lehn J-M. Light-triggered molecular devices: photochemical switching of optical and electrochemical properties in molecular wire type diarylethene species. Chem Eur J. 1995;1:275–84.10.1002/chem.19950010504Suche in Google Scholar
[65] Kawai T, Kunitake T, Irie M. Novel photochromic conducting polymer having diarylethene derivative in the main chain. Chem Lett. 1999;28:905–6.10.1246/cl.1999.905Suche in Google Scholar
[66] Gentili PL, Giubila MS, Germani R, Heron BM. Photochromic and luminescent compounds as artificial neuron models. Dyes Pigm. 2018;156:149–59.10.1016/j.dyepig.2018.04.006Suche in Google Scholar
[67] Galbraith CA, Galbraith JA. Super-resolution microscopy at a glance. J Cell Sci. 2011;124:1607–11.10.1242/jcs.080085Suche in Google Scholar PubMed PubMed Central
[68] Hell SW. Nanoscopy with Focused Light (Nobel Lecture). Angew Chem Int Ed. 2015;54:8054–66.10.1002/anie.201504181Suche in Google Scholar PubMed
[69] Pujals S, Feiner-Gracia N, Albertazzi L. Unveiling complex structure and dynamics in supramolecular biomaterials using super-resolution microscopy. In: Azevedo HS, da Silva RM, editor(s). Self-assembling biomaterials: molecular design, characterization and application in biology and medicine. Kidlington: Woodhead. Chapter 12 2018:251–74.10.1016/B978-0-08-102015-9.00013-7Suche in Google Scholar
[70] Minoshima M, Kikuchi K. Photostable and photoswitching fluorescent dyes for super-resolution imaging. J Biol Inorg Chem. 2017;22:639–52.10.1007/s00775-016-1435-ySuche in Google Scholar PubMed
[71] Uno K, Bossi ML, Konen T, Belov VN, Irie M, Hell SW. Asymmetric diarylethenes with oxidized 2-Alkylbenzothiophen-3-yl units: Chemistry, fluorescence, and photoswitching. Adv Opt Mater. 2019;7:1801746.10.1002/adom.201801746Suche in Google Scholar
[72] Uno K, Bossi ML, Irie M, Belov VN, Hell SW. Reversibly photoswitchable fluorescent diarylethenes resistant against photobleaching in aqueous solutions. J Am Chem Soc. 2019;141:16471–8.10.1021/jacs.9b08748Suche in Google Scholar PubMed
[73] Kathan M, Hecht S. Photoswitchable molecules as key ingredients to drive systems away from the global thermodynamic minimum. Chem Soc Rev. 2017;46:5536–50.10.1039/C7CS00112FSuche in Google Scholar PubMed
[74] Szymański W, Beierle JM, Kistemaker HA, Velema WA, Feringa BL. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem Rev. 2013;113:6114–78.10.1021/cr300179fSuche in Google Scholar PubMed
[75] Zhang J, Wang J, Tian H. Taking orders from light: progress in photochromic bio-materials. Mater Horiz. 2014;1:169–84.10.1039/C3MH00031ASuche in Google Scholar
[76] Xiao C, Zhao W-Y, Zhou D-Y, Huang Y, Tao Y, Wu W-H, et al. Recent advance of photochromic diarylethenes-containing supramolecular systems. Chin Chem Lett. 2015;26:817–24.10.1016/j.cclet.2015.05.013Suche in Google Scholar
[77] Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL. Emerging targets in photopharmacology. Angew Chem Intl Edn. 2016;55:10978–99.10.1002/anie.201601931Suche in Google Scholar PubMed
[78] Reeßing F, Szymanski W. Beyond photodynamic therapy: light-activated cancer chemotherapy. Curr Med Chem. 2017;24:4905–50.10.2174/0929867323666160906103223Suche in Google Scholar PubMed
[79] Velema WA, Szymanski W, Feringa BL. Photopharmacology: beyond proof of principle. J Am Chem Soc. 2014;136:2178–91.10.1021/ja413063eSuche in Google Scholar PubMed
[80] Presa A, Brissos RF, Cabellero AB, Borilovic I, Korrodi-Gregório L, Pérez-Tomás R, et al. Photoswitching the cytotoxic properties of platinum(II) compounds. Angew Chem Intl Edn. 2015;54:4561–5.10.1002/anie.201412157Suche in Google Scholar PubMed
[81] Albert L, Vázquez O. Photoswitchable peptides for spatiotemporal control of biological functions. Chem Commun. 2019;55:10192–213.10.1039/C9CC03346GSuche in Google Scholar
[82] Babii O, Afonin S, Garmanchuk LV, Nikulina VV, Nikolaienko TV, Storozhuk OV, et al. Direct photocontrol of peptidomimetics: an alternative to oxygen-dependent photodynamic cancer therapy. Angew Chem. 2016;128:5583–6.10.1002/ange.201600506Suche in Google Scholar
[83] Babii O, Afonin S, Ischenko AY, Schober T, Negelia AO, Tolstanova GM, et al. Structure-activity relationships of photoswitchable diarylethene-based β-hairpin peptides as membranolytic antimicrobial and anticancer agents. J Med Chem. 2018;61:10793–813.10.1021/acs.jmedchem.8b01428Suche in Google Scholar PubMed
[84] Schober T, Wehl I, Afonin S, Babii O, Iampolska A, Schepers U, et al. Controlling the uptake of diarylethene-based cell-penetrating peptides into cells using light. ChemPhotoChem. 2019;3:384–91.10.1002/cptc.201900019Suche in Google Scholar
[85] Fleming C, Remón P, Li S, Simeth NA, König B, Grøtli M, et al. On the use of diarylmaleimide derivatives in biological contexts: An investigation of the photochromic properties in aqueous solution. Dyes Pigm. 2017;137:410–20.10.1016/j.dyepig.2016.10.023Suche in Google Scholar
[86] Komarov IV, Afonin S, Babii O, Schober T, Ulrich AS. Efficiently photocontrollable or not? Biological activity of photoisomerizable diarylethenes. Chem Eur J. 2018;24:11245–54.10.1002/chem.201801205Suche in Google Scholar PubMed
[87] Higashiguchi K, Taira G, Kitai J-I, Hirose T, Matsuda K. Photoinduced macroscopic morphological transformation of an amphiphilic diarylethene assembly: reversible dynamic motion. J Am Chem Soc. 2015;137:2722–9.10.1021/ja512924qSuche in Google Scholar PubMed
[88] Kobatake S, Takami S, Muto H, Ishikawa T, Irie M. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature. 2007;446:778–81.10.1038/nature05669Suche in Google Scholar PubMed
[89] Nakagawa Y, Morimoto M, Yasuda N, Hyodo K, Yokojima S, Nakamura S, et al. Photosalient effect of diarylethene crystals of Thiazolyl and Thienyl derivatives. Chem Eur J. 2019;25:7874–80.10.1002/chem.201900811Suche in Google Scholar PubMed
[90] Mamiya J-I, Kuriyama A, Yokota N, Yamada M, Ikeda T. Photomobile polymer materials: photoresponsive behavior of cross-linked liquid-crystalline polymers with mesomorphic diarylethenes. Chem Eur J. 2015;21:3174–7.10.1002/chem.201406299Suche in Google Scholar PubMed
[91] Kuenstler AS, Hayward RC. Light-induced shape morphing of thin films. Curr Opinion Colloid Interface Sci. 2019;40:70–86.10.1016/j.cocis.2019.01.009Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- A computer-based approach for developing linamarase inhibitory agents
- Ion exchange in downstream processing in biotechnology
- Greening the curriculum at the University of Toledo School of green chemistry and engineering
- Application of polymer membranes in downstream processes
- Diarylethene Dyes
Artikel in diesem Heft
- A computer-based approach for developing linamarase inhibitory agents
- Ion exchange in downstream processing in biotechnology
- Greening the curriculum at the University of Toledo School of green chemistry and engineering
- Application of polymer membranes in downstream processes
- Diarylethene Dyes