Startseite Molecular mechanics approaches for rational drug design: forcefields and solvation models
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Molecular mechanics approaches for rational drug design: forcefields and solvation models

  • Boris D. Bekono , Alfred N. Sona , Donatus B. Eni , Luc C. O. Owono , Eugène Megnassan und Fidele Ntie-Kang EMAIL logo
Veröffentlicht/Copyright: 4. März 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The use of molecular mechanics (MM) in understanding the energy and target of a drug, its structures, and properties has increased recently. This is achieved by the formulation of a simple MM energy equation, which represents the sum of the different energy interactions, often referred to as “forcefields” (FFs). The concept of FFs is now widely used as one of the fundamental tools for the in silico prediction of drug-target interactions. To generate more accurate predictions in the in silico drug discovery projects, the solvent effects are often taken into account. This review seeks to present an introductory guide for the reader on the fundamentals of MM with special emphasis on the role of FFs and the solvation models.


Corresponding author: Fidele Ntie-Kang, Department of Chemistry, University of Buea, P.O. Box 63 Buea, Buea, Cameroon; Department of Pharmaceutical Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Str. 4, 06120 Halle (Saale), Germany; and Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany, E-mail:

Acknowledgements

FNK acknowledges a return fellowship and an equipment subsidy from the Alexander von Humboldt Foundation, Germany. BDB acknowledges financial support from the Alexander von Humboldt Foundation as an accompanying junior scientist. FNK is currently a Guest Professor at TU Dresden, a position funded by the German Academic Exchange Services (DAAD).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Schneider, G, Fechner, U. Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 2005;8:649–63. https://doi.org/10.1038/nrd1799.Suche in Google Scholar

2. Kuhlmann, J. Drug research: from the idea to the product. Int J Clin Pharmacol Ther 1997;35:541–52.Suche in Google Scholar

3. Roses, AD. Pharmacogenetics in drug discovery and development: a translational perspective. Nat Rev Drug Discov 2008;7:807–17. https://doi.org/10.1038/nrd2593.Suche in Google Scholar

4. Pranita, PK, Madhavi, MM, Rishikesh, VA, Rajesh, JO, Sandip, SK. Computer-aided drug design: an innovative tool for modeling. J Med Chem 2012;2:139–48.10.4236/ojmc.2012.24017Suche in Google Scholar

5. Jorgensen, WL. The many roles of computation in drug discovery. Science 2004;303:1813–18. https://doi.org/10.1126/science.1096361.Suche in Google Scholar

6. Shim, J, MacKerell, ADJr. Computational ligand-based rational design: role of conformational sampling and force fields in model development. MedChemComm 2011;2:356–70. https://doi.org/10.1039/c1md00044f.Suche in Google Scholar

7. Lifson, S, Warshel, A. Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n-alkane molecules. J Chem Phys 1968;49:5116–29. https://doi.org/10.1063/1.1670007.Suche in Google Scholar

8. Oostenbrink, C, Villa, A, Mark, AE, Van Gunsteren, WF. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 2004;25:1656–76. https://doi.org/10.1002/jcc.20090.Suche in Google Scholar

9. Andrews, DH. The relation between the Raman Spectra and the structure of organic molecules. Phys Rev 1930;36:544. https://doi.org/10.1103/physrev.36.544.Suche in Google Scholar

10. Pissurlenkar, RR, Shaikh, MS, Iyer, RP, Coutinho, EC. Molecular mechanics force fields and their applications in drug design. Anti-Infect Agents Med Chem 2009;8:128–50. https://doi.org/10.2174/187152109787846088.Suche in Google Scholar

11. Bartol, P, Comba, M, Zimmer, M. Conformational searching of transition metal compounds. J Comput Chem 1999;20:1549–58. https://doi.org/10.1002/(sici)1096-987x(19991115)20:14<1549::aid-jcc8>3.0.co;2-f.10.1002/(SICI)1096-987X(19991115)20:14<1549::AID-JCC8>3.0.CO;2-FSuche in Google Scholar

12. Sheinerman, FB, Norel, R, Honig, B. Electrostatic aspects of protein-protein interactions. Curr Opin Struct Biol 2000;10:153–59. https://doi.org/10.1016/s0959-440x(00)00065-8.Suche in Google Scholar

13. Lee, LP, Tidor, B. Barstar is electrostatically optimized for tight binding to barnase. Nat Struct Biol 2001;8:73–6. https://doi.org/10.1038/83082.Suche in Google Scholar PubMed

14. Norel, R, Sheinerman, F, Petrey, D, Honig, B. Electrostatic contributions to protein-protein interactions: fast energetic filters for docking and their physical basis. Protein Sci 2001;10:2147–61. https://doi.org/10.1110/ps.12901.Suche in Google Scholar PubMed PubMed Central

15. McInnes, C. Virtual screening strategies in drug discovery. Curr Opin Chem Biol 2007;11:494–502. https://doi.org/10.1016/j.cbpa.2007.08.033.Suche in Google Scholar PubMed

16. Allinger, NL. Conformational analysis 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J Am Chem Soc 1977;99:8127–34. https://doi.org/10.1021/ja00467a001.Suche in Google Scholar

17. Weiner, SJ, Kollman, PA, Nguyen, DT, Case, DA. An all atom force field for simulations of proteins and nucleic acids. J Comput Chem 1986;7:230–52. https://doi.org/10.1002/jcc.540070216.Suche in Google Scholar PubMed

18. Jorgensen, WL, Maxwell, DS, Tirado Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 1996;118:11225–36. https://doi.org/10.1021/ja9621760.Suche in Google Scholar

19. Scott, WRP, Hunenberger, PH, Tironi, IG, Mark, AE, Billeter, SR, Fennen, J, et al.. The GROMOS biomolecular simulation program package. J Phys Chem 1999;103:3596–607. https://doi.org/10.1021/jp984217f.Suche in Google Scholar

20. Cho, AE, Guallar, V, Berne, BJ, Friesner, R. Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach. J Comput Chem 2005;26:915–31. https://doi.org/10.1002/jcc.20222.Suche in Google Scholar PubMed PubMed Central

21. Warshel, A, Levitt, M. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 1976;103:227–49. https://doi.org/10.1016/0022-2836(76)90311-9.Suche in Google Scholar PubMed

22. Field, MJ, Bash, PA, Karplus, M. Combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem 1990;11:700–33. https://doi.org/10.1002/jcc.540110605.Suche in Google Scholar

23. Groenho, G. Introduction to QM/MM simulations. Methods Mol Biol 2013;924:43–66.10.1007/978-1-62703-017-5_3Suche in Google Scholar PubMed

24. Maseras, F, Morokuma, K. IMOMM: a new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J Comput Chem 1995;16:1170–79. https://doi.org/10.1002/jcc.540160911.Suche in Google Scholar

25. Ryde, U. The coordination of the catalytic zinc in alcohol dehydrogenase studied by combined quantum-chemical and molecular mechanics calculations. J Comput Aided Mol Des 1996;10:153–64. https://doi.org/10.1007/bf00402823.Suche in Google Scholar PubMed

26. Svensson, M, Humbel, S, Froese, RDJ, Matsubara, T, Sieber, S, Morokuma, K. ONIOM: a multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for Diels–Alder reactions and Pt(P(t-Bu)3)2 H2 oxidative addition. J Phys Chem 1996;100:19357–363. https://doi.org/10.1021/jp962071j.Suche in Google Scholar

27. Ferrer, S, Ruiz-Pernia, J, Marti, S, Moliner, V, Tunon, I, Bertran, J, et al.. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives. Adv Protein Chem Struct Biol 2011;8:81–142. https://doi.org/10.1016/b978-0-12-386485-7.00003-x.Suche in Google Scholar PubMed

28. Cavalli, A, Carloni, P, Recanatini, M. Target-related applications of first principles quantum chemical methods in drug design. Chem Rev 2006;106:3497–519. https://doi.org/10.1021/cr050579p.Suche in Google Scholar PubMed

29. Menikarachchi, LC, Gascon, JA. QM/MM approaches in medicinal chemistry research. Curr Top Med Chem 2010;10:46–54. https://doi.org/10.2174/156802610790232297.Suche in Google Scholar PubMed

30. Bekono, BD, Ntie-Kang, F, Owono, LCO, Megnassan, E. Targeting cysteine proteases from Plasmodium falciparum: a general overview, rational drug design and computational approaches for drug discovery. Curr Drug Targets 2018;19:501–26. https://doi.org/10.2174/1389450117666161221122432.Suche in Google Scholar PubMed

31. Senn, HM, Thiel, W. QM/MM methods for biomolecular systems. Angew Chem Int Ed 2009;48:1198–229. https://doi.org/10.1002/anie.200802019.Suche in Google Scholar PubMed

32. van der Kamp, MW, Mulholland, AJ. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 2013;52:2708–28. https://doi.org/10.1021/bi400215w.Suche in Google Scholar PubMed

33. Lodola, A, De Vivo, M. The increasing role of QM/MM in drug. Adv Protein Chem Struct 2012;87:337–62. https://doi.org/10.1016/b978-0-12-398312-1.00011-1.Suche in Google Scholar

34. Shaw, KE, Woods, CJ, Mulholland, AJ. QM and QM/MM approaches to evaluating binding affinities. Burger’s Med Chem Drug Discov. Abraham DJ (Ed.) 2010;1:725–52. https://doi.org/10.1002/0471266949.bmc143.Suche in Google Scholar

35. Josephson, BD, Pallikari-Viras, F. Biological utilization of quantum nonlocality. Found Phys 1991;21:197–207. https://doi.org/10.1007/bf01889532.Suche in Google Scholar

36. Pearlman, DA, Kollman, PA. Evaluating the assumptions underlying force field development and application using free energy conformational maps for nucleosides. J Am Chem Soc 1991;113:7167–77. https://doi.org/10.1021/ja00019a012.Suche in Google Scholar

37. Dillen, JLM. PEFF: a program for the development of empirical force field. J Comput Chem 1992;13:257–67. https://doi.org/10.1002/jcc.540130302.Suche in Google Scholar

38. Momany, FA, McGuire, RF, Burgess, AW, Sheraga, HA. Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occuring amino acids. J Phys Chem 1975;79:2361–81. https://doi.org/10.1021/j100589a006.Suche in Google Scholar

39. Nakamoto, K. The Urey–Bradley force field: its significance and application. In: Developments in applied spectroscopy. Boston, MA: Springer; 1964: 158–68 pp.10.1007/978-1-4684-8688-9_12Suche in Google Scholar

40. Jorgensen, WL, Tirado-Rives, J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 1988;110:1657–66. https://doi.org/10.1021/ja00214a001.Suche in Google Scholar

41. Sun, H. COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 1998;102:7338–64. https://doi.org/10.1021/jp980939v.Suche in Google Scholar

42. Halgren, TA. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 1996;17:490–519. https://doi.org/10.1002/(sici)1096-987x(199604)17:5/6<490::aid-jcc1>3.0.co;2-p.10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-PSuche in Google Scholar

43. Ermer, O, Lifson, S. Consistent force field calculations. III. Vibrations, conformations, and heats of hydrogenation of nonconjugated olefins. J Am Chem Soc 1973;95:4121–32. https://doi.org/10.1021/ja00794a003.Suche in Google Scholar

44. Mayo, SL, Olafson, BD, Goddard, WA. DREIDING: a generic force field for molecular simulations. J Phys Chem 1990;94:8897–909. https://doi.org/10.1021/j100389a010.Suche in Google Scholar

45. Rappé, AK, Casewit, CJ, Colwell, KS, GoddardIIIWA, Skiff, WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 1992;114:10024–35. https://doi.org/10.1021/ja00051a040.Suche in Google Scholar

46. MacKerell, AD, Bashford, D, Bellott, M, Dunbrack, RL, Evanseck, JD, Field, MJ, et al.. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 1998;102:3586–616. https://doi.org/10.1021/jp973084f.Suche in Google Scholar PubMed

47. Weiner, PK, Kollman, PA. AMBER: assisted model building with energy refinement. A general program for modeling molecules and their interactions. J Comput Chem 1981;2:287–303. https://doi.org/10.1002/jcc.540020311.Suche in Google Scholar

48. Oostenbrink, C, Villa, A, Mark, AE, Van Gunsteren, WF. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 2004;25:1656–76. https://doi.org/10.1002/jcc.20090.Suche in Google Scholar PubMed

49. Morley, SD, Abraham, RJ, Haworth, IS, Jackson, DE, Saunders, MR, Vinter, JG. COSMIC (90): an improved molecular mechanics treatment of hydrocarbons and conjugated systems. J Comput Aided Mol Des 1991;5:475–96. https://doi.org/10.1007/bf00125666.Suche in Google Scholar PubMed

50. Ripoll, DR, Scheraga, HA. ECEPP: empirical conformational energy program for peptides. In: Encyclopedia of computational chemistry. London: Wiley; 2002:2 p.10.1002/0470845015.cea002Suche in Google Scholar

51. Levitt, M, Hirshberg, M, Sharon, R, Daggett, V. Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution. Comput Phys Commun 1995;91:215–31. https://doi.org/10.1016/0010-4655(95)00049-l.Suche in Google Scholar

52. Shi, S, Yan, L, Yang, Y, Fisher-Shaulsky, J, Thacher, T. An extensible and systematic force field, ESFF, for molecular modeling of organic, inorganic, and organometallic systems. J Comput Chem 2003;24:1059–76. https://doi.org/10.1002/jcc.10171.Suche in Google Scholar PubMed

53. Maple, JR, Cao, Y, Damm, W, Halgren, TA, Kaminski, GA, Zhang, Y, et al.. A polarizable force field and continuum solvation methodology for modeling of protein–ligand interactions. J Chem Theor Comput 2005;1:694–715. https://doi.org/10.1021/ct049855i.Suche in Google Scholar PubMed

54. Clark, M, Cramer, RD, van Opdenbosch, N. Validation of the general purpose Tripos 5.2 force field. J Comput Chem 1989;10:982–1012. https://doi.org/10.1002/jcc.540100804.Suche in Google Scholar

55. Vedani, A. YETI: an interactive molecular mechanics program for small-molecule protein complexes. J Comput Chem 1988;9:269–80. https://doi.org/10.1002/jcc.540090310.Suche in Google Scholar

56. Maple, JR, Hwang, MJ, Stockfisch, TP, Hagler, AT. Derivation of Class II force fields. III. Characterization of a quantum force field for alkanes. Isr J Chem 1994;34:195–231. https://doi.org/10.1002/ijch.199400025.Suche in Google Scholar

57. Palmo, K, Mannfors, B, Mirkin, NG, Krimm, S. Potential energy functions: from consistent force fields to spectroscopically determined polarizable force fields. Biopolymers 2003;68:383–94. https://doi.org/10.1002/bip.10254.Suche in Google Scholar PubMed

58. Jing, Z, Liu, C, Cheng, SY, Qi, R, Walker, BD, Piquemal, JP, et al.. Polarizable force fields for biomolecular simulations: recent advances and applications. Annu Rev Biophys 2019;6:371–94. https://doi.org/10.1146/annurev-biophys-070317-033349.Suche in Google Scholar PubMed PubMed Central

59. González, MA. Force fields and molecular dynamics simulations. Collection SFN 2011;12:169–200. https://doi.org/10.1051/sfn/201112009.Suche in Google Scholar

60. Ponder, JW, Wu, C, Ren, P, Pande, VS, Chodera, JD, Schnieders, MJ, et al.. Current status of the AMOEBA polarizable force field. J Phys Chem B 2010;114:2549–64. https://doi.org/10.1021/jp910674d.Suche in Google Scholar PubMed PubMed Central

61. Huang, J, Lopes, PEM, Roux, B, MacKerell, AD. Recent advances in polarizable forcefields for macromolecules: microsecond simulations of proteins using the classical Drude oscillator model. Phys Chem Lett 2014;5:3144–50. https://doi.org/10.1021/jz501315h.Suche in Google Scholar PubMed PubMed Central

62. Maggi, N, Arrigo, P, Ruggiero, C. Drug design for cardiovascular disease: the effect of solvation energy on Rac1-ligand interactions. Conf Proc IEEE Eng Med Biol Soc 2011;2011:3237–40.10.1109/IEMBS.2011.6090880Suche in Google Scholar PubMed

63. Bienstoc, RJ. Solvation methods for protein–ligand docking. fragment-based methods in drug discovery. Methods Mol Biol 2015;1289:3–12.10.1007/978-1-4939-2486-8_1Suche in Google Scholar PubMed

64. Tomasi, J, Mennucci, B, Cammi, R. Quantum mechanical continuum solvation models. Chem Rev 2005;105:2999–3094. https://doi.org/10.1021/cr9904009.Suche in Google Scholar PubMed

65. Kleinjung, J, Fraternali, F. Design and application of implicit solvent models in biomolecular simulations. Curr Opin Struct Biol 2014;25:126–34. https://doi.org/10.1016/j.sbi.2014.04.003.Suche in Google Scholar PubMed PubMed Central

66. Cournia, Z, Allen, B, Sherman, W. Relative binding free energy calculations in drug discovery: recent advances and practical considerations. J Chem Inf Model 2017;26:2911–37. https://doi.org/10.1021/acs.jcim.7b00564.Suche in Google Scholar PubMed

Published Online: 2021-03-04

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2019-0128/pdf
Button zum nach oben scrollen