Startseite Influence of betalain natural dye from red beet in gum acacia biopolymer: optical and electrical perspective
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of betalain natural dye from red beet in gum acacia biopolymer: optical and electrical perspective

  • Himadri Mullick ORCID logo EMAIL logo
Veröffentlicht/Copyright: 14. September 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, the development and characterization of a plant-derived biopolymer, gum acacia, chemically modified by an herbal dye, red beetroot (Latin Beta vulgaris) has been presented. Red beetroot, a flowering plant with abundant phytochemicals, prevents diseases and produces colorful chromophores. Chromophores interact with incident intense electromagnetic field and thereby absorb radiation in ultraviolet and/or visible region of the spectrum, promoting low to high-level electron excitation between different energy states. Such transition influences variation in optical and electrical properties of the system. Optical properties of both biopolymer unmodified gum acacia specimen and after modification with red beet induced chromophore are investigated by UV–visible absorption spectroscopy. Pronounced light absorption is observed in the visible range of the spectrum compared to the unmodified specimen in which absorption is found to be observed in the deep ultraviolet range. Electrical characterization of the modified biopolymer with red beetroot extract suggests eviation from ideal dielectric relaxation obeying Debye mechanism. Electrical conductivity is found to be enhanced over pure specimen. These properties are eligible for application in energy storage devices, especially as a sensitizer in photovoltaic material which are ongoing extensive research area.


Corresponding author: Himadri Mullick, Department of Physics, Charuchandra College, 22 Lake Road, Kolkata 700029, India, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: Author is the sole contributor.

  3. Competing interests: The author declares no conflict of interest regarding this article.

  4. Research funding: Author expresses gratitude to Bose Institute, Kolkata, India and Jadavpur University, Kolkata, India for providing laboratory facility. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

  5. Data availability: No.

References

1. Blaabjerg, F., Yang, Y., Yang, D., Wang, X. Distributed power-generation systems and protection. Proc. IEEE 2017, 105, 1311–1331; https://doi.org/10.1109/jproc.2017.2696878.Suche in Google Scholar

2. Welsby, D., Price, J., Pye, S., Ekins, P. Unextractable fossil fuels in a 1.5 °C world. Nature 2021, 597, 230–234; https://doi.org/10.1038/s41586-021-03821-8.Suche in Google Scholar PubMed

3. Baranwal, J., Barse, B., Fais, A., Delogu, G. L., Kumar, A. Biopolymer: a sustainable material for food and medical applications. Polymers 2022, 14, 983–1004; https://doi.org/10.3390/polym14050983.Suche in Google Scholar PubMed PubMed Central

4. Reddy, M. S. B., Ponnamma, D., Choudhary, R., Sadasivuni, K. K. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers 2021, 13, 1105–1156; https://doi.org/10.3390/polym13071105.Suche in Google Scholar PubMed PubMed Central

5. Mudgil, D., Barak, S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: a review. Int. J. Biol. Macromol. 2013, 61, 1–6; https://doi.org/10.1016/j.ijbiomac.2013.06.044.Suche in Google Scholar PubMed

6. Koyyada, A., Orsu, P. Natural gum polysaccharides as efficient tissue engineering and drug deliver biopolymers. J. Drug Delivery Sci. Technol. 2021, 63, 102431–102438; https://doi.org/10.1016/j.jddst.2021.102431.Suche in Google Scholar

7. Anand, R., Kumar, A. Significant biopolymers and their applications in buccal mediated drug delivery. J. Biomater. Sci., Polym. Ed. 2021, 32, 1203–1218; https://doi.org/10.1080/09205063.2021.1902175.Suche in Google Scholar PubMed

8. Mallick, H., Sarkar, A. An experimental investigation of electrical conductivities in biopolymers. Bull. Mater. Sci. 2000, 23, 319–324; https://doi.org/10.1007/bf02720090.Suche in Google Scholar

9. Babiker, R., Merghani, T. H., Elmusharaf, K., Badi, R. M., Lang, F., Saeed, A. M. Effects of gum Arabic ingestion on body mass index and body fat percentage in healthy adult females: two-arm randomized, placebo controlled, double-blind trial. Nutr. J. 2012, 11, 111–117; https://doi.org/10.1186/1475-2891-11-111.Suche in Google Scholar PubMed PubMed Central

10. Anwar, A., Masri, A., Rao, K., Rajendran, K., Ahmed, N. K., Shah, M. R., Siddiqui, R. Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Sci. Rep. 2019, 9, 3122–3133; https://doi.org/10.1038/s41598-019-39528-0.Suche in Google Scholar PubMed PubMed Central

11. Thurston, M. I., Bonwick, G. A., Williams, P. A., Williams, J. H. H., Dewey, F. M., Amos, A., Cronk, Q. C. B. Effect of heat and pH on the carbohydrate epitopes of gum from acacia Senegal recognized by monoclonal antibodies. Food Agric. Immunol. 1999, 11, 145–153; https://doi.org/10.1080/09540109999825.Suche in Google Scholar

12. Xu, L., Qiu, L., Sheng, Y., Sun, Y., Deng, L., Li, X., Bradley, M., Zhang, R. Biodegradable pH-responsive hydrogels for controlled dual-drug release. J. Mater. Chem. B 2018, 6, 510–517; https://doi.org/10.1039/c7tb01851g.Suche in Google Scholar PubMed

13. Mallick, H., Sarkar, A. Electrical characterization of ion conducting biopolymeric gel complexes. J. Non-Cryst. Solids 2006, 352, 795–800; https://doi.org/10.1016/j.jnoncrysol.2006.02.032.Suche in Google Scholar

14. Clifford, T., Howatson, G., West, D. J., Stevenson, E. J. The potential benefits of red beetroot supplementation in health and disease. Nutrients 2015, 7, 2801–2822; https://doi.org/10.3390/nu7042801.Suche in Google Scholar PubMed PubMed Central

15. Carrillo-Lopez, A., Yahia, E. M. Betalains: chemistry and biological functions. In Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd ed.; John Wiley & Sons: US, Vol. 1, 2017; pp. 383–392.10.1002/9781119158042.ch17Suche in Google Scholar

16. Abedellah, I. M., Shafei, A. E. Efficiency enhancement of ruthenium-based DSSCs employing A-π-D- π-A organic co-sensitizers. RSC Adv. 2020, 10, 27940–27943.10.1039/D0RA03916KSuche in Google Scholar

17. Shalini, S., Prabhu, R. B., Prasanna, S., Mallick, T. K., Senthilarasu, S. Review on natural dye sensitized solar cells: operation, materials and methods. Renewable Sustainable Energy Rev. 2015, 51, 1306–1325; https://doi.org/10.1016/j.rser.2015.07.052.Suche in Google Scholar

18. Harmer, R. A. Occurrence, chemistry and application of betanin. Food Chem. 1980, 5, 81–90; https://doi.org/10.1016/0308-8146(80)90066-7.Suche in Google Scholar

19. Bartosz, S. I., Bartosz, G. Biological properties and applications of betalains. Molecules 2021, 26, 2520–2556; https://doi.org/10.3390/molecules26092520.Suche in Google Scholar PubMed PubMed Central

20. Fu, Y., Shi, J., Xie, S. Y., Zhang, T., Soladoye, O. P., Aluko, R. E. Red beetroot betalains: perspectives on extraction, processing and potential health benefits. J. Agric. Food Chem. 2020, 68, 11595–11612; https://doi.org/10.1021/acs.jafc.0c04241.Suche in Google Scholar PubMed

21. Zhang, D., Lanier, S. M., Downing, J. A., Avent, J. L., Lum, J., Mchale, J. L. Betalain pigments for dye-sensitized solar cells. J. Photochem. Photobiol., A 2008, 195, 72–80; https://doi.org/10.1016/j.jphotochem.2007.07.038.Suche in Google Scholar

22. Adenam, N. M., Pirdaus, N. A., Yunin, M. Y. A. M., Azmie, K., Wong, K. N. S. W. S., Adli, H. K., Salleh, H. Study of Beta vulgaris (beetroot) extraction in polar solvents as photoabsorber in dye-sensitized solar cells application. IOP Conf. Ser.: Earth Environ. Sci. 2020, 596, 012014; https://doi.org/10.1088/1755-1315/596/1/012014.Suche in Google Scholar

23. Mukherjee, S., Mullick, H. Reactive modification of gum acacia biopolymer by natural pigment anthocyanin and tannin: optical and impedance study. Mater. Res. Innovations 2022, 6, 357–362; https://doi.org/10.1080/14328917.2021.1987694.Suche in Google Scholar

24. Ullah, R., Khan, N., Khattak, R., Khan, M., Khan, M. S., Ali, O. M. Preparation of electrochemical supercapacitor based on polypyrrole/gum Arabic composites. Polymers 2022, 14, 242–258; https://doi.org/10.3390/polym14020242.Suche in Google Scholar PubMed PubMed Central

25. Hosseinnezhad, M., Moradian, S., Gharanjig, K. Natural dyes extracted from black carrot and bramble for dye-sensitized solar cells. Prog. Color, Color. Coat. 2015, 8, 153–158.Suche in Google Scholar

26. Khan, M. I., Giridhar, P. Plant betalains: chemistry and biochemistry. Phytochemistry 2015, 117, 267–295; https://doi.org/10.1016/j.phytochem.2015.06.008.Suche in Google Scholar PubMed

27. Sreeja, S., Pesala, B. Co-sensitization aided efficiency enhancement in betanin-chlorophyll solar cell. Mater. Renew. Sustain. Energy 2018, 7, 25; https://doi.org/10.1007/s40243-018-0132-x.Suche in Google Scholar

28. Costa, R., Pogrebnoi, A., Pogrebnaya, T. Betanidin isomerisation and decarboxylation, thermodynamic and charge transfer dye properties towards dye sensitised solar cells application. J. Phys. Org. Chem. 2021, 34, e4185; https://doi.org/10.1002/poc.4185.Suche in Google Scholar

29. Mori, M., Miki, N., Ito, D., Kondo, T., Yoshida, K. Structure of tecophilin, a tri-caffeoylanthocyanin from the blue petals of Tecophilaea cyanocrocus, and the mechanism of blue color development. Tetrahedron 2014, 70, 8657–8664; https://doi.org/10.1016/j.tet.2014.09.046.Suche in Google Scholar

30. Kruhlak, R. J. Characterization of Molecular Excited State for Nonlinear Optics. Ph.D. Dissertation, Dept. of Physics, Washington State University, 2000.Suche in Google Scholar

31. Azeredo, H. M. C. Betalains: properties, sources, applications, and stability - a review. Int. J. Food Sci. Technol. 2009, 44, 2365–2376; https://doi.org/10.1111/j.1365-2621.2007.01668.x.Suche in Google Scholar

32. Macdonald, J. R. Impedance spectroscopy: old problems and new developments. Electrochim. Acta 1990, 35, 1483–1492; https://doi.org/10.1016/0013-4686(90)80002-6.Suche in Google Scholar

33. Cole, K. S., Cole, R. H. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 1941, 9, 341; https://doi.org/10.1063/1.1750906.Suche in Google Scholar

34. Nobre, M. A. L., Lanfredi, S. Dielectric spectroscopy on Bi3Zn2Sb3O14 ceramic: an approach based on the complex impedance. J. Phys. Chem. Solids 2003, 64, 2457–2464; https://doi.org/10.1016/j.jpcs.2003.08.007.Suche in Google Scholar

35. Sheikh, M. S., Sakya, A. P., Dutta, A., Sinha, T. P. Dielectric relaxation of CH3NH3PbI3 thin film. Thin Solid Films 2017, 638, 277–284; https://doi.org/10.1016/j.tsf.2017.07.070.Suche in Google Scholar

36. Mallik, H., Gupta, N., Sarkar, A. Anisotropic electrical conduction in gum arabica – a biopolymer. Mater. Sci. Eng., C 2002, 20, 215–218; https://doi.org/10.1016/s0928-4931(02)00036-x.Suche in Google Scholar

37. Chen, H. W., Lin, T. P., Chang, F. H. Ionic conductivity enhancement of the plasticized PMMA/LiClO4 polymer nanocomposite electrolyte containing clay. Polymer 2002, 43, 5281–5288; https://doi.org/10.1016/s0032-3861(02)00339-7.Suche in Google Scholar

38. Abouzari, M. R. S., Berkemeier, F., Schmitz, G., Wilmer, D. On the physical interpretation of constant phase element. Solid State Ionics 2009, 180, 922–927; https://doi.org/10.1016/j.ssi.2009.04.002.Suche in Google Scholar

39. Almond, D. P., West, A. R. Impedance and modulus spectroscopy of real dispersive conductors. Solid State Ionics 1983, 11, 57–64; https://doi.org/10.1016/0167-2738(83)90063-2.Suche in Google Scholar

40. Kaiser, M. Electrical conductivity and complex electric modulus of titanium doped nickel-zinc ferrites. Phys. B 2012, 407, 606–613; https://doi.org/10.1016/j.physb.2011.11.043.Suche in Google Scholar

41. Aziz, S. B., Marf, A. S., Dannoun, E. M. A., Brza, M. A., Abdullah, R. M. The study of the degree of crystallinity, electrical equivalent circuit, and dielectric properties of polyvinyl alcohol (PVA)-based biopolymer electrolytes. Polymers 2020, 12, 2184–2200; https://doi.org/10.3390/polym12102184.Suche in Google Scholar PubMed PubMed Central

42. Kang, S. D., Snyder, G. J. Charge-transport model for conducting polymers. Nat. Mater. 2017, 16, 252–257; https://doi.org/10.1038/nmat4784.Suche in Google Scholar PubMed

43. Shukla, N., Thakur, A. K., Shukla, A., Marx, D. T. Ion conduction mechanism in solid polymer electrolyte: an applicability of Almond-West formalism. Int. J. Electrochem. Sci. 2014, 9, 7644–7659; https://doi.org/10.1016/s1452-3981(23)10994-1.Suche in Google Scholar

44. Jonscher, A. K. J. Phys. D: Appl. Phys. 1999, 32, R57–R70; https://doi.org/10.1088/0022-3727/32/14/201.Suche in Google Scholar

Received: 2023-06-23
Accepted: 2023-08-27
Published Online: 2023-09-14
Published in Print: 2023-10-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2023-0150/html
Button zum nach oben scrollen