Abstract
The production of hydrogen from renewable resources is still a major challenge in our way to reach a foreseen hydrogen economy. Abstracting the hydrogen contained in alcohols by means of acceptorless dehydrogenation reactions has emerged as a viable method with high potential. This is particularly true when applied to bio-based alcohols such as ethanol, glycerol or sugars, whose hydrogen extrusion is covered in this contribution. A general overview of the development of aceptorless alcohol dehydrogenation reactions and its potential implementation into future biorefineries are discussed.
Funding statement: JC thanks BBVA Foundation for a Grant for Researchers and Cultural Creators 2016, the EU H2020 Program for a Marie Skłodowska–Curie Individual Fellowship (Grant Agreement no. 706008) and the Spanish Ministry of Economy and Competitiveness (Project CTQ2016-75193-P [AEI/FEDER, UE]).
References
[1] For recent reviews see: (a) Dobereiner GE, Crabtree RH. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem Rev. 2010;110:681–703. (b) Nandakumar A, Midya SP, Landge VG, Balaraman E. Transition-metal-catalyzed hydrogen- transfer annulations: access to heterocyclic scaffolds. Angew Chem Int Ed. 2015;54:11022–34. (c) Wang D, Astruc D. The golden age of transfer hydrogenation. Chem Rev. 2015;115:6621–86. (d) Nixon TD, Whittlesey MK, Williams JM. Transition metal catalysed reactions of alcohols using borrowing hydrogen methodology. Dalton Trans. 2009:753−62. (e) Werkmeister S, Neumann J, Junge K, Beller M. Pincer-type complexes for catalytic (De)Hydrogenation and Transfer (De)- Hydrogenation reactions: recent progress. Chem Eur J. 2015;21:12226−50.10.1021/cr900202jSuche in Google Scholar PubMed
[2] Huang F, Liu Z, Yu Z. C-Alkylation of ketones and related compounds by alcohols: transition-Metal-Catalyzed Dehydrogenation. Angew Chem Int Ed. 2016;55:862−75.10.1002/anie.201507521Suche in Google Scholar PubMed
[3] (a) Jumde VR, Cini E, Porcheddu A, Taddei M. Metal-catalyzed tandem 1,4-benzodiazepine synthesis based on two hydrogen-transfer reactions. Eur J Org Chem. 2015;2015:1068−74. (b) Yan T, Feringa BL, Barta K. Benzylamines via iron-catalyzed direct amination of benzyl alcohols. ACS Catal. 2016;6:381–8. (c) Luo Z, Qin F, Yan S, Li X. An efficient and promising method to prepare Ladostigil (TV3326) via asymmetric transfer hydrogenation catalyzed by Ru-Cs-DPEN in an HCOONa-H2O-surfactant system. Tetrahedron Assymetry. 2012;23:333–8. (d) Leonard J, Blacker AJ, Marsden SP, Jones MF, Mulholland KR, Newton R. A survey of the borrowing hydrogen approach to the synthesis of some pharmaceutically relevant intermediates. Org Process Res Dev. 2015;19:1400–10.10.1002/ejoc.201403261Suche in Google Scholar
[4] (a) Gerfaud T, Martin C, Bouquet K, Talano S, Millois-Barbuis C, Musicki B, et al. Process development and good manufacturing practice production of a tyrosinase inhibitor via titanium-mediated coupling between unprotected resorcinols and ketones. Org Process Res Dev. 2017;21:631–40. (b) Berliner MA, Dubant SP, Makowski T, Ng K, Sitter B, Wager C, et al. Org Process Res Dev. 2011;15:1052−62. (c) Frederick MO, Frank SA, Vicenzi JT, LeTourneau ME, Berglund KD, Edward AW, et al. Development of a hydrogenative reductive amination for the synthesis of evacetrapib: unexpected benefits of water. Org Process Res Dev. 2014;18:546–51.10.1021/acs.oprd.7b00036Suche in Google Scholar
[5] (a) Soldevila-Barreda JJ, Romero-Canelon I, Habtemariam A, Sadler PJ. Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design. Nat Commun. 2015;6:6582. (b) Bose S, Ngo AH, Do LH. Intracellular transfer hydrogenation mediated by unprotected organoiridium catalysts. J Am Chem Soc. 2017;139:8792–5. (c) Fu Y, Sanchez-Cano C, Soni R, Romero-Canelon I, Hearn JM, Liu Z, et al. The contrasting catalytic efficiency and cancer cell antiproliferative activity of stereoselective organoruthenium transfer hydrogenation catalysts. Dalton Trans. 2016;45:8367–78.10.1038/ncomms7582Suche in Google Scholar PubMed PubMed Central
[6] (a) Okamoto Y, Kohler V, Paul CE, Hollmann F, Ward TR. Efficient in situ regeneration of NADH mimics by an artificial metalloenzyme. ACS Catal. 2016;6:3553–7. (b) Okamoto Y, Kohler V, Ward TR. An NAD(P)H-dependent artificial transfer hydrogenase for multienzymatic cascades. J Am Chem Soc. 2016;138:5781–4.10.1021/acscatal.6b00258Suche in Google Scholar
[7] (a) Alberico E, Nielsen M. Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol. Chem Commun. 2015;51:6714−25. (b) Crabtree RH. Hydrogen storage in liquid organic heterocycles. Energy Environ Sci. 2008;1:134−8. (c) Chamoun R, Demirci UB, Miele P. Cyclic dehydrogenation−(re)hydrogenation with hydrogen-storage materials. Energy Technol. 2015;3:100−17.10.1039/C4CC09471ASuche in Google Scholar PubMed
[8] Olah GA, Goeppert A, Prakash GK. Beyond oil and gas: the methanol economy. Weinheim: Wiley-VCH, 2006.Suche in Google Scholar
[9] (a) Gunanathan C, Milstein D. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis. Science 2013;341:1229712. (b) Crabtree RH. Homogeneous transition metal catalysis of acceptorless dehydrogenative alcohol oxidation: applications in hydrogen storage and to heterocycle synthesis. Chem Rev. 2017;117:9228–46. (c) Balaraman E, Khaskin E, Leitus G, Milstein D. Catalytic transformation of alcohols to carboxylic acid salts and H2 using water as the oxygen atom source. Nat Chem. 2013;5:122–5.10.1126/science.1229712Suche in Google Scholar PubMed
[10] Nielsen M. Hydrogen production by homogeneous catalysis: alcohol acceptorless dehydrogenation. In: Lichtfouse E, Schwarzbauer J, Robert D, editors. Hydrogen production and remediation of carbon and pollutants. Heidelberg: Springer, 2015.Suche in Google Scholar
[11] (a) Johnson TC, Morris DJ, Wills M. Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem Soc Rev. 2010;39:81−8. (b) Trincado M, Banerjee D, Grützmacher H. Molecular catalysts for hydrogen production from alcohols. Energy Environ Sci. 2014;7:2464−503.10.1039/B904495GSuche in Google Scholar PubMed
[12] (a) Yamamoto N, Obora Y, Ishii Y. Iridium-Catalyzed oxidative methyl esterification of primary alcohols and diols with methanol. J Org Chem. 2011;76:2937–41. (b) Hanasaka F, Fujita K, Yamaguchi R. Synthesis of new cationic Cp*Ir N-heterocyclic carbene complexes and their high catalytic activities in the Oppenauer-type oxidation of primary and secondary alcohols. Organometallics. 2005;24:3422–33. (c) Wang GZ., Baeckvall JE. Ruthenium-catalyzed oxidation of alcohols by acetone. J Chem Soc Chem Commun. 1992;4:337–9.10.1021/jo2003264Suche in Google Scholar PubMed
[13] Choi J, MacArthur AH, Brookhart M, Goldman AS. Dehydrogenation and related reactions catalyzed by iridium pincer complexes. Chem Rev. 2011;111:1761−79. (b) Crabtree RH. The organometallic chemistry of alkanes. Chem Rev. 1985;85:245−69.10.1021/cr1003503Suche in Google Scholar PubMed
[14] Charman HB. Hydride transfer reactions catalyzed metal complexes. Nature. 1966;212:278–9. (b) Charman HB. Hydride transfer reactions catalysed by metal complexes. J Chem Soc. 1967;6:629–32. (c) Charman HB. Hydride transfer reactions catalyzed by rhodium-tin complexes. J Chem Soc. 1970;4:584–7.10.1038/212278b0Suche in Google Scholar
[15] Vaska L, Diluzio JW. On the origin of hydrogen in metal hydride complexes formed by reaction with alcohols. J Am Chem Soc. 1962;84:4989–90.10.1021/ja00883a081Suche in Google Scholar
[16] Sawama Y, Morita K, Yamada T, Nagata S, Yabe Y, Monguchi Y, et al. Rhodium-on-carbon catalyzed hydrogen scavenger- and oxidant-free dehydrogenation of alcohols in aqueous media. Green Chem. 2014;16:3439–43.10.1039/c4gc00434eSuche in Google Scholar
[17] (a) Dobson A, Robinson SD. Complexes of the platinum metals. 7. Homogeneous ruthenium and osmium catalysts for the dehydrogenation of primary and secondary alcohols. Inorg Chem. 1977;16:137–42. (b) Dobson A, Robinson SD. Catalytic dehydrogenation of primary and secondary alcohols by Ru(OCOCF3)2(CO)(PPh3)2. J Organomet Chem. 1975;87:C52–3.10.1021/ic50167a029Suche in Google Scholar
[18] Khusnutdinova JR, Milstein D. Metal–ligand cooperation. Angew Chem Int Ed. 2015;54:12236–73.10.1002/anie.201503873Suche in Google Scholar
[19] (a) Li HX, Wang HX. Computational mechanistic studies of acceptorless dehydrogenation reactions catalyzed by transition metal complexes. Sci China Chem. 2012;55:1991−2008. (b) Hou C, Zhang ZH, Zhao CY, Ke ZF. DFT study of acceptorless alcohol dehydrogenation mediated by ruthenium pincer complexes: ligand tautomerization governing metal ligand cooperation. Inorg Chem. 2016;55:6539−51. (c) Musa S, Shaposhnikov I, Cohen S, Gelman D. Ligand−metal cooperation in PCP pincer complexes: rational design and catalytic activity in acceptorless dehydrogenation of alcohols. Angew Chem Int Ed. 2011;50:3533−7.10.1007/s11426-012-4713-8Suche in Google Scholar
[20] Rybak WK, Ziółkowski JJ. Dehydrogenation of alcohols catalysed by polystyrene- supported ruthenium complexes. J Mol Catal. 1981;11:365–70.10.1016/0304-5102(81)87024-1Suche in Google Scholar
[21] Jung CW, Garrou PE. Dehydrogenation of alcohols and hydrogenation of aldehydes using homogeneous ruthenium catalysts. Organometallics. 1982;1:658–66.10.1021/om00064a016Suche in Google Scholar
[22] Zhang L, Raffa G, Nguyen DH, Swesi Y, Corbel-Demailly L, Capet F, et al. Acceptorless dehydrogenative coupling of alcohols catalysed by ruthenium PNP complexes: influence of catalyst structure and of hydrogen mass transfer. J Catal. 2016;340:331–43.10.1016/j.jcat.2016.06.001Suche in Google Scholar
[23] Lin Y, Ma D, Lu X. Iridium pentahydride complex catalyzed dehydrogenation of alcohols in the absence of a hydrogen acceptor. Tetrahedron Lett. 1987;28:3115–8.10.1016/S0040-4039(00)96299-3Suche in Google Scholar
[24] (a) Morton D, Cole-Hamilton DJ. Rapid thermal hydrogen production from alcohols catalyzed by [Rh(2,2′-bipyridyl) 2]Cl. J Chem Soc Chem Commun. 1987; 248–9. (b) Morton D, Cole-Hamilton DJ, Schofield JA, Pryce RJ. Rapid thermal hydrogen production from 2,3-butanediol catalyzed by homogeneous rhodium catalysis. Polyhedron. 1987;6:2187–9.10.1039/C39870000248Suche in Google Scholar
[25] Morton D, Cole-Hamilton DJ. Molecular hydrogen complexes in catalysis: highly efficient hydrogen production from alcoholic substrates catalysed by ruthenium complexes. J Chem Soc Chem Commun. 1988;1154−6.10.1039/c39880001154Suche in Google Scholar
[26] See for example: (a) Van der Sluys LS, Kubas GJ, Caulton KG. Reactivity of (dihydrogen)dihydridotris(triphenylphosphine)ruthenium. Dimerization to form (PPh3)2(H)Ru(.mu.-H)3Ru(PPh3)3 and decarbonylation of ethanol under mild conditions. Organometallics. 1991;10:1033−8. (e) Kloek SM, Heynekey DM, Goldberg KI. Stereoselective decarbonylation of methanol to form a stable Iridium(III) trans-Dihydride Complex. Organometallics. 2006;25:3007−11. (g) Melnick JG, Radosevich AT, Villagran D, Nocera DG. Decarbonylation of ethanol to methane, carbon monoxide and hydrogen by a [PNP]Ir complex. Chem Commun. 2010;46:79−81.10.1021/om00050a039Suche in Google Scholar
[27] Hu P, Fogler E, Diskin-Posner Y, Iron MA, Milstein D. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation. Nat Commun. 2015;6:6859.10.1038/ncomms7859Suche in Google Scholar PubMed PubMed Central
[28] Junge H, Loges B, Beller M. Novel improved ruthenium catalysts for the generation of hydrogen from alcohols. Chem Commun. 2007:522–4.10.1039/B613785GSuche in Google Scholar PubMed
[29] Nielsen M, Kammer A, Cozzula D, Junge H, Gladiali S, Beller M. Efficient hydrogen production from alcohols under mild reaction conditions. Angew Chem Int Ed. 2011;50:9593−7.10.1002/anie.201104722Suche in Google Scholar PubMed
[30] Nielsen M, Alberico E, Baumann W, Drexler HJ, Junge H, Gladiali S, et al. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature. 2013;495:85–90.10.1038/nature11891Suche in Google Scholar PubMed
[31] Rodriguez-Lugo RE, Trincado M, Vogt M, Tewes F, Santiso-Quinones G, Grützmacher H. A homogeneous transition metal complex for clean hydrogen production from methanol–water mixtures. Nat Chem. 2013;5:342.10.1038/nchem.1595Suche in Google Scholar PubMed
[32] (a) Göttker-Schnetmann I, White P, Brookhart M. J Am Chem Soc. 2004;126:1804. (b) Göttker-Schnetmann I, Brookhart M. Mechanistic studies of the transfer dehydrogenation of cyclooctane catalyzed by Iridium Bis(phosphinite) p-XPCP pincer complexes. J Am Chem Soc. 2004;126:9330–8.10.1021/ja0385235Suche in Google Scholar PubMed
[33] Choi J, MacArthur AH, Brookhart M, Goldman AS. Dehydrogenation and related reactions catalyzed by iridium pincer complexes. Chem Rec. 2011;111:1761–79.10.1021/cr1003503Suche in Google Scholar
[34] Polukeev AV, Petrovskii PV, Peregudov AS, Ezernitskaya MG, Koridze AA. Dehydrogenation of alcohols by Bis(phosphinite) benzene based and Bis(phosphine) ruthenocene based iridium pincer complexes. Organometallics. 2013;32:1000–15.10.1021/om300921qSuche in Google Scholar
[35] Musa S, Shaposhnikov I, Cohen S, Gelman D. Ligand–metal cooperation in PCP pincer complexes: rational design and catalytic activity in acceptorless dehydrogenation of alcohols. Angew Chem Int Ed. 2011;50:3533–7.10.1002/anie.201007367Suche in Google Scholar
[36] Oded K, Musa S, Gelman D, Blum J. Dehydrogenation of alcohols under ambient atmosphere by a recyclable sol–gel encaged iridium pincer catalyst. Catal Commun. 2012;20:68–70.10.1016/j.catcom.2012.01.017Suche in Google Scholar
[37] Michlik S, Kempe R. A sustainable catalytic pyrrole synthesis. Nat Chem. 2013;5:140.10.1038/nchem.1547Suche in Google Scholar PubMed
[38] Michlik S, Kempe R. Regioselectively functionalized pyridines from sustainable resources. Angew Chem Int Ed. 2013;52:6326−9.10.1002/anie.201301919Suche in Google Scholar
[39] Blum Y, Shvo Y. Catalytically reactive (4-tetracyclone)(CO)(H)2Ru and related complexes in dehydrogenation of alcohols to esters. J Organomet Chem. 1985;282:C7–10.10.1016/0022-328X(85)87154-0Suche in Google Scholar
[40] Conley BL, Pennington-Boggio MK, Boz E, Williams TJ. Discovery, applications, and catalytic mechanisms of Shvo’s catalyst. Chem Rev. 2010;110:2294–312.10.1021/cr9003133Suche in Google Scholar PubMed
[41] Blum Y, Shvo Y. Catalytically reactive ruthenium intermediates in the homogeneous oxidation of alcohols to esters. Isr J Chem. 1984;24:144–8.10.1002/ijch.198400024Suche in Google Scholar
[42] (a) Casey CP, Singer S, Powell DR, Hayashi RK, Kavana M. Hydrogen transfer to carbonyls and imines from a hydroxycyclopentadienyl ruthenium hydride: evidence for concerted hydride and proton transfer. J Am Chem Soc. 2001;123:1090. (b) Johnson JB, Bäckvall JE. Mechanism of ruthenium-catalyzed hydrogen transfer reactions. Concerted transfer of OH and CH hydrogens from an alcohol to a (cyclopentadienone)ruthenium complex. J Org Chem. 2003;68:7681. (c) Comas-Vives A, Ujague G, Lledós A. Hydrogen transfer to ketones catalyzed by Shvo’s ruthenium hydride complex: a mechanistic insight. Organometallics. 2007;26:4135.10.1021/ja002177zSuche in Google Scholar PubMed
[43] Fujita K, Tanino N, Yamaguchi R. Ligand-promoted dehydrogenation of alcohols catalyzed by Cp*Ir complexes. A new catalytic system for oxidant-free oxidation of alcohols. Org Lett. 2007;9:109−111.10.1021/ol062806vSuche in Google Scholar PubMed
[44] (a) Fujita K, Kawahara R, Aikawa T, Yamaguchi R. Hydrogen production from a methanol−water solution catalyzed by an anionic iridium complex bearing a functional bipyridonate ligand under weakly basic conditions. Angew Chem Int Ed. 2015;54:9057−60. (b) Zeng G, Sakaki S, Fujita K, Sano H, Yamaguchi R. Efficient catalyst for acceptorless alcohol dehydrogenation. ACS Catal. 2014;4:1010−20. (c) Kawahara R, Fujita K, Yamaguchi R. Cooperative catalysis by iridium complexes with a bipyridonate ligand. Angew Chem Int Ed. 2012;51:12790−4.10.1002/anie.201502194Suche in Google Scholar PubMed
[45] Dutta I, Sarbajna A, Pandey P, Rahaman SM, Singh K, Bera JK. Acceptorless dehydrogenation of alcohols on a diruthenium(II,II) platform. Organometallics. 2016;35:1505−13.10.1021/acs.organomet.6b00085Suche in Google Scholar
[46] (a) Baratta W, Bossi G, Putignano E, Rigo P. Pincer and Diamine Ru and Os Diphosphane complexes as efficient catalysts for the dehydrogenation of alcohols to ketones. Chem Eur J. 2011;17:3474−81. (b) Esteruelas MA, Honczek N, Oliván M, Oñate E, Valencia M. Direct access to POP-Type Osmium(II) and Osmium(IV) complexes: Osmium a promising alternative to ruthenium for the synthesis of imines from alcohols and amines. Organometallics. 2011;30:2468–71.10.1002/chem.201003022Suche in Google Scholar PubMed
[47] Roundhill DM. Excited-state chemistry of tetrakis(.mu.-pyrophosphito)diplatinum(II). Photoinduced addition of aryl bromides and iodides to the binuclear complex and the photoinduced catalytic conversion of isopropyl alcohol into acetone and hydrogen. J Am Chem Soc. 1985;107:4354–6.10.1021/ja00300a059Suche in Google Scholar
[48] Jin H, Xie J, Pan C, Zhu Z, Cheng Y, Zhu C. Rhenium-catalyzed acceptorless dehydrogenative coupling via dual activation of alcohols and carbonyl compounds. ACS Catal. 2013;3:2195–8.10.1021/cs400572qSuche in Google Scholar
[49] Alberico E, Sponholz P, Cordes C, Nielsen M, Drexler HJ, Baumann W, et al. Selective hydrogen production from methanol with a defined iron pincer catalyst under mild conditions. Angew Chem Int Ed. 2013;52:14162−6.10.1002/anie.201307224Suche in Google Scholar PubMed
[50] (a) Bielinski EA, Lagaditis PO, Zhang Y, Mercado BQ, WüRtele C, Bernskoetter WH, et al. Lewis acid-assisted formic acid dehydrogenation using a pincer-supported iron catalyst. J Am Chem Soc. 2014;136:10234−7. (b) Bielinski EA, Förster M, Zhang Y, Bernskoetter WH, Hazari N, Holthausen MC. Base-free methanol dehydrogenation using a pincer-supported iron compound and lewis acid co-catalyst. ACS Catal. 2015;5:2404–15.10.1021/ja505241xSuche in Google Scholar PubMed
[51] Chakraborty S, Lagaditis PO, FöRster M, Bielinski EA, Hazari N, Holthausen MC, et al. Well-defined iron catalysts for the acceptorless reversible dehydrogenation- hydrogenation of alcohols and ketones. ACS Catal. 2014;4:3994−4003.10.1021/cs5009656Suche in Google Scholar
[52] Chakraborty S, Brennessel WW, Jones WD. A molecular iron catalyst for the acceptorless dehydrogenation and hydrogenation of N-Heterocycles. J Am Chem Soc. 2014;136:8564−7.10.1021/ja504523bSuche in Google Scholar PubMed
[53] Chakraborty S, Piszel PE, Brennessel WW, Jones WD. A single nickel catalyst for the acceptorless dehydrogenation of alcohols and hydrogenation of carbonyl compounds. Organometallics. 2015;34:5203−6.10.1021/acs.organomet.5b00824Suche in Google Scholar
[54] Mukherjee A, Nerush A, Leitus G, Shimon LJ, Ben David Y, Espinosa Jalapa NA, et al. Manganese-catalyzed environmentally benign dehydrogenative coupling of alcohols and amines to form aldimines and H2: a catalytic and mechanistic study. J Am Chem Soc. 2016;138:4298−301.10.1021/jacs.5b13519Suche in Google Scholar PubMed
[55] O Bauer J, Chakraborty S, Milstein D. Manganese-catalyzed direct deoxygenation of primary alcohols. ACS Catal. 2017;7:4462–6.10.1021/acscatal.7b01729Suche in Google Scholar
[56] Nguyen DH, Trivelli X, Capet F, Paul JF, Dumeignil F, Gauvin RM. Manganese pincer complexes for the base-free, acceptorless dehydrogenative coupling of alcohols to esters: development, scope, and understanding. ACS Catal. 2017;7:2022−32.10.1021/acscatal.6b03554Suche in Google Scholar
[57] Tan DW, Li HX, Zhang MJ, Yao JL, Lang JP. Acceptorless dehydrogenation of alcohols catalyzed by CuI N-Heterocycle thiolate complexes. ChemCatChem. 2017;9:1113–8.10.1002/cctc.201601459Suche in Google Scholar
[58] Zhang G, Hanson SK. Cobalt-catalyzed alcohol hydrogenation and dehydrogenation reactions. Org Lett. 2013;15:650−3.10.1021/ol303479fSuche in Google Scholar PubMed
[59] Data from Renewal Fuels Association (RFA). Available at: http://www.ethanolrfa.org/. Accessed: 10 Aug 2017.Suche in Google Scholar
[60] Morton D, Cole-Hamilton DJ, Utuk ID, Paneque-Sosa M, Lopez-Poveda M. Hydrogen production from ethanol catalysed by group 8 metal complexes. J Chem Soc Dalton Trans. 1989:489–95.10.1039/dt9890000489Suche in Google Scholar
[61] Kagalwala HN, Maurer AB, Mills IN, Bernhard S. Visible-light-driven alcohol dehydrogenation with a rhodium catalyst. ChemCatChem. 2014;6:3018–26.10.1002/cctc.201402500Suche in Google Scholar
[62] O’Lenick AJ. Guerbet chemistry. J Surfact Det. 2001;4:311–5.10.1007/s11743-001-0185-1Suche in Google Scholar
[63] Gunanathan C, Shimon LJ, Milstein D. Direct conversion of alcohols to acetals and H2 catalyzed by an acridine-based ruthenium pincer complex. J Am Chem Soc. 2009;131:3146–7.10.1021/ja808893gSuche in Google Scholar PubMed
[64] Zonetti PC, Celnik J, Letichevsky S, Gaspar AB, Appel LG. Chemicals from ethanol – the dehydrogenative route of the ethyl acetate one-pot synthesis. J Mol Catal A: Chemical. 2011;334:29–34.10.1016/j.molcata.2010.10.019Suche in Google Scholar
[65] Ethyl Acetate (ETAC): 2017 World Market Outlook and Forecast up to 2021. Merchant Research & Consulting ltd. Available at: https://mcgroup.co.uk. Accessed: 1 Aug 2017.Suche in Google Scholar
[66] Nielsen M, Junge H, Kammer A, Beller M. Towards a green process for bulk-scale synthesis of ethyl acetate: efficient acceptorless dehydrogenation of ethanol. Angew Chem Int Ed. 2012;51:5711–3.10.1002/anie.201200625Suche in Google Scholar PubMed
[67] (a) Spasyuk D, Smith S, Gusev DG from esters to alcohols and back with ruthenium and osmium catalysts. Angew Chem Int Ed. 2012;51:2772–5. (b) Spasyuk D, Gusev DG. Acceptorless dehydrogenative coupling of ethanol and hydrogenation of esters and imines. Organometallics. 2012;31:5239–42.10.1002/anie.201108956Suche in Google Scholar PubMed
[68] Kuriyama W, Matsumoto T, Ogata O, Ino Y, Aoki K, Tanaka S, et al. Catalytic hydrogenation of esters. Development of an efficient catalyst and processes for synthesising (R)-1,2-Propanediol and 2-(l-Menthoxy)etanol. Org Process Res Dev. 2012;16:166−71.10.1021/op200234jSuche in Google Scholar
[69] Baratta W, Chelucci G, Gladiali S, Siega K, Toniutti M, Zanette M, et al. Ruthenium(II) terdentate CNN complexes: superlative catalysts for the hydrogen-transfer reduction of ketones by reversible insertion of a carbonyl group into the Ru[BOND]H bond. Angew Chem Int Ed. 2005;44:6214.10.1002/anie.200502118Suche in Google Scholar PubMed
[70] Zhang J, Leitus G, Ben-David Y, Milstein D. Facile conversion of alcohols into esters and dihydrogen catalyzed by new ruthenium complexes. J Am Chem Soc. 2005;127:10840.10.1021/ja052862bSuche in Google Scholar PubMed
[71] Clarke ZE, Maragh PT, Dasgupta TP, Gusev DG, Lough AJ, Abdur-Rashid K. A family of active iridium catalysts for transfer hydrogenation of ketones. Organometallics. 2006;25:4113.10.1021/om060049zSuche in Google Scholar
[72] Tanaka R, Yamashita M, Nozaki K. Catalytic hydrogenation of carbon dioxide using Ir(III)−pincer complexes. J Am Chem Soc. 2009;131:14168.10.1021/ja903574eSuche in Google Scholar PubMed
[73] Spasyuk D, Vicent C, Gusev DG. Chemoselective hydrogenation of carbonyl compounds and acceptorless dehydrogenative coupling of alcohols. J Am Chem Soc. 2015;137:3743–6.10.1021/ja512389ySuche in Google Scholar PubMed
[74] Gunanathan C, Ben-David Y, Milstein D. Direct synthesis of amides from alcohols and amines with liberation of H2. Science. 2007;317:790−2.10.1126/science.1145295Suche in Google Scholar PubMed
[75] Vicent C, Gusev DG. ESI-MS insights into acceptorless dehydrogenative coupling of alcohols. ACS Catal. 2016;6:3301–9.10.1021/acscatal.6b00623Suche in Google Scholar
[76] Gusev DG. Dehydrogenative coupling of ethanol and ester hydrogenation catalyzed by pincer-type YNP complexes. ACS Catal. 2016;6:6967–81.10.1021/acscatal.6b02324Suche in Google Scholar
[77] Hu P, Ben-David Y, Milstein D. Rechargeable hydrogen storage system based on the dehydrogenative coupling of ethylenediamine with ethanol. Angew Chem Int Ed. 2016;55:1061 –4.10.1002/anie.201505704Suche in Google Scholar PubMed
[78] Hu P, Fogler E, Diskin-Posner Y, Iron MA, Milstein D. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation. Nat Commun. 2015;6:6859.10.1038/ncomms7859Suche in Google Scholar PubMed PubMed Central
[79] Sponholz P, Mellmann D, Cordes C, Alsabeh PG, Li B, Li Y, et al. Efficient and selective hydrogen generation from bioethanol using ruthenium pincer-type complexes. ChemSusChem. 2014;7:2419–22.10.1002/cssc.201402426Suche in Google Scholar PubMed
[80] Zhang L, Nguyen DH, Raffa G, Trivelli X, Capet F, Desset S, et al. Catalytic conversion of alcohols into carboxylic acid salts in water: scope, recycling, and mechanistic insights. ChemSusChem. 2016;9:1413–23.10.1002/cssc.201600243Suche in Google Scholar PubMed
[81] Nguyen DH, Morin Y, Zhang L, Trivelli X, Capet F, Paul S, et al. Oxidative transformations of biosourced alcohols catalyzed by earth-abundant transition metals. ChemCatChem. 2017;9:2652–60.10.1002/cctc.201700310Suche in Google Scholar
[82] McCoy M. Glycerin surplus. Plants are closing, and new uses for the chemical are being found. Chem Eng News. 2006;84:7.Suche in Google Scholar
[83] (a) Tan HW, Abdul Aziz AR, Aroua MK. Glycerol production and its applications as a raw material: a review. Renew Sustainable Energy Rev. 2013;27:118–27. (b) Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD. From glycerol to value-added products. 2007;46:4434–40. (c) Katryniok B, Kimura H, Skrzyńska E, Girardon JS, Fongarland P, Capron M, et al. Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chem. 2011;13:1960–79.10.1016/j.rser.2013.06.035Suche in Google Scholar
[84] (a) Soares RR, Simonetti DA, Dumesic JA. Glycerol as a source for fuels and chemicals by low-temperature catalytic processing. Angew Chem Int Ed. 2006;45:3982. (b) Huber GW, Shabaker JW, Dumesic JA. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. Science. 2003;300:2075–7.10.1002/anie.200600212Suche in Google Scholar PubMed
[85] Crotti C, Kasparb J, Farnetti E. Dehydrogenation of glycerol to dihydroxyacetone catalyzed by iridium complexes with P–N ligands. Green Chem. 2010;12:1295–300.10.1039/c003542dSuche in Google Scholar
[86] Sharninghausen LS, Campos J, Manas MG, Crabtree RH. Efficient selective and atom economic catalytic conversion of glycerol to lactic acid. Nat Commun. 2014;5:5084.10.1038/ncomms6084Suche in Google Scholar PubMed
[87] (a) Hintermair U, Campos J, Brewster TP, Pratt LM, Schley ND, Crabtree RH. Hydrogen-transfer catalysis with Cp*IrIII complexes: the influence of the ancillary ligands. ACS Catal 2014;4:99−108. (b) Campos J, Hintermair U, Brewster TP, Takase MK, Crabtree RH. Catalyst activation by loss of cyclopentadienyl ligands in hydrogen transfer catalysis with Cp*IrIII complexes. ACS Catal. 2014;4:973−85.10.1021/cs400834qSuche in Google Scholar
[88] Campos J, Sharninghausen LS, Manas MG, Crabtree RH. Methanol dehydrogenation by iridium N‑Heterocyclic carbene complexes. Inorg Chem. 2015;54:5079−84.10.1021/ic502521cSuche in Google Scholar
[89] Dusselier M, van Wouwe P, Dewaele A, Makshina E, Sels BF. Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy Environ Sci. 2013;6:1415–42.10.1039/c3ee00069aSuche in Google Scholar
[90] (a) Sharninghausen LS, Mercado BQ, Crabtree RH, Balcells D, Campos J. Gel matrices for the crystallization of [Ir4(IMe)7(CO)H10]2+ and [Ir4(IMe)8H9]3+ clusters derived from catalytic glycerol dehydrogenation. Dalton Trans. 2015;44:18403–10. (b) Campos J, Sharninghausen LS, Crabtree RH, Balcells D. A carbene-rich but carbonyl-poor [Ir6(IMe)8(CO)2H14]2+ polyhydride cluster as a deactivation product from catalytic glycerol dehydrogenation. Angew Chem Int Ed. 2014;53:12808–11.10.1039/C5DT03302KSuche in Google Scholar PubMed
[91] Sun Z, Liu Y, Chen J, Huang C, Tu T. Robust iridium coordination polymers: highly selective, efficient, and recyclable catalysts for oxidative conversion of glycerol to potassium lactate with dihydrogen liberation. ACS Catal. 2015;5:6573−8.10.1021/acscatal.5b01782Suche in Google Scholar
[92] Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A prolific catalyst for selective conversion of neat glycerol to lactic acid. ACS Catal. 2016;6:2014−7.10.1021/acscatal.5b02732Suche in Google Scholar
[93] Li Y, Nielsen M, Li B, Dixneuf PH, Junge H, Beller M. Ruthenium-catalyzed hydrogen generation from glycerol and selective synthesis of lactic acid. Green Chem. 2015;17:193–8.10.1039/C4GC01707BSuche in Google Scholar
[94] Sharninghausen LS, Mercado BQ, Crabtree RH, Hazari N. Selective conversion of glycerol to lactic acid with iron pincer precatalysts. Chem Commun. 2015;51:16201–4.10.1039/C5CC06857FSuche in Google Scholar
[95] Starch-Stärke RH. Renewable raw materials in Europe – Industrial utilisation of starch and sugar. 2002;54:89–99.10.1002/1521-379X(200204)54:3/4<89::AID-STAR89>3.0.CO;2-ISuche in Google Scholar
[96] Huber GW, Dumesic JA. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catal Today. 2006;111:119–32.10.1016/j.cattod.2005.10.010Suche in Google Scholar
[97] (a) Ren N, Wang A, Cao G, Xu J, Gao L. Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv. 2009;27:1051–60. (b) Zeikus JG. Chemical and fuel production by anaerobic bacteria. Annu Rev Microbiol. 1980;34:423. (c) Li J, Ren N, Li B, Qin Z, He J. Anaerobic biohydrogen production from monosaccharides by a mixed microbial community culture. Bioresour Technol. 2008;99:6528–37.10.1016/j.biotechadv.2009.05.007Suche in Google Scholar PubMed
[98] Toonssen R, Woudstra N, Verkooijen AH. Int J Hydrogen Energy. 2008;33:4074–82.10.1016/j.ijhydene.2008.05.059Suche in Google Scholar
[99] (a) Garcia L, French R, Czernik S, Chornet E. Catalytic steam reforming of bio-oils for the production of hydrogen: effects of catalyst composition. Appl Catal A. 2000;201:225–39. (b) Marquevich M, Czernik S, Chornet E, Montane D. Hydrogen from biomass: steam reforming of model compounds of fast-pyrolysis oil. Energy Fuels. 1999;13:1160–6.10.1016/S0926-860X(00)00440-3Suche in Google Scholar
[100] Coronado I, Stekrova M, Reinikainen M, Simell P, Lefferts L, Lehtonen J. A review of catalytic aqueous-phase reforming of oxygenated hydrocarbons derived from biorefinery water fractions. Int J Hydrogen Energy. 2016;4:11003–32.10.1016/j.ijhydene.2016.05.032Suche in Google Scholar
[101] (a) de Wit G, de Vlieger JJ, Kock-van Dalen AC, Kieboom AP, van Bekkum H. Catalytic dehydrogenation of reducing sugars in alkaline solution at ambient conditions. Transfer hydrogenation of fructose. Tetrahedron Lett. 1978;15:1327–30. (b) de Wit G, Devlieger JJ, van Dalen AC, Heus R, Laroy R, van Hengstum AJ, Kieboom AP, van Bekkum H. Catalytic dehydrogenation of reducing sugars in alkaline solution. Carbohydrate Res. 1981;91:125–38.10.1016/0040-4039(78)80120-8Suche in Google Scholar
[102] Cortright RD, Davda RR, Dumesic JA. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature. 2002;418:964–7.10.1038/nature01009Suche in Google Scholar PubMed
[103] Taccardi N, Assenbaum D, Berger ME, Bçsmann A, Enzenberger F, Wçlfel R, et al. Catalytic production of hydrogen from glucose and other carbohydrates under exceptionally mild reaction conditions. Green Chem. 2010;12:1150–6.10.1039/c002910fSuche in Google Scholar
[104] Zhan Y, Shen Y, Li S, Yueb B, Zhou X. Hydrogen generation from glucose catalyzed by organoruthenium catalysts under mild conditions Chem Commun. 2017;53:4230–3.10.1039/C7CC00177KSuche in Google Scholar
[105] Li Y, Sponholz P, Nielsen M, Junge H, Beller M. Iridium-catalyzed hydrogen production from monosaccharides, disaccharide, cellulose, and lignocellulose. ChemSusChem. 2015;8:804–8.10.1002/cssc.201403099Suche in Google Scholar PubMed
[106] Bozell JJ, Petersen GR. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem. 2010;12:539–54.10.1039/b922014cSuche in Google Scholar
[107] (a) Ding LN, Wang AQ, Zheng MY, Zhang T. Selective transformation of cellulose into sorbitol by using a bifunctional nickel phosphide catalyst. ChemSusChem 2010;3:818–21. (b) Fukuoka A, Dhepe PL. Catalytic conversion of cellulose into sugar alcohols. Angew Chem Int Ed. 2006;31:5161–3.10.1002/cssc.201000092Suche in Google Scholar PubMed
[108] Glattfeld E, Gershon S. The catalytic dehydrogenation of sugar alcohols. J Am Chem Soc. 1938;60:2013–23.10.1021/ja01276a001Suche in Google Scholar
[109] Manas MG, Campos J, Sharninghausen LS, Lin E, Crabtree RH. Selective catalytic oxidation of sugar alcohols to lactic acid. Green Chem. 2015;17:594–600.10.1039/C4GC01694GSuche in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- GreenCentre Canada: an experimental model for green chemistry commercialization
- Dehydrogenation of alcohols and polyols from a hydrogen production perspective
- DFT computations on vibrational spectra: Scaling procedures to improve the wavenumbers
- γ-Al2O3:Ce3+Cu2+ as a phosphor material; DFT+U and experimental approach
- Wastes generated by mineral extraction industries
- Electroplating wastes
Artikel in diesem Heft
- GreenCentre Canada: an experimental model for green chemistry commercialization
- Dehydrogenation of alcohols and polyols from a hydrogen production perspective
- DFT computations on vibrational spectra: Scaling procedures to improve the wavenumbers
- γ-Al2O3:Ce3+Cu2+ as a phosphor material; DFT+U and experimental approach
- Wastes generated by mineral extraction industries
- Electroplating wastes