Startseite Experimental investigations on compressive, impact and prediction of stress-strain of fly ash-geopolymer and portland cement concrete
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Experimental investigations on compressive, impact and prediction of stress-strain of fly ash-geopolymer and portland cement concrete

  • Nagajothi S ORCID logo EMAIL logo und Elavenil S
Veröffentlicht/Copyright: 3. August 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The recent technology of geopolymer concrete is a substitute material for ordinary portland cement concrete which is produced from the polycondensation reaction of aluminosilicate materials with alkaline activator solutions. The cost of river sand is high since the demand for the same is also high. Manufactured sand is used as a replacement material for river sand in geopolymer concrete. This paper mainly focuses to find the properties of fly ash (FA) – based geopolymer concrete under ambient cured temperature like compressive strength, stress strain behaviour, modulus of elasticity, Poission’s ratio and impact resistance. The result of geopolymer concrete is compared with ordinary portland cement concrete. The elasticity modulus and Poission’s ratio of geopolymer concrete are lower than conventional concrete. The Stress-strain behaviour of geopolymer concrete is similar to conventional concrete. The impact resistance of geopolymer concrete is very good when compared with conventional concrete.


Corresponding author: Nagajothi S, School of Civil Engineering, Vellore Institute of Technology, Chennai Campus, Chennai 600127, India, E-mail:

Acknowledgments

The authors gratefully acknowledge M.Neelamegam, Former Scientist of SERC-CSIR, Chennai for his remarkable guidance, support and valuable suggestions. The authors would like to acknowledge the management of Vellore Institute of Technology, Chennai, India for their encouragement and support rendered to take this research forward.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Malhotra, V. M. ACI Conc. J. 2000, 1147–1165.Suche in Google Scholar

2. Davidovits, J. Soft mineralogy and geopolymers. In Proceedings of the Geopolymer 88, International Conference, The Universite de Technologie, Compiegn, France, 1988.Suche in Google Scholar

3. Turner, L. K., Collins, F. G. Constr. Build. Mater. 2013, 43, 125–130, http://doi.org/10.1016/j.conbuildmat.2013.01.023.10.1016/j.conbuildmat.2013.01.023Suche in Google Scholar

4. Kou, S. C., Poon, C. S. J. Sustainable Cem.-Based Mater. 2013, 2, 43–57, http://doi.org/10.1080/21650373.2013.766400.10.1080/21650373.2013.766400Suche in Google Scholar

5. Hardjito, D., Wallah, S. E., Sumajouw, D. M., Rangan, B. V. Am. Concr. Inst. 2004, 101, 467–472.Suche in Google Scholar

6. Davidovits, J. Geopolymer, green chemistry and sustainable development solutions. In Proceedings of the World Congress Geopolymer, Geopolymer Institute, 2005.Suche in Google Scholar

7. Li, Z., Liu, S. J. Mater. Civ. Eng. 2007, 19, 470–474, http://doi.org/10.1061/(asce)0899-1561(2007)19:6(470).10.1061/(ASCE)0899-1561(2007)19:6(470)Suche in Google Scholar

8. Nath, P., Sarker, P. K. Geopolymer concrete for ambient curing condition. Proc of Australian Structural Engineering Conference: The Past, Present and Future of Structural Engineering, Engineers Australia: Barton, Australia, 2012.Suche in Google Scholar

9. Rajamane, N. P. Studies on development of ambient temperature cured Fly ash & GGBS based Geopolymer concretes. Ph.D. thesis; VTU: Belgaum, India, 2013.Suche in Google Scholar

10. Ashraf, M. A., Maah, M. J., Yusoff, I., Wajid, A., Mahmood, K. S and mining effects, causes and concerns; a case study from Bestari Jaya, Selangor, Peninsular Malaysia. Sci. Res. Essays 2011, 25, 4095–4104. https://doi.org/10.5897/SRE10.690.Suche in Google Scholar

11. Sreenivasa, G. Use of Manufactured Sand in Concrete and Construction an Alternative to River Sand; NBMCW: India, 2012.Suche in Google Scholar

12. Foong, K. Y., Alengaram, U. J., Jumaat, M. Z., Mo, K. H. J. Zhejiang Univ. Sci. A. 2015, 16, 59–69, http://doi.org/10.1631/jzus.a1400175.10.1631/jzus.A1400175Suche in Google Scholar

13. Fernandez-Jiminez, A. M., Palomo, A., Lopez-Hombrados, C. ACI Mater. J. 2006, 103, 106–112.Suche in Google Scholar

14. Nguyen, K. T., Ahn, N., Le, T. A., Lee, K. Constr. Build. Mater. 2016, 106, 65–77, http://doi.org/10.1016/j.conbuildmat.2015.12.033.10.1016/j.conbuildmat.2015.12.033Suche in Google Scholar

15. Olivia, M., Nikraz, H. Mater. De. 2012, 36, 191–198, http://doi.org/10.1016/j.matdes.2011.10.036.10.1016/j.matdes.2011.10.036Suche in Google Scholar

16. Albitar, M., Visintin, P., Mohamed Ali, M. S., Drechslr, M. KSCE J. Civil Eng. 2015, 19, 1445–1455, http://doi.org/10.1007/s12205-014-1254-z.10.1007/s12205-014-1254-zSuche in Google Scholar

17. Khadiraniakar, R. B., Shankar, H., Sanni. Current Adv. Civ. Eng. 2014, 2, 44–47.Suche in Google Scholar

18. Vora, P. R., Urmil, V. D. Procedia Eng. 2013, 51, 210–219, http://doi.org/10.1016/j.proeng.2013.01.030.10.1016/j.proeng.2013.01.030Suche in Google Scholar

19. Nagajothi, S., Elavenil, S. J. Mech. Behav. Mater., 2018, 20180019. https://doi.org/10.1515/jmbm-2018-0019.Suche in Google Scholar

20. Davidovits, J. Geopolymer Chemistry and Applications, 3rd ed.; Institute geopolymer: France, 2011.Suche in Google Scholar

21. Nagajothi, S., Elavenil, S. Silicon, 12, 2020, https://doi.org/10.1007/s12633-019-00203-8.Suche in Google Scholar

22. Neville, A. M. Properties of Concrete, 4th ed.; Wiley: New York, 2000.Suche in Google Scholar

23. Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriven, W. M., Van Deventer, J. S. J. Coll. Surf. A.Physiochem. Eng. ASP 2005, 269, 47–58, http://doi.org/10.1016/j.colsurfa.2005.06.060.10.1016/j.colsurfa.2005.06.060Suche in Google Scholar

24. Standards Australia A. S. 3600. Methods of Testing Concrete-Determination of the Static Chord Modulus of Elasticity and Poission’s Ratio of Concrete Specimens; Standards Australia A. S.: Australia, 2005.Suche in Google Scholar

25. Hardjito, D., Rangan, B. V. Research Report GC-1; Faculty of Engineering, Curtin University of Technology: Perth, Australia, 2005.Suche in Google Scholar

26. ACI Committee 363, State of the Art Report on High Strength Concrete, American Concrete Institute: Detroit, USA, 1992.Suche in Google Scholar

Received: 2020-03-06
Accepted: 2020-05-30
Published Online: 2020-08-03
Published in Print: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0036/html
Button zum nach oben scrollen