Startseite Green composites based on Atriplex halimus fibers and PLA matrix
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Green composites based on Atriplex halimus fibers and PLA matrix

  • Hayet Latifa Boudjema ORCID logo EMAIL logo , Hayet Bendaikha und Ulrich Maschke
Veröffentlicht/Copyright: 19. August 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This work focuses on the potential use of cellulose fibers extracted from Mediterranean saltbush (Atriplex halimus) as a filler in the polymeric matrix. The fully biodegradable composites were prepared from polylactic acid (PLA) as matrix and microcellulose fibers ranging from 0 to 15 wt.%. The influence of the fiber content on the structure, mechanical, thermal, and water absorption properties was evaluated. Mechanical results indicated that fibers acted effectively as reinforcement, increasing the tensile strength and the Young’s modulus of PLA by 25 and 45%, respectively. This is due to the good stress transfer between fibers and matrix through the strong interactions that have been evidenced by Fourier Transform Infrared (FTIR) spectroscopy. The thermogravimetric analysis showed that PLA composites have a slightly lower degradation temperature than the pure PLA, but they still have favorable thermal stability. Water absorption measurements and biodegradability tests showed that the addition of fibers accelerates degradation kinetics and confirm that the prepared composites are an environmentally safe material suited for different applications.


Corresponding author: Hayet Latifa Boudjema, Université des Sciences et de la Technologie d’Oran—Mohamed Boudiaf, El Mnaouar, BP 1505, Bir El Djir, 31000Oran, Algeria; and Département de Sécurité Industrielle et Environnement, Laboratoire d’Ingénierie de la Sécurité Industrielle et du Développement Durable, Institut de Maintenance et de Sécurité Industrielle, Université d’Oran 2 Mohamed Ben Ahmed, Bir El Djir, 31000Oran, Algeria, E-mail:

Acknowledgments

The authors would like to thank the UMET Laboratory of the University Lille 1 (France) for providing the necessary materials and for technical support.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: No funding.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Zhang, W., Yang, X., Li, C., Liang, M., Lu, C., Deng, Y. Mechanochemical activation of cellulose and its thermoplastic polyvinyl alcohol ecocomposites with enhanced physicochemical properties. Carbohydr. Polym. 2011, 83, 257–263; http://doi.org/10.1016/j.carbpol.2010.07.062.10.1016/j.carbpol.2010.07.062Suche in Google Scholar

2. Hapuarachchi, T. D., Peijs, T. Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos. Appl. Sci. Manuf. 2010, 41, 954–963; http://doi.org/10.1016/j.compositesa.2010.03.004.10.1016/j.compositesa.2010.03.004Suche in Google Scholar

3. Frone, A. N., Berlioz, S., Chailan, J. F., Panaitescu, D. M. Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohydr. Polym. 2013, 91, 377–384; http://doi.org/10.1016/j.carbpol.2012.08.054.10.1016/j.carbpol.2012.08.054Suche in Google Scholar

4. Huda, M. S., Drzal, L. T., Mohanty, A. K., Misra, M. Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: a comparative study. Compos. Sci. Technol. 2006, 66, 11–12, 1813–1824; https://doi.org/10.1016/j.compscitech.2005.10.015.Suche in Google Scholar

5. Akil, H. M., Mazuki, A. A. M., Safiee, S., Ishak, Z. A. M., Abu Bakar, A. Kenaf fiber reinforced composites: a review. Mater. Des. 2011, 32, 4107–4121; http://doi.org/10.1016/j.matdes.2011.04.008.10.1016/j.matdes.2011.04.008Suche in Google Scholar

6. Bledzki, A., Gassan, J. Composites reinforced with cellulose based fibers. Prog. Polym. Sci. 1999, 24, 221–74; http://doi.org/10.1016/s0079-6700(98)00018-5.10.1016/S0079-6700(98)00018-5Suche in Google Scholar

7. Sahari, J., Sapuan, S. M. Natural fibre reinforced biodegradable polymer composites. Rev. Adv. Mater. Sci. 2011, 30, 166–174.Suche in Google Scholar

8. Nina Graupner, N., Axel, S., Herrmann, A. S., Müssig, J. Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos. Appl. Sci. Manuf. 2009, 40, 810–821; http://doi.org/10.1016/j.compositesa.2009.04.003.10.1016/j.compositesa.2009.04.003Suche in Google Scholar

9. Boudjema, H. L., Bendaikha, H. Composite material derived from biodegradable starch polymer and Atriplex Halimus fibers. E-Polym. 2015, 15, 419–426; http://doi.org/10.1515/epoly-2015-0118.10.1515/epoly-2015-0118Suche in Google Scholar

10. Sanchez-Garcia, M. D., Gimenez, E., Lagaron, J. M. Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr. Polym. 2008, 71, 235–244; http://doi.org/10.1016/j.carbpol.2007.05.041.10.1016/j.carbpol.2007.05.041Suche in Google Scholar

11. Nakagaito, A. N., Fujimura, A., Sakai, T., Yoshiaki, H., Yano, H. Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos. Sci. Technol. 2009, 69, 1293–1297; http://doi.org/10.1016/j.compscitech.2009.03.004.10.1016/j.compscitech.2009.03.004Suche in Google Scholar

12. Jonoobi, M., Harun, J., Mathew, A. P., Oksman, K. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos. Sci. Technol. 2010, 70, 1742–1747; http://doi.org/10.1016/j.compscitech.2010.07.005.10.1016/j.compscitech.2010.07.005Suche in Google Scholar

13. Bajwa, D. S., Adhikari, S., Shojaeiarani, J., Sreekala, G. B., Pandey, P., Shanmugam, S. R. Characterization of bio-carbon and ligno-cellulosic fiber reinforced bio-composites with compatibilizer. Construct. Build. Mater. 2019, 204, 193–202; http://doi.org/10.1016/j.conbuildmat.2019.01.068.10.1016/j.conbuildmat.2019.01.068Suche in Google Scholar

14. Suaduang, N., Ross, S., Ross, G. M., Pratumshat, S., Mahasaranon, S. Effect of spent coffee grounds filler on the physical and mechanical properties of poly(lactic acid) bio-composite films. Mater. Today: Proc. 2019, 17, 2104–2110; http://doi.org/10.1016/j.matpr.2019.06.260.10.1016/j.matpr.2019.06.260Suche in Google Scholar

15. Ait Laaziz, S., Raji, M., Hilali, E., Essabir, H., Rodrigue, D., Bouhfid, R., Qaiss, A. Bio-composites based on polylactic acid and argan nut shell: production and properties. Int. J. Biol. Macromol. 2017, 104, 30–42; https://doi.org/10.1016/j.ijbiomac.2017.05.184.Suche in Google Scholar PubMed

16. Kamonwan, A. N., Noipitak, M. Effect of carbon-rich biochar on mechanical properties of PLA-biochar composites. Sustain. Chem. Pharm. 2020, 15, 100204; https://doi.org/10.1016/j.scp.2019.100204.Suche in Google Scholar

17. Anwer, M. A. S., Naguib, H. E., Celzard, A., Fierro, V. Comparison of the thermal, dynamic mechanical and morphological properties of PLA-Lignin & PLA-Tannin particulate green composites. Compos. B Eng. 2015, 82, 92–99; http://doi.org/10.1016/j.compositesb.2015.08.028.10.1016/j.compositesb.2015.08.028Suche in Google Scholar

18. Nizamuddin, S., Jadhav, A., Qureshi, S. S., Baloch, H. A., Siddiqui, M. T. H., Mubarak, N. M., Griffin, G., Madapusi, S., Tanksale, A., Ahamed, M. I. Synthesis and characterization of polylactide/rice husk hydrochar composite. Sci. Rep. 2019, 9, 5445; http://doi.org/10.1038/s41598-019-41960-1.10.1038/s41598-019-41960-1Suche in Google Scholar PubMed PubMed Central

19. Osswald, T. A. Fundamental principles of polymer composites: processing and design. In Proceedings of the 5th International Conference of wood fiber–plastic composites. Sponsored by the USDA Forest Service in cooperation with the American Plastics Council, the University of Wisconsin, the University American Chemical Society, and the Forest Products Society. Opening Plenary of Toronto, the Cellulose, Paper, and Textile Division of the Session, 3-19. Madison, Wisconsin, May 26–27, 1999.Suche in Google Scholar

20. Goriparthi, B. K., Suman, K. N. S., Rao, N. M. Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute. Compos. Appl. Sci. Manuf. 2012, 43, 1800–1808; http://doi.org/10.1016/j.compositesa.2012.05.007.10.1016/j.compositesa.2012.05.007Suche in Google Scholar

21. Ragoubi, M., George, B., Molina, S., Bienaimé, D., Merlin, A., Hiver, J. M., Dahoun, A. Effect of corona discharge treatment on mechanical and thermal properties of composites based on miscanthus fibres and polylactic acid or polypropylene matrix. Compos. Appl. Sci. Manuf. 2012, 43, 675–685; http://doi.org/10.1016/j.compositesa.2011.12.025.10.1016/j.compositesa.2011.12.025Suche in Google Scholar

22. Sawpan, M. A., Pickering, K. L., Fernyhough, A. Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos. Appl. Sci. Manuf. 2011, 42, 1189–1196; http://doi.org/10.1016/j.compositesa.2011.05.003.10.1016/j.compositesa.2011.05.003Suche in Google Scholar

23. Bhiogade, Y. A., Kannan, M., Devanathan, S. Degradation kinetics study of poly lactic acid (PLA) based biodegradable green composites. Mater. Today: Proc. 2020, 24, 806–814; http://doi.org/10.1016/j.matpr.2020.04.389.10.1016/j.matpr.2020.04.389Suche in Google Scholar

24. Ndazi, B. S., Karlsson, S. Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polym. Lett. 2011, 5, 119–131; http://doi.org/10.3144/expresspolymlett.2011.13.10.3144/expresspolymlett.2011.13Suche in Google Scholar

25. Lee, S. H., Ohkita, T., Kitagawa, K. Eco-composite from poly (lactic acid) and bamboo fiber. Holzforschung 2004, 58, 529–536; http://doi.org/10.1515/hf.2004.080.10.1515/HF.2004.080Suche in Google Scholar

26. Semba, T., Kitagawa, K., Ishiaku, U. S., Hamada, H. The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends. J. Appl. Polym. Sci. 2006, 101, 1816–1825; http://doi.org/10.1002/app.23589.10.1002/app.23589Suche in Google Scholar

27. Li, S., McCarthy, S. Further investigations on the hydrolytic degradation of poly(DL-lactide). Biomaterials 1999, 20, 35–44; http://doi.org/10.1016/s0142-9612(97)00226-3.10.1016/S0142-9612(97)00226-3Suche in Google Scholar

28. Rudeekit, Y., Numnoi, J., Tajan, M., Chaiwutthinan, P., Leejarkpai, T. Determining biodegradability of polylactic acid under different environments. J Met. Mater. Miner. 2008, 18, 83–87.Suche in Google Scholar

29. Ramaraj, B., Poomalai, P. Ecofriendly poly(vinyl alcohol) and coconut shell powder composite films: physico-mechanical, thermal properties, and swelling studies. J. Appl. Polym. Sci. 2006, 102, 3862–3867; http://doi.org/10.1002/app.23913.10.1002/app.23913Suche in Google Scholar

Received: 2020-04-02
Accepted: 2020-07-02
Published Online: 2020-08-19
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0068/html
Button zum nach oben scrollen