Startseite Multiobjective optimization of injection molding parameters based on the GEK-MPDE method
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Multiobjective optimization of injection molding parameters based on the GEK-MPDE method

  • Zhuocheng Wang ORCID logo , Jun Li , Zheng Sun , Cuimei Bo EMAIL logo und Furong Gao
Veröffentlicht/Copyright: 25. September 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In plastic injection molding (PIM), the process parameters determine the quality and productivity of molded parts. The traditional injection molding process analysis method mainly relies on production experience. It is lack of advanced and rationality and seriously increases production costs. In this paper, a hybrid multiobjective optimization method is proposed to minimize the warpage, volumetric shrinkage and cycle time. The method integrates orthogonal experimental design, numerical simulation, and the metamodel method with multiobjective optimization. The orthogonal experiment chooses seven parameters as the design variables to generate sampling data and determines key factors that affect product quality by the numerical simulation. A gradient-enhanced Kriging (GEK) surrogate model strategy is introduced to construct the response predictors to calculate objective responses in the global design space. Multipopulation differential evolution (MPDE) is conducted to locate the Pareto-optimal solutions, where the response predictors are taken as the fitness functions. This study shows that the proposed GEK-MPDE method can reduce warpage, volumetric shrinkage and cycle time by 5.7 %, 4.7 %, and 18.1 %, respectively. It helps plastic industry to realize collaborative scheduling of multiple tasks between different production lines by providing a low-cost and effective dynamic control method.


Corresponding author: Cuimei Bo, College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors declare that they have no conflicts of interest regarding this article.

  4. Research funding: The National Key Research and Development Project (2019YFB1704900) and the National Natural Science Foun-dation of China (62173178).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Sun, X. J., Zeng, D., Tibbenham, P., Su, X. M., Kang, H. T. A new characterizing method for warpage measurement of injection-molded thermoplastics. Polym. Test. 2019, 76, 320–325; https://doi.org/10.1016/j.polymertesting.2019.03.024.Suche in Google Scholar

2. Zhou, H. F., Zhang, S. Y., Wang, Z. L. Multi-objective optimization of process parameters in plastic injection molding using a differential sensitivity fusion method. Int. J. Adv. Manuf. Technol. 2021, 114, 423–449; https://doi.org/10.1007/s00170-021-06762-8.Suche in Google Scholar

3. Mohan, M., Ansari, M. N. M., Shanks, R. A. Review on the effects of process parameters on strength, shrinkage, and warpage of injection molding plastic component. Polym. Plast. Technol. Eng. 2017, 56, 1–12; https://doi.org/10.1080/03602559.2015.1132466.Suche in Google Scholar

4. Sun, Y. F., Lee, K. S., Nee, A. Y. C. Design and FEM analysis of the milled groove insert method for cooling of plastic injection moulds. Int. J. Adv. Manuf. Technol. 2004, 24, 715–726; https://doi.org/10.1007/s00170-003-1755-2.Suche in Google Scholar

5. Gurjeet, S., Ajay, V. A brief review on injection moulding manufacturing process. Mater. Today: Proc. 2017, 4, 1423–1433; https://doi.org/10.1016/j.matpr.2017.01.164.Suche in Google Scholar

6. Guo, W., Hua, L., Ma, H. J., Meng, Z. H. Prediction of warpage in plastic injection molding based on design of experiments. J. Mech. Sci. Technol. 2012, 26, 1133–1139; https://doi.org/10.1007/s12206-012-0214-0.Suche in Google Scholar

7. Fen, Q. Q., Liu, L. Z., Zhou, X. H. Automated multi-objective optimization for thin-walled plastic products using Taguchi, ANOVA, and hybrid ANN-MOGA. Int. J. Adv. Manuf. Technol. 2020, 106, 559–575; https://doi.org/10.1007/s00170-019-04488-2.Suche in Google Scholar

8. Zhao, J., Cheng, G. D., Ruan, S. L., Li, Z. Multi-objective optimization design of injection molding process parameters based on the improved efficient global optimization algorithm and non-dominated sorting-based genetic algorithm. Adv. Manuf. Technol. 2015, 78, 1813–1826; https://doi.org/10.1007/s00170-014-6770-y.Suche in Google Scholar

9. Kang, G. J., Park, C. H., Choi, D. H. Metamodel-based design optimization of injection molding process variables and gates of an automotive glove box for enhancing its quality. J. Mech. Sci. Technol. 2016, 30, 1723–1732; https://doi.org/10.1007/s12206-016-0328-x.Suche in Google Scholar

10. Gao, Y. H., Wang, X. C. An effective warpage optimization method in injection molding based on the Kriging model. Int. J. Adv. Manuf. Technol. 2008, 37, 953–960; https://doi.org/10.1007/s00170-007-1044-6.Suche in Google Scholar

11. Chen, W., Zhou, X. H., Wang, H. F., Wang, W. Multi-objective optimal approach for injection molding based on surrogate model and particle swarm optimization algorithm. J. Shanghai Jiaotong Univ. Sci. 2010, 15, 88–93; https://doi.org/10.1007/s12204-010-9517-4.Suche in Google Scholar

12. Li, S., Fan, X. Y., Huang, H. Y., Cao, Y. L. Multi-objective optimization of injection molding parameters, based on the Gkriging-NSGA-vague method. Appl J. Polym. Sci. 2020, 137, 48659.10.1002/app.48659Suche in Google Scholar

13. Rheinfeld, D. Injection Moulding Technology; VDI-Verlag: Düsseldorf, Germany, 1981.Suche in Google Scholar

14. Shiroud Heidari, B., Hedayati Moghaddam, A., Davachi, S., Khamani, S., Alihosseini, A. Optimization of process parameters in plastic injection molding for minimizing the volumetric shrinkage and warpage using radial basis function (RBF) coupled with the k-fold cross validation technique. J. Polym. Eng. 2019, 39, 481–492; https://doi.org/10.1515/polyeng-2018-0359.Suche in Google Scholar

15. Ou, X. L., Wang, D. Z., Ning, K. J. Analysis of typical defects in automobile injection parts and solving measures. Eng. Plast. Appl. 2014, 42, 51–55.Suche in Google Scholar

16. Mukras Saad, M. S. Experimental-based optimization of injection molding process parameters for short product cycle time. Adv. Polym. Technol. 2020, 2020, 1309209; https://doi.org/10.1155/2020/1309209.Suche in Google Scholar

17. Ozcelik, B., Erzurumlu, T. Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm. J. Mater. Process. Technol. 2006, 171, 437–445; https://doi.org/10.1016/j.jmatprotec.2005.04.120.Suche in Google Scholar

18. Han, Z. H. Kriging surrogate model and its application to design optimization: a review of recent progress. Hangkong Xuebao 2016, 37, 3197–3225.Suche in Google Scholar

19. Sykutera, D., Czyżewski, P., Kościuszko, A., Szewczykowski, P., Wajer, Ł., Bieliński, M. Monitoring of the injection and holding phases by using a modular injection mold. J. Polym. Eng. 2018, 38, 63–71; https://doi.org/10.1515/polyeng-2016-0321.Suche in Google Scholar

20. Peng, Y., Wei, W. Melt temperature learning control of injection molding process based on CMAC neural network. J. Polym. Eng. 2011, 31, 45–52; https://doi.org/10.1515/polyeng.2011.002.Suche in Google Scholar

21. Farshi, B., Gheshmi, S., Miandoabchi, E. Optimization of injection molding process parameters using sequential simplex algorithm. Mater. Des. 2011, 32, 414–423; https://doi.org/10.1016/j.matdes.2010.06.043.Suche in Google Scholar

22. Quirante, N., Javaloyes, J., Caballero, J. A. Rigorous design of distillation columns using surrogate models based on Kriging interpolation. AIChE J. 2015, 61, 2169–2187; https://doi.org/10.1002/aic.14798.Suche in Google Scholar

23. Ryu, Y., Sohn, J. S., Yun, C. S., Cha, S. W. Shrinkage and warpage minimization of glass-fiber-reinforced polyamide 6 parts by microcellular foam injection molding. Polym. 2020, 12, 889; https://doi.org/10.3390/polym12040889.Suche in Google Scholar PubMed PubMed Central

Received: 2022-10-18
Accepted: 2023-09-04
Published Online: 2023-09-25
Published in Print: 2023-10-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2022-0236/html
Button zum nach oben scrollen