Abstract
Neutron powder diffraction provides insight into the crystal and magnetic structures of materials. This insight can be achieved on pure materials under ambient conditions, but for greater understanding of the relationship between structure and function, crystallographic information during a process can prove powerful for rational material design strategies. These processes can involve temperature, applied magnetic or electric fields, applied pressure, gas dosing or devices such as electrochemical cells. These experiments are often referred to as a variable process or in situ or operando depending on the conditions applied to the materials or devices. Sample environments to undertake such experiments are accessible at a range of neutron scattering facilities around world. This work provides details on the theory behind diffraction, a snapshot of neutron diffractometers that are suited to such experiments and recent studies exploring the power of neutron powder diffraction in elucidating crystal and magnetic structures under various external conditions.
Acknowledgements
Neeraj Sharma would like to thank the Australian Research Council for funding through grants DE160100237/DP170100269 and Damian Goonetilleke would like to thank the Research Training Program for PhD funds.
References
[1] Mason TE, Gawne TJ, Nagler SE, Nestor MB, Carpenter JM. The early development of neutron diffraction: science in the wings of the manhattan project. Acta Crystallogr Sect A. 2013;69:37–44.10.1107/S0108767312036021Suche in Google Scholar PubMed PubMed Central
[2] Heere M, Mühlbauer MJ, Schökel A, Knapp M, Ehrenberg H, Senyshyn A. Energy research with neutrons (ErwiN) and installation of a fast neutron powder diffraction option at the MLZ, Germany. J Appl Crystallogr. 2018;51:591–5.10.1107/S1600576718004223Suche in Google Scholar PubMed PubMed Central
[3] Hansen TC, Kohlmann H. Chemical reactions followed by in situ neutron powder diffraction. Z Anorg Allg Chem. 2014;640:3044–63.10.1002/zaac.201400359Suche in Google Scholar
[4] Peterson VK, Auckett JE, Pang W-K. Real-time powder diffraction studies of energy materials under non-equilibrium conditions. IUCrJ. 2017;4:540–54.10.1107/S2052252517010363Suche in Google Scholar PubMed PubMed Central
[5] Newton RG. Scattering theory of waves and particles. Verlag Berlin Heidelberg: Springer Science & Business Media, 2013.Suche in Google Scholar
[6] Lupu-Sax A. Quantum scattering theory and applications. Citeseer. 1998. https://www.physics.harvard.edu/uploads/files/thesesPDF/lupusax.pdf.Suche in Google Scholar
[7] Egami T, Billinge SJ. Underneath the Bragg peaks: structural analysis of complex materials. vol. 16. Newnes: Pergamon Materials Series, 2012. https://www.sciencedirect.com/bookseries/pergamon-materials-series/vol/7.Suche in Google Scholar
[8] Dinnebier RE, Billinge SJ. Powder diffraction: theory and practice. Royal Society of Chemistry, Cambridge, 2008.10.1039/9781847558237Suche in Google Scholar
[9] Williams DB, Carter CB. Diffraction from crystals. In: Transmission electron microscopy. Heidelberg, Berlin: Springer, 2009: 257–69.10.1007/978-0-387-76501-3_16Suche in Google Scholar
[10] Will G. Powder diffraction: the Rietveld method and the two stage method to determine and refine crystal structures from powder diffraction data. Verlag Berlin Heidelberg: Springer Science & Business Media, 2006.Suche in Google Scholar
[11] David WI, Shankland K, Baerlocher C, McCusker L. Structure determination from powder diffraction data. vol. 13. Oxford: Oxford University Press on Demand, 2002.Suche in Google Scholar
[12] Hauptman HA, Langs DA. The phase problem in neutron crystallography. Acta Crystallogr Sect A Found Crystallogr. 2003;59:250–4.10.1107/S010876730300521XSuche in Google Scholar PubMed
[13] Taylor G. The phase problem. Acta Crystallogr Sect D Biol Crystallogr. 2003;59:1881–90.10.1107/S0907444903017815Suche in Google Scholar
[14] Patterson AL. a fourier series method for the determination of the components of interatomic distances in crystals. Phys Rev. 1934;46:372–6.10.1103/PhysRev.46.372Suche in Google Scholar
[15] Cowtan K, Phase Problem in X‐ray Crystallography, and Its Solution. e LS 2001.10.1038/npg.els.0002722Suche in Google Scholar
[16] Sikka S In The phase problem in neutron diffraction, Proceedings of the Indian Academy of Sciences-Chemical Sciences, Springer: 1983; pp 403–14.10.1007/BF02839142Suche in Google Scholar
[17] Wilkinson C. A method for the determination of magnetic structures from neutron diffraction data by the use of a spin density patterson function. Philos Mag. 1968;17:609–21.10.1080/14786436808217747Suche in Google Scholar
[18] Meden A. Crystal structure solution from powder diffraction data–state of the art and perspectives. Croat Chem Acta. 1998;71:615–33.Suche in Google Scholar
[19] Evans JS, Evans IR. Beyond classical applications of powder diffraction. Chem Soc Rev. 2004;33:539–47.10.1039/b316901bSuche in Google Scholar
[20] Christensen AN, Hazell R, Bell A, Altomare A. Precision of a crystal structure derived from a synchrotron X-ray powder pattern. The structure of Barium oxalate hydrate, BaC2O4· 2H2O. J Phys Chem Solids. 1995;56:1359–62.10.1016/0022-3697(95)00070-4Suche in Google Scholar
[21] David W. Powder diffraction peak shapes. Parameterization of the pseudo‐Voigt as a Voigt function. J Appl Crystallogr. 1986;19:63–4.10.1107/S0021889886089999Suche in Google Scholar
[22] Goonetilleke D, Pramudita JC, Hagan M, Al Bahri OK, Pang WK, Peterson VK, et al. Correlating cycling history with structural evolution in commercial 26650 batteries using in operando neutron powder diffraction. J Power Sources. 2017;343:446–57.10.1016/j.jpowsour.2016.12.103Suche in Google Scholar
[23] Squires GL. Introduction to the theory of thermal neutron scattering. Cambridge: Cambridge university press; 2012.10.1017/CBO9781139107808Suche in Google Scholar
[24] Price DL, Skold K. 1. Introduction to neutron scattering. In: David L.Price, Kurt Skold editors, Methods in Experimental Physics. vol. 23. Elsevier, 1986:1–97.10.1016/S0076-695X(08)60554-2Suche in Google Scholar
[25] Sears VF. Neutron scattering lengths and cross sections. Neutron News. 1992;3:26–37.10.1080/10448639208218770Suche in Google Scholar
[26] Dawidowski J, Granada JR, Santisteban JR, Cantargi F, Palomino LAR. Neutron scattering lengths and cross sections. Exp Meth Phys Sci. 2013;44:471–528.10.1016/B978-0-12-398374-9.09989-7Suche in Google Scholar
[27] Zaliznyak IA, Lee S-H. Magnetic neutron scattering. In: Modern Techniques for Characterizing Magnetic Materials. Springer, Heidelberg; 2005. https://link.springer.com/book/10.1007%2Fb101202#toc.Suche in Google Scholar
[28] Lynn JW. Magnetic Neutron Scattering. In E. N. Kaufmann, editor. Characterization of Materials. Charac. Mater. 2002;1–14.10.1002/0471266965.com101Suche in Google Scholar
[29] Frandsen BA, Brunelli M, Page K, Uemura YJ, Staunton JB, Billinge SJ. Verification of Anderson superexchange in MnO via magnetic pair distribution function analysis and ab initio theory. Phys Rev Lett. 2016;116:197204.10.1103/PhysRevLett.116.197204Suche in Google Scholar
[30] Frandsen BA, Billinge SJ. Magnetic structure determination from the magnetic pair distribution function (mPDF): ground state of MnO. Acta Crystallogr Sec A. 2015;71:325–34.10.1107/S205327331500306XSuche in Google Scholar
[31] Richter D, Springer T. A twenty years forward look at neutron scattering facilities in the OECD countries and Russia. Organisation for Economic Co-operation and Development Megascience Forum, European Science Foundation, 1998. www-llb.cea.fr/rapport/oecd_esf_1998.pdf.Suche in Google Scholar
[32] Mason TE. Pulsed neutron scattering for the twenty-first century. Phys Today. 2006;59:44–9.10.1063/1.2216961Suche in Google Scholar
[33] Aksenov VL, Balagurov AM. Neutron diffraction on pulsed sources. Physics-Uspekhi. 2016;59:279.10.3367/UFNe.0186.201603e.0293Suche in Google Scholar
[34] Charlton L, Barnes J, Gabriel T, Johnson J. Spallation neutron source moderator design. Nucl Instrum Methods Phys Res. 1998;411:494–502.10.1016/S0168-9002(98)00312-XSuche in Google Scholar
[35] Mezei F, Zanini L, Takibayev A, Batkov K, Klinkby E, Pitcher E, et al. Low dimensional neutron moderators for enhanced source brightness. J Neutron Res. 2014;17:101–5.10.3233/JNR-140013Suche in Google Scholar
[36] White J, Windsor C. Neutron scattering-modern techniques and their scientific impact. Rep Prog Phys. 1984;47:707.10.1088/0034-4885/47/6/003Suche in Google Scholar
[37] Hubbard C. Neutron powder diffraction advances. Powder Diffr. 2017;32:221–221.10.1017/S0885715617001075Suche in Google Scholar
[38] Balagurov AM, Bobrikov IAE, Samoylova NY, Drozhzhin OA, Antipov EV. Neutron scattering for analysis of processes in lithium-ion batteries. Russ Chem Rev. 2014;83:1120.10.1070/RCR4473Suche in Google Scholar
[39] Kisi EH, Howard CJ. Applications of neutron powder diffraction. Vol. 15. Oxford: Oxford University Press, 2012.Suche in Google Scholar
[40] Studer AJ, Hagen ME, Noakes TJ. Wombat: the high-intensity powder diffractometer at the OPAL reactor. Phy B Condens Matter. 2006;385:1013–15.10.1016/j.physb.2006.05.323Suche in Google Scholar
[41] Hansen TC, Henry PF, Fischer HE, Torregrossa J, Convert P. The D20 instrument at the ILL: a versatile high-intensity two-axis neutron diffractometer. Meas Sci Technol. 2008;19:034001.10.1088/0957-0233/19/3/034001Suche in Google Scholar
[42] Kockelmann W, Zhang S, Kelleher J, Nightingale J, Burca G, James J. IMAT–a new imaging and diffraction instrument at ISIS. Phys Procedia. 2013;43:100–10.10.1016/j.phpro.2013.03.013Suche in Google Scholar
[43] Williams W, Ibberson R, Day P, Enderby J. GEM—general materials diffractometer at ISIS. Phy B Condens Matter. 1997;241:234–6.10.1016/S0921-4526(97)00561-9Suche in Google Scholar
[44] Hannon AC. Results on disordered materials from the GEneral Materials diffractometer, GEM, at ISIS. Nucl Instrum Methods Phys Res. 2005;551:88–107.10.1016/j.nima.2005.07.053Suche in Google Scholar
[45] Fischer P, Frey G, Koch M, Könnecke M, Pomjakushin V, Schefer J, et al. High-resolution powder diffractometer HRPT for thermal neutrons at SINQ. Phy B Condens Matter. 2000;276:146–7.10.1016/S0921-4526(99)01399-XSuche in Google Scholar
[46] Hellemans A. SINQ quickens pulse to cool its beams. Science. 1997;275:302–302.10.1126/science.275.5298.302Suche in Google Scholar
[47] Wang XL, Holden TM, Rennich GQ, Stoica AD, Liaw PK, Choo H, et al. VULCAN—the engineering diffractometer at the SNS. Phy B Condens Matter. 2006;385-386:673–5.10.1016/j.physb.2006.06.103Suche in Google Scholar
[48] Wang X-L, Holden T, Stoica AD, An K, Skorpenske HD, Jones A, et al. First results from the VULCAN diffractometer at the SNS. Mater Sci Forum. 2010;652:105–10. Trans Tech Publ.10.4028/www.scientific.net/MSF.652.105Suche in Google Scholar
[49] Huq A, Hodges JP, Gourdon O, Heroux L. Powgen: A third-generation high-resolution high-throughput powder diffraction instrument at the spallation neutron source. Z Kristallogr Proc. 2011;1:127–35.10.1524/9783486991321-024Suche in Google Scholar
[50] Nakajima K, Kawakita Y, Itoh S, Abe J, Aizawa K, Aoki H, et al. Materials and life science experimental facility (MLF) at the Japan proton accelerator research complex II: neutron scattering instruments. Quantum Beam Sci. 2017;1:9.10.3390/qubs1030009Suche in Google Scholar
[51] Ishigaki T, Hoshikawa A, Yonemura M, Morishima T, Kamiyama T, Oishi R, et al. IBARAKI materials design diffractometer (iMATERIA)—versatile neutron diffractometer at J-PARC. Nucl Instrum Methods Phys Res. 2009;600:189–91.10.1016/j.nima.2008.11.137Suche in Google Scholar
[52] Yonemura M, Mori K, Kamiyama T, Fukunaga T, Torii S, Nagao M, et al. Development of SPICA, new dedicated neutron powder diffractometer for battery studies. J Phys Conf Ser. 2014;502:p 012053. IOP Publishing.10.1088/1742-6596/502/1/012053Suche in Google Scholar
[53] Lee C-H, Em V, Moon M-K, Hong K-P, Cheon J-K, Choi Y-H, et al. High-intensity multi-PSD powder diffractometer at the HANARO. Phy B Condens Matter. 2006;385:1016–18.10.1016/j.physb.2006.05.324Suche in Google Scholar
[54] Aksenov V, Balagurov A, Simkin V, Bulkin A, Kudryashev V, Trounov V, et al. Performance of the high resolution Fourier diffractometer at the IBR-2 pulsed reactor. J Neutron Res. 1997;5:181–200.10.1080/10238169708200223Suche in Google Scholar
[55] Chen J, Kang L, Lu H, Luo P, Wang F, He L. The general purpose powder diffractometer at CSNS. Phy B Condens Matter. 2018;551:370–2.10.1016/j.physb.2017.11.005Suche in Google Scholar
[56] Richard D, Ferrand M, Kearley G. Lamp, the large array manipulation program. J Neutron Res. 1996;4:33–9.10.1080/10238169608200065Suche in Google Scholar
[57] Atoji M, Rundle R. Neutron diffraction study of gypsum, CaSO42H2O. J Chem Phys. 1958;29:1306–11.10.1063/1.1744713Suche in Google Scholar
[58] Qiu X, Thompson JW, Billinge SJ. PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. J Appl Crystallogr. 2004;37:678–678.10.1107/S0021889804011744Suche in Google Scholar
[59] Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr. 1969;2:65–71.10.1107/S0021889869006558Suche in Google Scholar
[60] Toby BH, Von Dreele RB. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr. 2013;46:544–9.10.1107/S0021889813003531Suche in Google Scholar
[61] Coelho A. TOPAS-academic; A computer programme for rietveld analysis. 2004. http://www.topas-academic.net/.Suche in Google Scholar
[62] McCusker L, Von Dreele R, Cox D, Louër D, Scardi P. Rietveld refinement guidelines. J Appl Crystallogr. 1999;32:36–50.10.1107/S0021889898009856Suche in Google Scholar
[63] Rietveld H. M., The Rietveld method. Phys Scr. 2014;89:098002.10.1088/0031-8949/89/9/098002Suche in Google Scholar
[64] Harris KD, Tremayne M, Lightfoot P, Bruce PG. Crystal structure determination from powder diffraction data by Monte Carlo methods. J Am Chem Soc. 1994;116:3543–7.10.1021/ja00087a047Suche in Google Scholar
[65] Wu J, Leinenweber K, Spence JCH, O’Keeffe M. Ab initio phasing of X-ray powder diffraction patterns by charge flipping. Nat Mater. 2006;5:647.10.1038/nmat1687Suche in Google Scholar PubMed
[66] Stinton GW, Evans JSO. Parametric Rietveld refinement. J Appl Crystallogr. 2007;40:87–95.10.1107/S0021889806043275Suche in Google Scholar PubMed PubMed Central
[67] Andersen H, Al Bahri OOK, Tsarev S, Johannessen B, Schulz B, Liu J, et al. Structural evolution and stability of Sc2(WO4)3 after discharge in a sodium-based electrochemical cell. Dalton Trans. 2018;47:1251–60.10.1039/C7DT04374KSuche in Google Scholar
[68] Mittal R, Chaplot S, Schober H, Mary T. Origin of negative thermal expansion in cubic ZrW 2 O 8 revealed by high pressure inelastic neutron scattering. Phys Rev Lett. 2001;86:4692.10.1103/PhysRevLett.86.4692Suche in Google Scholar PubMed
[69] Evans J, Mary T, Sleight A. Negative thermal expansion in Sc2 (WO4) 3. J Solid State Chem. 1998;137:148–60.10.1006/jssc.1998.7744Suche in Google Scholar
[70] Yang T, Wang J, Chen Y, An K, Ma D, Vogt T, et al. A combined variable-temperature neutron diffraction and thermogravimetric analysis study on a promising oxygen electrode, SrCo0. 9Nb0. 1O3− δ, for reversible solid oxide fuel cells. ACS Appl Mater Interfaces. 2017;9:34855–64.10.1021/acsami.7b08697Suche in Google Scholar PubMed
[71] Riley DP, Kisi EH, Hansen TC, Hewat AW. Self‐propagating high‐temperature synthesis of Ti3SiC2: I, Ultra‐High‐speed neutron diffraction study of the reaction mechanism. J Am Ceram Soc. 2002;85:2417–24.10.1111/j.1151-2916.2002.tb00474.xSuche in Google Scholar
[72] Hu J, Wang K-Y, Hu B-P, Wang Y-Z, Wang Z, Yang F, et al. Magnetic transition and coercivity in TbMn6Sn6. J Phys Condens Matter. 1995;7:889.10.1088/0953-8984/7/5/011Suche in Google Scholar
[73] Wang Y-G, Yang F, Chen C, Tang N, Han X, Wang Q. Structure and magnetic properties of compounds. J Phys Condens Matter. 1996;8:5737.10.1088/0953-8984/8/31/007Suche in Google Scholar
[74] Szytula A, Leciejewicz J. Handbook of crystal structures and magnetic properties of rare earth intermetallics. Boca Raton: CRC press, 1994.Suche in Google Scholar
[75] Li X-Y, Peng L-C, He L-H, Zhang S-Y, Yao J-L, Zhang Y, et al. Magnetic structure of Ho0. 5Y0. 5Mn6Sn6 compound studied by powder neutron diffraction. J Appl Phys. 2018;123:203903.10.1063/1.5029707Suche in Google Scholar
[76] Kurbakov A, Trounov V, Baranova T, Bulkin A, Dmitriev R, Rodríquez-Carvajal J, et al. Russian-french high resolution multi-section neutron powder diffractometer. Mater Sci Forum. 2000;321–4. Trans Tech Publ.10.4028/www.scientific.net/MSF.321-324.308Suche in Google Scholar
[77] Huang Q, Qiu Y, Bao W, Green M, Lynn J, Gasparovic Y, et al. Neutron-diffraction measurements of magnetic order and a structural transition in the parent BaFe 2 As 2 compound of FeAs-based high-temperature superconductors. Phys Rev Lett. 2008;101:257003.10.1103/PhysRevLett.101.257003Suche in Google Scholar
[78] Lee C-H, Moon M-K, Em V, Choi Y-N, Oh H-S, Nam U-W. High-resolution and high-intensity neutron diffractometer with linear position-sensitive detector. Nucl Instrum Methods Phys Res. 2003;508:353–61.10.1016/S0168-9002(03)01667-XSuche in Google Scholar
[79] Raju K, Yoon D-H, Lee J-Y. Low-temperature neutron diffraction and magnetic properties of La 1.2 Sr 0.9 Ca 0.9 Mn 2 O 7. J Supercond Novel Magn. 2014;27:2501–6.10.1007/s10948-014-2620-2Suche in Google Scholar
[80] Ruddlesden S, Popper P. The compound Sr3Ti2O7 and its structure. Acta Crystallogr. 1958;11:54–5.10.1107/S0365110X58000128Suche in Google Scholar
[81] Zhu M, Hong T, Peng J, Zou T, Mao Z, Ke X. Field-induced magnetic phase transitions and memory effect in bilayer ruthenate Ca3Ru2O7 with Fe substitution. J Phys Condens Matter. 2018;30:075802.10.1088/1361-648X/aaa626Suche in Google Scholar PubMed
[82] Hull S, Smith R, David W, Hannon A, Mayers J, Cywinski R. The POLARIS powder diffractometer at ISIS. Phy B Condens Matter. 1992;180:1000–2.10.1016/0921-4526(92)90533-XSuche in Google Scholar
[83] Bobrikov IA, Samoylova NY, Sumnikov SV, Ivanshina OY, Vasin RN, Beskrovnyi AI, et al. In-situ time-of-flight neutron diffraction study of the structure evolution of electrode materials in a commercial battery with LiNi 0.8 Co 0.15 Al 0.05 O 2 cathode. J Power Sources. 2017;372:74–81.10.1016/j.jpowsour.2017.10.052Suche in Google Scholar
[84] Oudenhoven J, Labohm F, Mulder M, Niessen R, Mulder F, Notten P. In situ neutron depth profiling: a powerful method to probe lithium transport in micro‐batteries. Adv Mater. 2011;23:4103–6.10.1002/adma.201101819Suche in Google Scholar PubMed
[85] Sharma N, Peterson VK. In situ neutron powder diffraction studies of lithium-ion batteries. J Solid State Electrochem. 2012;16:1849–56.10.1007/s10008-011-1567-5Suche in Google Scholar
[86] Sharma N, Peterson VK, Elcombe MM, Avdeev M, Studer AJ, Blagojevic N, et al. Structural changes in a commercial lithium-ion battery during electrochemical cycling: an in situ neutron diffraction study. J Power Sources. 2010;195:8258–66.10.1016/j.jpowsour.2010.06.114Suche in Google Scholar
[87] Pang WK, Peterson VK. A custom battery for operando neutron powder diffraction studies of electrode structure. J Appl Crystallogr. 2015;48:280–90.10.1107/S1600576715000679Suche in Google Scholar
[88] Goonetilleke D, Faulkner T, Peterson VK, Sharma N. Structural evidence for Mg-doped LiFePO 4 electrode polarisation in commercial Li-ion batteries. J Power Sources. 2018;394:1–8.10.1016/j.jpowsour.2018.05.024Suche in Google Scholar
[89] Bergstöm Ö, Andersson A, Edström K, Gustafsson T. A neutron diffraction cell for studying lithium-insertion processes in electrode materials. J Appl Crystallogr. 1998;31:823–5.10.1107/S002188989800538XSuche in Google Scholar
[90] Senyshyn A, Mühlbauer MJ, Nikolowski K, Pirling T, Ehrenberg H. “In-operando” neutron scattering studies on Li-ion batteries. J Power Sources. 2012;203:126–9.10.1016/j.jpowsour.2011.12.007Suche in Google Scholar
[91] Hu C-W, Sharma N, Chiang C-Y, Su H-C, Peterson VK, Hsieh H-W, et al. Real-time investigation of the structural evolution of electrodes in a commercial lithium-ion battery containing a V-added LiFePO4 cathode using in-situ neutron powder diffraction. J Power Sources. 2013;244:158–63.10.1016/j.jpowsour.2013.02.074Suche in Google Scholar
[92] Sharma N, Pang WK, Guo Z, Peterson VK. In situ powder diffraction studies of electrode materials in rechargeable batteries. Chem Sus Chem. 2015;8:2826–53.10.1002/cssc.201500152Suche in Google Scholar PubMed
[93] Nishimura S-I, Kobayashi G, Ohoyama K, Kanno R, Yashima M, Yamada A. Experimental visualization of lithium diffusion in Li x FePO 4. Nat Mater. 2008;7:707.10.1038/nmat2251Suche in Google Scholar PubMed
[94] Armstrong AR, Kuganathan N, Islam MS, Bruce PG. Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries. J Am Chem Soc. 2011;133:13031–5.10.1021/ja2018543Suche in Google Scholar PubMed
[95] Reeves-McLaren N, Smith RI, West AR. Lithium-ion conduction pathways in complex lithium spinels Li2MGe3O8 (M = Ni or Zn). Chem Mater. 2011;23:3556–63.10.1021/cm201429fSuche in Google Scholar
[96] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, et al. A lithium superionic conductor. Nat Mater. 2011;10:682–6.10.1038/nmat3066Suche in Google Scholar PubMed
[97] Han J, Zhu J, Li Y, Yu X, Wang S, Wu G, et al. Experimental visualization of lithium conduction pathways in garnet-type Li 7 La 3 Zr 2 O 12. Chem Commun. 2012;48:9840–2.10.1039/c2cc35089kSuche in Google Scholar PubMed
[98] Sarno C, Yang T, Di Bartolomeo E, Huq A, Huang K, McIntosh S. Oxygen vacancy localization and anisotropic oxygen anion transport in Sr 1− x Y x CoO 3− δ (x= 0.1, 0.2) under solid oxide fuel cell cathode conditions. Solid State Ionics. 2018;321:34–42.10.1016/j.ssi.2018.04.001Suche in Google Scholar
[99] Olszewska A, Du ZH, Swierczek K, Zhao HL, Dabrowski B. Novel ReBaCo1.5Mn0.5O5+ (Re: la, Pr, Nd, Sm, Gd and Y) perovskite oxide: influence of manganese doping on the crystal structure, oxygen nonstoichiometry, thermal expansion, transport properties, and application as a cathode material in solid oxide fuel cells. J Mater Chem A. 2018;6:13271–85.10.1039/C8TA03479FSuche in Google Scholar
[100] Brinks H, Jensen C, Srinivasan S, Hauback B, Blanchard D, Murphy K. Synchrotron X-ray and neutron diffraction studies of NaAlH4 containing Ti additives. J Alloys Compd. 2004;376:215–21.10.1016/j.jallcom.2003.12.024Suche in Google Scholar
[101] Gaboardi M, Duyker S, Milanese C, Magnani G, Peterson VK, Pontiroli D, et al. In situ neutron powder diffraction of Li6C60 for hydrogen storage. J Phys Chem C. 2015;119:19715–21.10.1021/acs.jpcc.5b06711Suche in Google Scholar
[102] Hudson MR, Queen WL, Mason JA, Fickel DW, Lobo RF, Brown CM. Unconventional, highly selective CO2 adsorption in zeolite SSZ-13. J Am Chem Soc. 2012;134:1970–3.10.1021/ja210580bSuche in Google Scholar PubMed
[103] Wu H, Simmons JM, Srinivas G, Zhou W, Yildirim T. Adsorption Sites and Binding Nature of CO2 in Prototypical Metal−Organic Frameworks: A Combined Neutron Diffraction and First-Principles Study. J Phys Chem Lett. 2010;1:1946–51.10.1021/jz100558rSuche in Google Scholar
[104] Nemudry A, Rudolf P, Schöllhorn R. Topotactic electrochemical redox reactions of the defect perovskite SrCoO2. 5+ x. Chem Mater. 1996;8:2232–8.10.1021/cm950504+Suche in Google Scholar
[105] Le Toquin R, Paulus W, Cousson A, Prestipino C, Lamberti C. Time-resolved in situ studies of oxygen intercalation into SrCoO2. 5, performed by neutron diffraction and X-ray absorption spectroscopy. J Am Chem Soc. 2006;128:13161–74.10.1021/ja063207mSuche in Google Scholar PubMed
[106] Cai B, Liu B, Kabra S, Wang Y, Yan K, Lee PD, et al. Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: in situ neutron diffraction. Acta Mater. 2017;127:471–80.10.1016/j.actamat.2017.01.034Suche in Google Scholar
[107] Singh AK, Pandey D, Zaharko O. Powder neutron diffraction study of phase transitions in and a phase diagram of (1− x)[Pb (Mg 1∕ 3 Nb 2∕ 3) O 3]− x Pb Ti O 3. Phys Rev B. 2006;74:024101.10.1103/PhysRevB.74.024101Suche in Google Scholar
[108] Gharghouri M, Weatherly G, Embury J, Root J. Study of the mechanical properties of Mg-7.7 at.% Al by in-situ neutron diffraction. Philos Mag A. 1999;79:1671–95.10.1080/01418619908210386Suche in Google Scholar
[109] Senkov O, Wilks G, Scott J, Miracle D. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19:698–706.10.1016/j.intermet.2011.01.004Suche in Google Scholar
[110] James M, Webster P, Hughes D, Chen Z, Ratel N, Ting S-P, et al. Correlating weld process conditions, residual strain and stress, microstructure and mechanical properties for high strength steel—the role of neutron diffraction strain scanning. Mater Sci Eng A. 2006;427:16–26.10.1016/j.msea.2006.03.098Suche in Google Scholar
[111] Zhou Y, Zhang Y, Wang Y, Chen G. Solid solution alloys of Al Co Cr Fe Ni Ti x with excellent room-temperature mechanical properties. Appl Phys Lett. 2007;90:181904.10.1063/1.2734517Suche in Google Scholar
[112] Tong C-J, Chen M-R, Yeh J-W, Lin S-J, Chen S-K, Shun -T-T, et al. Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A. 2005;36:1263–71.10.1007/s11661-005-0218-9Suche in Google Scholar
[113] Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, et al. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303.10.1002/adem.200300567Suche in Google Scholar
[114] Eckold G, Gibhardt H, Caspary D, Elter P, Elisbihani K. Stroboscopic neutron diffraction from spatially modulated systems. ZKristallogr-Cryst Mater. 2003;218:144–53.10.1524/zkri.218.2.144.20670Suche in Google Scholar
[115] Neuefeind J, Feygenson M, Carruth J, Hoffmann R, Chipley KK. The nanoscale ordered materials diffractometer NOMAD at the spallation neutron source SNS. NNucl Instrum Methods Phys Res. 2012;287:68–75.10.1016/j.nimb.2012.05.037Suche in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Green chemistry outreach
- Continuous synthesis of gold nanoparticles in micro- and millifluidic systems
- Ionic liquid-assisted biphasic systems for downstream processing of fermentative enzymes and organic acids
- Description of excited states in photochemistry with theoretical methods
- In situ neutron powder diffraction studies
- Cheminformatics techniques in antimalarial drug discovery and development from natural products 2: Molecular scaffold and machine learning approaches
Artikel in diesem Heft
- Frontmatter
- Green chemistry outreach
- Continuous synthesis of gold nanoparticles in micro- and millifluidic systems
- Ionic liquid-assisted biphasic systems for downstream processing of fermentative enzymes and organic acids
- Description of excited states in photochemistry with theoretical methods
- In situ neutron powder diffraction studies
- Cheminformatics techniques in antimalarial drug discovery and development from natural products 2: Molecular scaffold and machine learning approaches