Startseite Applications of magnetic resonance imaging in chemical engineering
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Applications of magnetic resonance imaging in chemical engineering

  • Stefan Benders EMAIL logo und Bernhard Blümich
Veröffentlicht/Copyright: 9. Mai 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

While there are many techniques to study phenomena that occur in chemical engineering applications, magnetic resonance imaging (MRI) receives increasing scientific interest. Its non-invasive nature and wealth of parameters with the ability to generate functional images and contrast favors the use of MRI for many purposes, in particular investigations of dynamic phenomena, since it is very sensitive to motion. Recent progress in flow-MRI has led to shorter acquisition times and enabled studies of transient phenomena. Reactive systems can easily be imaged if NMR parameters such as relaxation change along the reaction coordinate. Moreover, materials and devices can be examined, such as batteries by mapping the magnetic field around them.

References

[1] Purcell EM, Torrey HC, Pound RV. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev. 1946;69:37–8.10.1103/PhysRev.69.37Suche in Google Scholar

[2] Bloch F, Hansen WW, Packard M. Nuclear induction. Phys Rev. 1946;69:127.10.1103/PhysRev.69.127Suche in Google Scholar

[3] Mansfield P, Grannell PK. NMR ‘diffraction’ in solids? J Phys C: Solid State Phys. 1973;6:L422.10.1088/0022-3719/6/22/007Suche in Google Scholar

[4] Lauterbur PC. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature. 1973;242:190–1.10.1038/242190a0Suche in Google Scholar

[5] Hahn EL. Spin Echoes. Phys Rev. 1950;80:580–94.10.1103/PhysRev.80.580Suche in Google Scholar

[6] Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. 1954;94:630–8.10.1103/PhysRev.94.630Suche in Google Scholar

[7] Meiboom S, Gill D. Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum. 1958;29:688–91.10.1063/1.1716296Suche in Google Scholar

[8] Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review. NMR Biomed 2002;15:456–67.10.1002/nbm.783Suche in Google Scholar PubMed

[9] Lauterbur PC, Kramer DM, House WV, Chen C-N. Zeugmatographic high resolution nuclear magnetic resonance spectroscopy. Images of chemical inhomogeneity within macroscopic objects. J Am Chem Soc 1975;97:6866–8.10.1021/ja00856a046Suche in Google Scholar

[10] Henkelman RM, Huang X, Xiang Q-S, Stanisz GJ, Swanson SD, Bronskill MJ. Quantitative interpretation of magnetization transfer. Magn Reson Med. 1993;29:759–66.10.1002/mrm.1910290607Suche in Google Scholar PubMed

[11] Gladden LF, Sederman AJ. Recent advances in flow MRI. J Magn Reson. 2013;229:2–11.10.1016/j.jmr.2012.11.022Suche in Google Scholar PubMed

[12] Callaghan PT, Forde LC, Rofe CJ. Correlated susceptibility and diffusion effects in NMR microscopy using both phase-frequency encoding and phase-phase encoding. J Magn Reson, Ser B. 1994;104:34–52.10.1006/jmrb.1994.1051Suche in Google Scholar

[13] PT Callaghan. Principles of nuclear magnetic resonance microscopy, New ed. Oxford: Clarendon Press, 1993.Suche in Google Scholar

[14] Emid S, Creyghton JH. High resolution NMR imaging in solids. Physica B+C. 1985;128:81–3.10.1016/0378-4363(85)90087-7Suche in Google Scholar

[15] Pohmann R, von Kienlin M, Haase A. Theoretical evaluation and comparison of fast chemical shift imaging methods. J Magn Reson. 1997;129:145–60.10.1006/jmre.1997.1245Suche in Google Scholar PubMed

[16] Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt KD. FLASH imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson. (1969) 1986;67:258–66.10.1016/0022-2364(86)90433-6Suche in Google Scholar

[17] Stehling MK, Turner R, Mansfield P. Echo-planar imaging: magnetic resonance imaging in a fraction of a second. Science 1991;254:43–50.10.1126/science.1925560Suche in Google Scholar PubMed

[18] Hennig J, Nauerth A, Friedburg H. RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 1986;3:823–33.10.1002/mrm.1910030602Suche in Google Scholar PubMed

[19] Balcom BJ, Macgregor RP, Beyea SD, Green DP, Armstrong RL, Bremner TW. Single-point ramped imaging with T1 enhancement (SPRITE). J Magn Reson, Ser A. 1996;123:131–4.10.1006/jmra.1996.0225Suche in Google Scholar PubMed

[20] Tyler DJ, Robson MD, Henkelman RM, Young IR, Bydder GM. Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: technical considerations. J Magn Reson Imaging. 2007;25:279–89.10.1002/jmri.20851Suche in Google Scholar PubMed

[21] Weiger M, Pruessmann KP, Hennel F. MRI with zero echo time: hard versus sweep pulse excitation. Magn Reson Med. 2011;66:379–89.10.1002/mrm.22799Suche in Google Scholar PubMed

[22] Ahn CB, Kim JH, Cho ZH. High-speed spiral-scan echo planar NMR imaging-I. IEEE Trans Med Imaging. 1986;5:2–7.10.1109/TMI.1986.4307732Suche in Google Scholar PubMed

[23] Pipe JG, Ahunbay E, Menon P. Effects of interleaf order for spiral MRI of dynamic processes. Magn Resonance Med 1999;41:417–22.10.1002/(SICI)1522-2594(199902)41:2<417::AID-MRM29>3.0.CO;2-WSuche in Google Scholar

[24] Fabich HT, Benning M, Sederman AJ, Holland DJ. Ultrashort echo time (UTE) imaging using gradient pre-equalization and compressed sensing. J Magn Reson 2014;245:116–24.10.1016/j.jmr.2014.06.015Suche in Google Scholar PubMed

[25] Blumich B. NMR imaging of materials. Oxford: OUP, 2000. Google-Books-ID: r8b6sNyHMdIC.Suche in Google Scholar

[26] Kimmich R. NMR: tomography, diffusometry, relaxometry. Berlin Heidelberg: Springer, 1997. Google-Books-ID: WjgvAQAAIAAJ.10.1007/978-3-642-60582-6Suche in Google Scholar

[27] Bernstein MA, King KF, Zhou XJ. Handbook of MRI Pulse Sequences. Elsevier, 2004.10.1016/B978-012092861-3/50021-2Suche in Google Scholar

[28] Stapf S, Han S-I. NMR imaging in chemical engineering, 1st ed. Weinheim: Wiley-VCH, 2006.10.1002/3527607560.ch1Suche in Google Scholar

[29] Codd SL, Seymour JD, editors. Magnetic resonance microscopy: spatially resolved NMR techniques and applications, 1st ed. Weinheim: Wiley-VCH, 2009.Suche in Google Scholar

[30] Blümler P, Blümich B, Botto RE, Fukushima E, editors. Spatially resolved magnetic resonance: methods, materials, medicine, biology, rheology, geology, ecology, hardware, 1st ed. Weinheim, New York: Wiley-VCH, 1998.10.1002/9783527611843Suche in Google Scholar

[31] Baker RC. Flow measurement handbook: industrial designs, operating principles, performance, and applications. Cambridge University Press, 2005.Suche in Google Scholar

[32] Blümich B. k and q dedicated to Paul Callaghan. J Magn Reson 2016;267:79–85.10.1016/j.jmr.2016.03.008Suche in Google Scholar

[33] Levitt MH, Spin dynamics: basics of nuclear magnetic resonance, 2nd ed. England, Hoboken, NJ: Wiley, Chichester, 2008.Suche in Google Scholar

[34] Fessler JA, Sutton BP. Nonuniform fast fourier transforms using min-max interpolation. IEEE Trans Sig Process. 2003;51:560–74.10.1109/TSP.2002.807005Suche in Google Scholar

[35] Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182–95.10.1002/mrm.21391Suche in Google Scholar PubMed

[36] Donoho DL. Compressed sensing. IEEE Trans Inf Theo. 2006;52:1289–306.10.1109/TIT.2006.871582Suche in Google Scholar

[37] Holland DJ, Malioutov DM, Blake A, Sederman AJ, Gladden LF. Reducing data acquisition times in phase-encoded velocity imaging using compressed sensing. J Magn Reson 2010;203:236–46.10.1016/j.jmr.2010.01.001Suche in Google Scholar PubMed

[38] Sutton BP, Ciobanu L, Zhang X, Webb A. Parallel imaging for NMR microscopy at 14.1 Tesla. Magn Reson Med 2005;54:9–13.10.1002/mrm.20531Suche in Google Scholar PubMed

[39] Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, et al., Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202–10.10.1002/mrm.10171Suche in Google Scholar PubMed

[40] Lustig M, Pauly JM. SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Med 2010;64:457–71.10.1002/mrm.22428Suche in Google Scholar PubMed PubMed Central

[41] Harms S, Stapf S, Blümich B. Application of k- and q-space encoding NMR techniques on granular media in a 3D model fluidized bed reactor. J Magn Reson 2006;178:308–17.10.1016/j.jmr.2005.10.009Suche in Google Scholar PubMed

[42] Clarke DA, Sederman AJ, Gladden LF, Holland DJ. Investigation of void fraction schemes for use with CFD-DEM simulations of fluidized beds. Ind Eng Chem Res. 2018;57:3002–13.10.1021/acs.iecr.7b04638Suche in Google Scholar

[43] Mastikhin IV, Bade KM, Ahmadi S. A rapid magnetization preparation for MRI measurements of sprays. J Magn Reson 2017;283:52–60.10.1016/j.jmr.2017.08.011Suche in Google Scholar PubMed

[44] Sankey M, Yang Z, Gladden L, Johns ML, Lister D, Newling B. SPRITE MRI of bubbly flow in a horizontal pipe. J Magn Reson 2009;199:126–35.10.1016/j.jmr.2009.01.034Suche in Google Scholar PubMed

[45] Adair A, Mastikhin IV, Newling B. Motion-sensitized SPRITE measurements of hydrodynamic cavitation in fast pipe flow. Magn Reson Imag 2018;49:71–7.10.1016/j.mri.2017.12.025Suche in Google Scholar PubMed

[46] Tayler AB, Holland DJ, Sederman AJ, Gladden LF. Time resolved velocity measurements of unsteady systems using spiral imaging. J Magn Reson 2011;211:1–10.10.1016/j.jmr.2011.03.017Suche in Google Scholar PubMed

[47] Sederman AJ, Mantle MD, Buckley C, Gladden LF. MRI technique for measurement of velocity vectors, acceleration, and autocorrelation functions in turbulent flow. J Magn Reson 2004;166:182–9.10.1016/j.jmr.2003.10.016Suche in Google Scholar PubMed

[48] Han S-I, Stapf S, Blümich B. NMR imaging of falling water drops. Phys Rev Lett. 2001;87:144501.10.1103/PhysRevLett.87.144501Suche in Google Scholar PubMed

[49] Amar A, Blümich B, Casanova F. Rapid multiphase flow dynamics mapped by single-shot MRI velocimetry. Chem Phys Chem. 2010;11:2630–8.10.1002/cphc.201000062Suche in Google Scholar PubMed

[50] Amar AM, Blümich B. Fluid dynamics of single levitated drops by fast NMR techniques. Berichte aus der Physik, Shaker, Aachen, 2006.Suche in Google Scholar

[51] Tayler AB, Sederman AJ, Newling B, Mantle MD, Gladden LF. ‘Snap-shot’ velocity vector mapping using echo-planar imaging. J Magn Reson. 2010;204:266–72.10.1016/j.jmr.2010.03.006Suche in Google Scholar PubMed

[52] Newling B, Poirier CC, Zhi Y, Rioux JA, Coristine AJ, Roach D, et al. Velocity imaging of highly turbulent gas flow. Phys Rev Lett. 2004;93:154503.10.1103/PhysRevLett.93.154503Suche in Google Scholar PubMed

[53] Ren X, Stapf S, Blümich B. NMR velocimetry of flow in model fixed-bed reactors of low aspect ratio. AIChE J. 2005;51:392–405.10.1002/aic.10318Suche in Google Scholar

[54] Li L, Chen Q, Marble AE, Romero-Zerón L, Newling B, Balcom BJ. Flow imaging of fluids in porous media by magnetization prepared centric-scan SPRITE. J Magn Reson 2009;197:1–8.10.1016/j.jmr.2008.10.020Suche in Google Scholar PubMed

[55] Vallatos A, Shukla MN, Mullin JM, Phoenix VR, Holmes WM, The effect of displacement distribution asymmetry on the accuracy of phase-shift velocimetry in porous media. Microporous Mesoporous Mater. 2018;269:130–3.10.1016/j.micromeso.2017.11.048Suche in Google Scholar

[56] Davies CJ, Sederman AJ, Pipe CJ, McKinley GH, Gladden LF, Johns ML. Rapid measurement of transient velocity evolution using GERVAIS. J Magn Reson 2010;202:93–101.10.1016/j.jmr.2009.10.004Suche in Google Scholar PubMed

[57] Sains MC, El-Bachir MS, Sederman AJ, Gladden LF. Rapid imaging of fluid flow patterns in a narrow packed bed using MRI. Magn Reson Imag. 2005;23:391–3.10.1016/j.mri.2004.11.038Suche in Google Scholar PubMed

[58] Shiko G, Sederman AJ, Gladden LF. MRI technique for the snapshot imaging of quantitative velocity maps using RARE. J Magn Reson 2012;216:183–91.10.1016/j.jmr.2012.01.021Suche in Google Scholar PubMed

[59] Wiese M, Benders S, Blümich B, Wessling M, 3D MRI velocimetry of non-transparent 3D-printed staggered herringbone mixers. Chem Eng J. 2018;343:54–60.10.1016/j.cej.2018.02.096Suche in Google Scholar

[60] Parasoglou P, Malioutov D, Sederman AJ, Rasburn J, Powell H, Gladden LF, et al. Quantitative single point imaging with compressed sensing. J Magn Reson 2009;201:72–80.10.1016/j.jmr.2009.08.003Suche in Google Scholar PubMed

[61] Ramskill NP, York AP, Sederman AJ, Gladden LF. Magnetic resonance velocity imaging of gas flow in a diesel particulate filter. Chem Eng Sci. 2017;158:490–9.10.1016/j.ces.2016.10.017Suche in Google Scholar

[62] Paulsen J, Bajaj VS, Pines A. Compressed sensing of remotely detected MRI velocimetry in microfluidics. J Magn Reson 2010;205:196–201.10.1016/j.jmr.2010.04.016Suche in Google Scholar PubMed

[63] Cooper JD, York AP, Sederman AJ, Gladden LF. Measuring velocity and turbulent diffusivity in wall-flow filters using compressed sensing magnetic resonance. Chem Eng J. 2018.10.1016/j.cej.2018.08.076Suche in Google Scholar

[64] Tayler AB, Holland DJ, Sederman AJ, Gladden LF. Exploring the origins of turbulence in multiphase flow using compressed sensing MRI. Phys Rev Lett. 2012;108:264505.10.1103/PhysRevLett.108.264505Suche in Google Scholar PubMed

[65] Fabich HT, Sederman AJ, Holland DJ. Development of ultrafast UTE imaging for granular systems. J Magn Reson 2016;273:113–23.10.1016/j.jmr.2016.10.016Suche in Google Scholar PubMed

[66] Wiese M, Malkomes C, Krause B, Wessling M. Flow and filtration imaging of single use sterile membrane filters. J Memb Sci. 2018;552:274–85.10.1016/j.memsci.2018.02.002Suche in Google Scholar

[67] Yang X, Fridjonsson EO, Johns ML, Wang R, Fane AG. A non-invasive study of flow dynamics in membrane distillation hollow fiber modules using low-field nuclear magnetic resonance imaging (MRI). J Memb Sci 2014;451:46–54.10.1016/j.memsci.2013.09.015Suche in Google Scholar

[68] Buetehorn S, Utiu L, Küppers M, Blümich B, Wintgens T, Wessling M, et al. NMR imaging of local cumulative permeate flux and local cake growth in submerged microfiltration processes. J Memb Sci 2011;371:52–64.10.1016/j.memsci.2011.01.018Suche in Google Scholar

[69] Telkki V-V, Zhivonitko VV, Ahola S, Kovtunov KV, Jokisaari J, Koptyug IV. Microfluidic gas-flow imaging utilizing parahydrogen-induced polarization and remote-detection NMR. Angew Chem Int Ed. 2010;49:8363–6.10.1002/anie.201002685Suche in Google Scholar PubMed

[70] Colbourne AA, Sederman AJ, Mantle MD, Gladden LF. Accelerating flow propagator measurements for the investigation of reactive transport in porous media. J Magn Reson 2016;272:68–72.10.1016/j.jmr.2016.08.018Suche in Google Scholar PubMed

[71] Blümich B, Callaghan P, Damion R, Han S, Khrapitchev A, Packer K, Stapf S. Two-dimensional NMR of velocity exchange: VEXSY and SERPENT. J Magn Reson 2001;152:162–7.10.1006/jmre.2001.2395Suche in Google Scholar PubMed

[72] Callaghan PT, Manz B. Velocity exchange spectroscopy. J Magn Reson, Ser A. 1994;106:260–5.10.1006/jmra.1994.1036Suche in Google Scholar

[73] Han S-I, Stapf S, Blümich B. Two-dimensional PFG NMR for encoding correlations of position, velocity, and acceleration in fluid transport. J Magn Reson 2000;146:169–80.10.1006/jmre.2000.2145Suche in Google Scholar PubMed

[74] Callaghan PT, Rheo-NMR: nuclear magnetic resonance and the rheology of complex fluids. Rep Prog Phys. 1999;62:599.10.1088/0034-4885/62/4/003Suche in Google Scholar

[75] Kuczera S, Perge C, Fardin M-A, Brox TI, Williams MA, Manneville S, et al. Anomalous shear banding revisited with Rheo-NMR and Rheo-USV. Rheologica Acta 2015;54:619–36.10.1007/s00397-015-0854-ySuche in Google Scholar

[76] Han S-I, Marseille O, Gehlen C, Blümich B. Rheology of blood by NMR. J Magn Reson 2001;152:87–94.10.1006/jmre.2001.2387Suche in Google Scholar PubMed

[77] Pavlovskaya GE, Meersmann T. Spatial mapping of flow-induced molecular alignment in a noncrystalline biopolymer fluid using double quantum filtered (DQF) 23Na MRI. J Phys Chem Lett 2014;5:2632–6.10.1021/jz501075jSuche in Google Scholar

[78] Blythe TW, Sederman AJ, Mitchell J, Stitt EH, York AP, Gladden LF. Characterising the rheology of non-Newtonian fluids using PFG-NMR and cumulant analysis. J Magn Reson 2015;255:122–31.10.1016/j.jmr.2015.03.015Suche in Google Scholar PubMed

[79] Blythe TW, Sederman AJ, Stitt EH, York AP, Gladden LF. PFG NMR and Bayesian analysis to characterise non-Newtonian fluids. J Magn Reson. 2017;274:103–14.10.1016/j.jmr.2016.11.003Suche in Google Scholar PubMed

[80] Skuntz ME, Perera D, Maneval JE, Seymour JD, Anderson R. Melt-front propagation and velocity profiles in packed beds of phase-change materials measured by magnetic resonance imaging. Chem Eng Sci. 2018;190:164–72.10.1016/j.ces.2018.06.019Suche in Google Scholar

[81] Tzalmona A, Armstrong RL, Menzinger M, Cross A, Lemaire C. Detection of chemical waves by magnetic resonance imaging. Chem Phys Lett. 1990;174:199–202.10.1016/0009-2614(90)80106-NSuche in Google Scholar

[82] Evans R, Timmel CR, Hore PJ, Britton MM. Magnetic resonance imaging of a magnetic field-dependent chemical wave. Chem Phys Lett. 2004;397:67–72.10.1016/j.cplett.2004.08.079Suche in Google Scholar

[83] Benders S, Strassl F, Fenger B, Blümich B, Herres-Pawlis S, Küppers M. Imaging of copper oxygenation reactions in a bubble flow. Magn Reson Chem. 2018;56:826–30.10.1002/mrc.4742Suche in Google Scholar PubMed

[84] Bottomley PA. Spatial localization in NMR spectroscopy in vivo. Ann New York Acad Sci. 1987;508:333–48.10.1111/j.1749-6632.1987.tb32915.xSuche in Google Scholar PubMed

[85] Duyn JH, Moonen CT. Fast proton spectroscopic imaging of human brain using multiple spin-echoes. Magn Reson Med. 1993;30:409–14.10.1002/mrm.1910300403Suche in Google Scholar PubMed

[86] Mulkern RV, Panych LP. Echo planar spectroscopic imaging. Concepts Magn Reson. 2001;13:213–37.10.1002/cmr.1011Suche in Google Scholar

[87] von Harbou E, Fabich HT, Benning M, Tayler AB, Sederman AJ, Gladden LF, et al. Quantitative mapping of chemical compositions with MRI using compressed sensing. J Magn Reson. 2015;261:27–37.10.1016/j.jmr.2015.09.013Suche in Google Scholar PubMed

[88] Jarenwattananon NN, Glöggler S, Otto T, Melkonian A, Morris W, Burt SR, et al. Thermal maps of gases in heterogeneous reactions. Nature 2013;502:537–40.10.1038/nature12568Suche in Google Scholar PubMed

[89] MM Britton. Magnetic resonance imaging of electrochemical cells containing bulk metal. Chem Phys Chem 2014;15:1731–6.10.1002/cphc.201400083Suche in Google Scholar PubMed

[90] Ilott AJ, Mohammadi M, Chang HJ, Grey CP, Jerschow A. Real-time 3D imaging of microstructure growth in battery cells using indirect MRI. Proc National Acad Sci 2016;113:10779–84.10.1073/pnas.1607903113Suche in Google Scholar PubMed PubMed Central

[91] Chandrashekar S, Trease NM, Chang HJ, Du L-S, Grey CP, A Jerschow, 7Li MRI of Li batteries reveals location of microstructural lithium, Nature Materials 2012;11:311–5.10.1038/nmat3246Suche in Google Scholar PubMed

[92] Britton MM, Bayley PM, Howlett PC, Davenport AJ, Forsyth M. In situ, real-time visualization of electrochemistry using magnetic resonance imaging. J Phys Chem Lett. 2013;4:3019–23.10.1021/jz401415aSuche in Google Scholar PubMed PubMed Central

[93] Bray JM, Davenport AJ, Ryder KS, Britton MM. Quantitative, in situ visualization of metal-ion dissolution and transport using 1H magnetic resonance imaging. Angew Chem Int Ed. 2016;55:9394–7.10.1002/anie.201604310Suche in Google Scholar PubMed PubMed Central

[94] Krachkovskiy SA, Bazak JD, Werhun P, Balcom BJ, Halalay IC, Goward GR. Visualization of steady-state ionic concentration profiles formed in electrolytes during Li-ion battery operation and determination of mass-transport properties by in situ magnetic resonance imaging. J Amer Chem Soc. 2016;2016:7992–9. DOI: 10.1021/jacs.6b04226.Suche in Google Scholar

[95] Ilott AJ, Mohammadi M, Schauerman CM, Ganter MJ, Jerschow A. Rechargeable lithium-ion cell state of charge and defect detection by in-situ inside-out magnetic resonance imaging. Nat Commun. 2018;9:1776.10.1038/s41467-018-04192-xSuche in Google Scholar PubMed PubMed Central

[96] Cattaneo AS, Villa DC, Angioni S, Ferrara C, Melzi R, Quartarone E, et al. Operando electrochemical NMR microscopy of polymer fuel cells. Energy Environ Sci. 2015;8:2383–8.10.1039/C5EE01668ASuche in Google Scholar

[97] Münnemann K, Böni T, Colacicco G, Blümich B, Rühli F. Noninvasive 1H and 23Na nuclear magnetic resonance imaging of ancient Egyptian human mummified tissue. Magn Reson Imag. 2007;25:1341–5.10.1016/j.mri.2007.03.023Suche in Google Scholar PubMed

[98] Blümler P, Hafner S. Nuclear magnetic resonance, imaging of polymers, in Encyclopedia of Analytical Chemistry. American Cancer Society 2009.10.1002/9780470027318.a2023.pub2Suche in Google Scholar

[99] Laity P, Glover P, Godward J, McDonald P, Hay JN. Structural studies and diffusion measurements of water-swollen cellophane by NMR imaging. Cellulose 2000;7:227–46.10.1023/A:1009249332222Suche in Google Scholar

[100] Adriaensens P, Storme L, Carleer R, D’Hae J, Gelan J, Litvinov VM, et al. NMR imaging study of stress-induced material response in rubber modified polyamide 6. Macromolecules 2002;35:135–40.10.1021/ma0113273Suche in Google Scholar

[101] Weigand F, Wiesner U, Spiess HW, Visualization of immobilization in shear bands by NMR imaging. Adv Mater. 1996;8:481–4.10.1002/adma.19960080604Suche in Google Scholar

[102] Borisjuk L, Rolletschek H, Neuberger T. Surveying the plant’s world by magnetic resonance imaging. Plant J. 2012;70:129–46.10.1111/j.1365-313X.2012.04927.xSuche in Google Scholar PubMed

[103] De Schepper V, van Dusschoten D, Copini P, Jahnke S, Steppe K, MRI links stem water content to stem diameter variations in transpiring trees. J Exp Bot. 2012;63:2645–53.10.1093/jxb/err445Suche in Google Scholar PubMed

[104] Van As H, van Duynhoven J. MRI of plants and foods. J Magn Reson 2013;229:25–34.10.1016/j.jmr.2012.12.019Suche in Google Scholar PubMed

[105] Xing H, Takhar PS, Helms G, He B. NMR imaging of continuous and intermittent drying of pasta. J Food Eng 2007;78:61–8.10.1016/j.jfoodeng.2005.09.002Suche in Google Scholar

[106] Javed MA, Kekkonen PM, Ahola S, Telkki V-V. Magnetic resonance imaging study of water absorption in thermally modified pine wood. Holzforschung 2014;69:899–907.10.1515/hf-2014-0183Suche in Google Scholar

[107] Eidmann G, Savelsberg R, Blümler P, Blümich B. The NMR MOUSE, a mobile universal surface explorer. J Magn Reson, Ser A. 1996;122:104–9.10.1006/jmra.1996.0185Suche in Google Scholar

[108] Perlo J, Casanova F, Blümich B. Profiles with microscopic resolution by single-sided NMR. J Magn Reson 2005;176:64–70.10.1016/j.jmr.2005.05.017Suche in Google Scholar PubMed

[109] Manz B, Coy A, Dykstra R, Eccles CD, Hunter MW, Parkinson BJ, et al. A mobile one-sided NMR sensor with a homogeneous magnetic field: The NMR-MOLE. J Magn Reson 2006;183:25–31.10.1016/j.jmr.2006.07.017Suche in Google Scholar PubMed

[110] McDonald PJ, Aptaker PS, Mitchell J, Mulheron M. A unilateral NMR magnet for sub-structure analysis in the built environment: The Surface GARField. J Magn Reson 2007;185:1–11.10.1016/j.jmr.2006.11.001Suche in Google Scholar PubMed

[111] Utsuzawa S, Fukushima E. Unilateral NMR with a barrel magnet. J Magn Reson 2017;282:104–13.10.1016/j.jmr.2017.07.006Suche in Google Scholar PubMed

[112] Adams A, Piechatzek A, Schmitt G, Siegmund G. Single-sided nuclear magnetic resonance for condition monitoring of cross-linked polyethylene exposed to aggressive media. Anal Chim Acta 2015;887:163–71.10.1016/j.aca.2015.07.005Suche in Google Scholar PubMed

[113] Blümich B, Casanova F, Perlo J, Anferova S, Anferov V, Kremer K, Goga N, K Kupferschläger N, Adams M. Advances of unilateral mobile NMR in nondestructive materials testing. Magn Reson Imag. 2005;23:197–201.10.1016/j.mri.2004.11.058Suche in Google Scholar PubMed

[114] Danieli E, Blümich B. Single-sided magnetic resonance profiling in biological and materials science. J Magn Reson 2013;229:142–54.10.1016/j.jmr.2012.11.023Suche in Google Scholar PubMed

[115] Ghoshal S, Mattea C, Denner P, Stapf S. Heterogeneities in gelatin film formation using single-sided NMR. J Phys Chem B 2010;114:16356–63.10.1021/jp1068363Suche in Google Scholar PubMed

[116] Goga NO, Demco DE, Kolz J, Ferencz R, Haber A, Casanova F, et al. Surface UV aging of elastomers investigated with microscopic resolution by single-sided NMR. J Magn Reson. 2008;192:1–7.10.1016/j.jmr.2007.10.017Suche in Google Scholar PubMed

[117] Oligschläger D, Lehmkuhl S, Watzlaw J, Benders S, de Boever E, et al. Miniaturized multi-coil arrays for functional planar imaging with a single-sided NMR sensor. J Magn Reson 2015;254:10–8.10.1016/j.jmr.2015.02.001Suche in Google Scholar PubMed

[118] Rehorn C, Blümich B. Cultural heritage studies with mobile NMR. Angew Chem Int Ed 2018;57:7304–12.10.1002/anie.201713009Suche in Google Scholar

[119] Brownstein KR, Tarr CE. Spin-lattice relaxation in a system governed by diffusion. J Magn Reson 1969;1977;26:17–24.10.1016/0022-2364(77)90230-XSuche in Google Scholar

[120] Li M, Xiao D, Romero-Zerón L, Marica F, MacMillan B, Balcom BJ. Mapping three-dimensional oil distribution with π-EPI MRI measurements at low magnetic field. J Magn Reson 2016;269:13–23.10.1016/j.jmr.2016.05.008Suche in Google Scholar PubMed

[121] Proietti N, Capitani D, Cozzolino S, Valentini M, Pedemonte E, Princi E, et al. In situ and frontal polymerization for the consolidation of porous stones: a unilateral NMR and magnetic resonance imaging study. J Phys Chem B 2006;110:23719–28.10.1021/jp063219uSuche in Google Scholar PubMed

[122] Green D, Gardner JS, Balcom BJ, McAloon M, Cano-Barrita, Comparison study of capillary pressure curves obtained using traditional centrifuge and magnetic resonance imaging techniques. Soc Petrol Eng. 2008. https://www.onepetro.org/conference-paper/SPE-110518-MS.10.2118/110518-MSSuche in Google Scholar

[123] Green DP, Dick JR, McAloon M, Cano-Barrita PJ, Burger J, Balcom B. et al. Oil/water imbibition and drainage capillary pressure determined by MRI on a wide sampling of rocks. In: SCA2008-01 presented at the SCA conference, Abu Dhabi, UAE, vol. 29, 2008.Suche in Google Scholar

[124] Hürlimann MD, Heaton NJ. NMR well logging, in Mobile NMR and MRI, New Developments in NMR, 11–85. The Royal Society of Chemistry, 2015.10.1039/9781782628095-00011Suche in Google Scholar

[125] Petrov OV, Ersland G, Balcom BJ. T2 distribution mapping profiles with phase-encode MRI. J. Magn Reson. 2011;209:39–46.10.1016/j.jmr.2010.12.006Suche in Google Scholar PubMed

[126] Vashaee S, Newling B, MacMillan B, Marica F, Li M, Balcom BJ. Local diffusion and diffusion-T2 distribution measurements in porous media. J Magn Reson. 2017;278:104–12.10.1016/j.jmr.2017.03.014Suche in Google Scholar PubMed

[127] Merz S, Balcom BJ, Enjilela R, Vanderborght J, Rothfuss Y, Vereecken H, et al. Magnetic resonance monitoring and numerical modeling of soil moisture during evaporation. Vadose Zone J 2018;17.10.2136/vzj2016.10.0099Suche in Google Scholar

[128] Zhang Y, Xiao L, Li X, Liao G. T1–D–T2 correlation of porous media with compressed sensing at low-field NMR. Magnetic Resonance ImagingMagnetic. 2019 2;56:174–180. DOI: 10.1016/j.mri.2018.09.028Suche in Google Scholar PubMed

Published Online: 2019-05-09

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2018-0177/html
Button zum nach oben scrollen