Startseite Microcellular foaming behavior of ether- and ester-based TPUs blown with supercritical CO2
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microcellular foaming behavior of ether- and ester-based TPUs blown with supercritical CO2

  • Bige Batı , Emine Büşra Küçük , Ali Durmuş ORCID logo und Mohammadreza Nofar ORCID logo EMAIL logo
Veröffentlicht/Copyright: 8. August 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The bead foaming behavior of ether- and an ester-based Tensor Processing Unit (TPU) resins were investigated in a lab-scale reactor using supercritical CO2 as the blowing agent. The samples were saturated at various saturation temperatures and the effects of hard segment crystallization during the saturation on the foaming behavior of the TPU samples were explored. The results revealed that the different HS crystallization tendencies and possible CO2 solubility differences in two TPU grades led to their different foaming behaviors. The ester-based TPU could be foamed within a wider saturation temperature range and revealed an easier cell growth and foam expansion while the ether-based TPU showed a more limited cell growth behavior and hence processing window. The effect of pre-annealing and hence the isothermally induced HS crystallization on the foaming behavior of the ether-based TPU and the influence of depressurization rate on the foaming behavior of ester-based TPU was also explored.


Corresponding author: Mohammadreza Nofar, Polymer Science and Technology Program, Institute of Science and Technology, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey; and Metallurgical and Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey, E-mail:

Acknowledgements

The authors would like to greatly appreciate the Global Research group of Huntsman Polyurethanes (Huntsman Polyurethanes-Belgium) for kindly supplying the materials and sponsoring the project. We would also like to acknowledge the contributions made by the scientists from Huntsman Polyurethanes, specifically Dr. Rene Klein, Ms. Conny Nijs, and Mr. Giovanni Tomei. The authors would also like to sincerely thank Professor Mustafa Urgen and Professor Kursat Kazmanli from Istanbul Technical University for their support by providing their lab space to run SEM experiments.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Matuana, L. M., Park, C. B., Balatinecz, J. J. Polym. Mater. Sci. Eng. 1998, 38, 1862–1872; https://doi.org/10.1002/pen.10356.Suche in Google Scholar

2. Glicksman, L. Notes from MIT Summer Program 4.10S Foams and Cellular Materials: Thermal and Mechanical Properties; Massachusetts Institute of Technology: Cambridge, MA, 1992.Suche in Google Scholar

3. Suh, K. W., Park, C. P., Maurer, M. J., Tusim, M. H., Genova, R. D., Broos, R., Sophiea, D. P. Adv. Mater. 2000, 12, 1779–1789; https://doi.org/10.1002/1521-4095(200012)12:23<1779::aid-adma1779>3.0.co;2-3.10.1002/1521-4095(200012)12:23<1779::AID-ADMA1779>3.0.CO;2-3Suche in Google Scholar

4. Kabumoto, A., Yoshida, N., Itoh, M., Okada, M. US Patent 5,844,731, 1998.Suche in Google Scholar

5. Keshtkar, M., Nofar, M., Park, C. B., Carreau, P. J. Extruded PLA/clay nanocomposite foams blown with supercritical CO2. Polymer 2014, 55, 4077–4090; https://doi.org/10.1016/j.polymer.2014.06.059.Suche in Google Scholar

6. Nofar, M. Effects of nano-/micro-sized additives and the corresponding induced crystallinity on the extrusion foaming behavior of PLA using supercritical CO2. Mater. Des. 2016, 101, 24–34; https://doi.org/10.1016/j.matdes.2016.03.147.Suche in Google Scholar

7. Ameli, A., Jahani, D., Nofar, M., Jung, P. U., Park, C. B. Development of high void fraction polylactide composite foams using injection molding: Mechanical and thermal insulation properties. Compos. Sci. Technol. 2014, 90, 88–95; https://doi.org/10.1016/j.compscitech.2013.10.019.Suche in Google Scholar

8. Ameli, A., Nofar, M., Jahani, D., Rizvi, G., Park, C. B. Development of high void fraction polylactide composite foams using injection molding: Crystallization and foaming behaviors. Chem. Eng. J. 2015, 262, 78–87; https://doi.org/10.1016/j.cej.2014.09.087.Suche in Google Scholar

9. Raps, D., Hossieny, N., Park, C. B., Altstädt, V. Past and present developments in polymer bead foams and bead foaming technology. Polymer 2015, 56, 5–19; https://doi.org/10.1016/j.polymer.2014.10.078.Suche in Google Scholar

10. Landrock, A. H. Ed. Handbook of Plastic Foams: Types, Properties, Manufacture, and Application; Noyes Publications: New Jersey, 1995.10.1016/B978-081551357-5.50005-XSuche in Google Scholar

11. Eaves, D. Handbook of Polymer Foams; Rapra Technology: Shawbury, Shrewsbury, UK, 2004.Suche in Google Scholar

12. Britton, R. Update on Mouldable Particle Foam Technology; Rapra Technology: Shawbury, Shrewsbury, UK, 2009.Suche in Google Scholar

13. Mills, N. Polymer Foams Handbook Engineering and Biomechanics Applications and Design; Guide Butterworth-Heinemann: Boston, MA, 2007.Suche in Google Scholar

14. Noordegraaf, J., Kuijstermans, F. P. A., De Jong, J. P. M. U.S. Patent Application No. 13/122, 960, 2011.Suche in Google Scholar

15. Zhai, W., Kim, Y. W., Jung, D. W., Park, C. B. Steam-chest molding of expanded polypropylene foams. 2. Mechanism of interbead bonding. Ind. Eng. Chem. Res. 2011, 50, 5523–5531; https://doi.org/10.1021/ie101753w.Suche in Google Scholar

16. Guo, Y., Hossieny, N., Chu, R. K., Park, C. B., Zhou, N. Critical processing parameters for foamed bead manufacturing in a lab-scale autoclave system. Chem. Eng. J. 2013, 214, 180–188; https://doi.org/10.1016/j.cej.2012.10.043.Suche in Google Scholar

17. Nofar, M., Guo, Y., Park, C. B. Double crystal melting peak generation for expanded polypropylene bead foam manufacturing. Ind. Eng. Chem. Res. 2013, 52, 2297–2303; https://doi.org/10.1021/ie302625e.Suche in Google Scholar

18. Trassl, Ch., Altstädt, V. Particle foams: future materials for lightweight construction and design, Kunststoffe 2014, 2, 73e6, https://www.kunststoffe.de/en/journal/archive/article/future-materials-for-lightweight-construction-and-design-797734.html.Suche in Google Scholar

19. Park, C. B., Nofar, M. A method for the preparation of PLA bead foams. WO Patent WO2014158014 A1, 2013.Suche in Google Scholar

20. Nofar, M., Ameli, A., Park, C. B. Development of polylactide bead foams with double crystal melting peaks. Polymer 2015, 69, 83–94; https://doi.org/10.1016/j.polymer.2015.05.048.Suche in Google Scholar

21. Nofar, M., Ameli, A., Park, C. B. A novel technology to manufacture biodegradable polylactide bead foam products. Mater. Des. 2015, 83, 413–421; https://doi.org/10.1016/j.matdes.2015.06.052.Suche in Google Scholar

22. Nitta, K. H., Kuriyagawa, M. Thermoplastic polyurethanes. In Handbook of Thermoplastics; Olagoke O., Kolapo A., Eds. CRC Press: Florida, vol. 41, 2016, p. 387.Suche in Google Scholar

23. Qi, H. J., Boyce, M. C. Stress–strain behavior of thermoplastic polyurethanes. Mech. Mater. 2005, 37, 817–839; https://doi.org/10.1016/j.mechmat.2004.08.001.Suche in Google Scholar

24. Gaymans, R. J. Segmented copolymers with monodisperse crystallizable hard segments: Novel semi-crystalline materials. Prog. Polym. Sci. 2011, 36, 713–748; https://doi.org/10.1016/j.progpolymsci.2010.07.012.Suche in Google Scholar

25. Prisacariu, C., Scortanu, E. Int. J. Polym. Anal. Char. 2010, 15, 277; https://doi.org/10.1080/1023666x.2010.493268.Suche in Google Scholar

26. Sung, C. S. P., Schneider, N. S. Infrared studies of hydrogen bonding in toluene diisocyanate based polyurethanes. Macromolecules 1975, 8, 68–73; https://doi.org/10.1021/ma60043a015.Suche in Google Scholar

27. Clough, S. B., Schneider, N. S. Structural studies on urethane elastomers. J. Macromol. Sci. Rev. Macromol. Chem. Phys. 1968, 2, 553–566; https://doi.org/10.1080/00222346808212458.Suche in Google Scholar

28. Shibayama, K., Kodama, M. Effects of concentration of urethane linkage, crosslinking density, and swelling upon the viscoelastic properties of polyurethanes. J. Polym. Sci. 1 Polym. Chem. 1966, 4, 83–108; https://doi.org/10.1002/pol.1966.150040106.Suche in Google Scholar

29. Ophir, Z., Wilkes, G. L. SAXS analysis of a linear polyester and a linear polyether urethane—interfacial thickness determination. J. Polym. Sci., Polym. Chem. Ed. 1980, 18, 1469–1480; https://doi.org/10.1002/pol.1980.180180624.Suche in Google Scholar

30. Martin, D. J., Meijs, G. F., Renwick, G. M., Gunatillake, P. A., Mccarthy, S. J. Effect of soft‐segment CH2/O ratio on morphology and properties of a series of polyurethane elastomers. J. Appl. Polym. Sci. 1996, 60, 557–571; https://doi.org/10.1002/(sici)1097-4628(19960425)60:4<557::aid-app9>3.0.co;2-n.10.1002/(SICI)1097-4628(19960425)60:4<557::AID-APP9>3.0.CO;2-NSuche in Google Scholar

31. Hepburn, C. Polyurethane Elastomers; Springer Science & Business Media: Germany, 2012.Suche in Google Scholar

32. Prisacariu, C. Polyurethane Elastomers: From Morphology to Mechanical Aspects; Springer Science & Business Media: Germany, 2011.10.1007/978-3-7091-0514-6Suche in Google Scholar

33. Drobny, J. G. Handbook of Thermoplastic Elastomers; Elsevier: Amsterdam, 2014.10.1016/B978-0-323-22136-8.00013-2Suche in Google Scholar

34. McKeen, L. W. The Effect of Creep and Other Time Related Factors on Plastics and Elastomers; Elsevier: Amsterdam, 2009.10.1016/B978-0-8155-1585-2.50010-8Suche in Google Scholar

35. Crawford, D. M., Bass, R. G., Haas, T. W. Strain effects on thermal transitions and mechanical properties of thermoplastic polyurethane elastomers. Thermochim. Acta 1998, 323, 53–63; https://doi.org/10.1016/s0040-6031(98)00541-3.Suche in Google Scholar

36. Olabisi, O., Adewale, K. Handbook of Thermoplastics; CRC Press: Florida, 2016.10.1201/b19190Suche in Google Scholar

37. Petrovic, Z. S. Polyurethanes. In Handbook of Polymer Synthesis; CRC Press: Florida, 2004; pp. 510–546.Suche in Google Scholar

38. Schollenberger, C. S., Stewart, F. D. Thermoplastic polyurethane hydrolysis stability. J. Elastoplastics. 1971, 3, 28–56; https://doi.org/10.1177/009524437100300103.Suche in Google Scholar

39. Prissok, F., Braun, F. U.S. Patent, Application No. 12/161, 354, 2010.Suche in Google Scholar

40. Reinhardt, S. D., Wood, D. M., Wardlaw, A., Robinson, T. K., Whiteman, J. U.S. Patent No. 9,788,606; U.S. Patent and Trademark Office: Washington, DC, 2017.Suche in Google Scholar

41. Hossieny, N., Ameli, A., Park, C. B. Characterization of expanded polypropylene bead foams with modified steam-chest molding. Ind. Eng. Chem. Res. 2013, 52, 8236–8247; https://doi.org/10.1021/ie400734j.Suche in Google Scholar

42. Hossieny, N. Development of Expanded Thermoplastic Polyurethane Bead Foams and Their Sintering Mechanism. (Doctoral Dissertation), Universti of Toronto, Toronto, Canada, 2014.Suche in Google Scholar

43. Hossieny, N., Shaayegan, V., Ameli, A., Saniei, M., Park, C. B. Characterization of hard-segment crystalline phase of thermoplastic polyurethane in the presence of butane and glycerol monosterate and its impact on mechanical property and microcellular morphology. Polymer 2017, 112, 208–218; https://doi.org/10.1016/j.polymer.2017.02.015.Suche in Google Scholar

44. Hossieny, N. J., Barzegari, M. R., Nofar, M., Mahmood, S. H., Park, C. B. Crystallization of hard segment domains with the presence of butane for microcellular thermoplastic polyurethane foams. Polymer 2014, 55, 651–662; https://doi.org/10.1016/j.polymer.2013.12.028.Suche in Google Scholar

45. Nema, A. K., Deshmukh, A. V., Palanivelu, K., Sharma, S. K., Malik, T. Effect of exo-and endothermic blowing and wetting agents on morphology, density and hardness of thermoplastic polyurethanes foams. J. Cell. Plast. 2008, 44, 277–292; https://doi.org/10.1177/0021955x07088326.Suche in Google Scholar

46. Di Maio, E., Kiran, E. Foaming of polymers with supercritical fluids and perspectives on the current knowledge gaps and challenges. J. Supercrit. Fluids 2018, 134, 157–166; https://doi.org/10.1016/j.supflu.2017.11.013.Suche in Google Scholar

47. Curia, S., De Focatiis, D. S., Howdle, S. M. High-pressure rheological analysis of CO2-induced melting point depression and viscosity reduction of poly (ε-caprolactone). Polymer 2015, 69, 17–24; https://doi.org/10.1016/j.polymer.2015.05.026.Suche in Google Scholar

48. Sauceau, M., Fages, J., Common, A., Nikitine, C., Rodier, E. New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide. Prog. Polym. Sci. 2011, 36, 749–766; https://doi.org/10.1016/j.progpolymsci.2010.12.004.Suche in Google Scholar

49. Nofar, M., Park, C. B. Poly (lactic acid) foaming. Prog. Polym. Sci. 2014, 39, 1721–1741; https://doi.org/10.1016/j.progpolymsci.2014.04.001.Suche in Google Scholar

50. Nofar, M., Park, C. B. Polylactide Foams: Fundamentals, Manufacturing, and Applications, William Andrew: Burlington, MA, 2017.Suche in Google Scholar

51. Xu, Z. M., Jiang, X. L., Liu, T., Hu, G. H., Zhao, L., Zhu, Z. N., Yuan, W. K. Foaming of polypropylene with supercritical carbon dioxide. J. Supercrit. Fluids 2007, 41, 299–310; https://doi.org/10.1016/j.supflu.2006.09.007.Suche in Google Scholar

52. Zhai, W., Ko, Y., Zhu, W., Wong, A., Park, C. B. A study of the crystallization, melting, and foaming behaviors of polylactic acid in compressed CO2. Int. J. Mol. Sci. 2009, 10, 5381–5397; https://doi.org/10.3390/ijms10125381.Suche in Google Scholar

53. Zhai, W., Yu, J., Ma, W., He, J. Cosolvent effect of water in supercritical carbon dioxide facilitating induced crystallization of polycarbonate. Polym. Eng. Sci. 2007, 47, 1338–1343; https://doi.org/10.1002/pen.20816.Suche in Google Scholar

54. Nofar, M., Tabatabaei, A., Ameli, A., Park, C. B. Comparison of melting and crystallization behaviors of polylactide under high-pressure CO2, N2, and He. Polymer 2013, 54, 6471–6478; https://doi.org/10.1016/j.polymer.2013.09.044.Suche in Google Scholar

55. Nofar, M., Ameli, A., Park, C. B. The Thermal Behavior of Polylactide with Different D‐Lactide Content in the Presence of Dissolved CO2. Macromol. Mater. Eng. 2014, 299, 1232–1239; https://doi.org/10.1002/mame.201300474.Suche in Google Scholar

56. Nofar, M., Zhu, W., Park, C. B. Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA. Polymer 2012, 53, 3341–3353; https://doi.org/10.1016/j.polymer.2012.04.054.Suche in Google Scholar

57. Nofar, M., Tabatabaei, A., Park, C. B. Effects of nano-/micro-sized additives on the crystallization behaviors of PLA and PLA/CO2 mixtures. Polymer 2013, 54, 2382–2391; https://doi.org/10.1016/j.polymer.2013.02.049.Suche in Google Scholar

58. Ito, S., Matsunaga, K., Tajima, M., Yoshida, Y. Generation of microcellular polyurethane with supercritical carbon dioxide. J. Appl. Polym. Sci. 2007, 106, 3581–3586; https://doi.org/10.1002/app.26854.Suche in Google Scholar

59. Ge, C., Wang, S., Zheng, W., Zhai, W. Preparation of microcellular thermoplastic polyurethane (TPU) foam and its tensile property. Poly. Eng. Sci. 2018, 58, E158–E166; https://doi.org/10.1002/pen.24813.Suche in Google Scholar

60. Zhao, D., Wang, G., Wang, M. Investigation of the effect of foaming process parameters on expanded thermoplastic polyurethane bead foams properties using response surface methodology. Polym. Eng. Sci. 2018, 135, 46327; https://doi.org/10.1002/app.46327.Suche in Google Scholar

61. Ghariniyat, P., Leung, S. N. Development of thermally conductive thermoplastic polyurethane composite foams via CO2 foaming-assisted filler networking. Compos. B Eng. 2018, 143, 9–18; https://doi.org/10.1016/j.compositesb.2018.02.008.Suche in Google Scholar

62. Yeh, S. K., Liu, Y. C., Wu, W. Z., Chang, K. C., Guo, W. J., Wang, S. F. Thermoplastic polyurethane/clay nanocomposite foam made by batch foaming. J. Cell. Plast. 2013, 49, 119–130; https://doi.org/10.1177/0021955x13477432.Suche in Google Scholar

63. Ge, C., Ren, Q., Wang, S., Zheng, W., Zhai, W., Park, C. B. Steam-chest molding of expanded thermoplastic polyurethane bead foams and their mechanical properties. Chem. Eng. Sci. 2017, 174, 337–346; https://doi.org/10.1016/j.ces.2017.09.011.Suche in Google Scholar

64. Nofar, M., Kucuk, E. B., Bati, B. Effect of hard segment content on the microcellular bead foaming behavior of TPU using supercritical CO2. J. Supercrit. Fluids 2019, 153, 104590; https://doi.org/10.1016/j.supflu.2019.104590.Suche in Google Scholar

65. Nofar, M., Bati, B., Kucuk, E. B., Jalali, A. Effect of soft segment molecular weight on the microcellular foaming behavior of TPU using supercritical CO2. J. Supercrit. Fluids 2020, 160, 104816; https://doi.org/10.1016/j.supflu.2020.104816.Suche in Google Scholar

66. Nofar, M., Majithiya, K., Kuboki, T., Park, C. B. The foamability of low-melt-strength linear polypropylene with nanoclay and coupling agent. J. Cell. Plast. 2012, 48, 271–287; https://doi.org/10.1177/0021955x12440271.Suche in Google Scholar

67. Okolieocha, C., Raps, D., Subramaniam, K., Altstädt, V. Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions – A review. Eur. Polym. J. 2015, 73, 500–519; https://doi.org/10.1016/j.eurpolymj.2015.11.001.Suche in Google Scholar

68. Bagdi, K., Molnár, K., Sajo, I., Pukánszky, B. Specific interactions, structure and properties in segmented polyurethane elastomers. Express Polym. Lett. 2011, 5; https://doi.org/10.3144/expresspolymlett.2011.41.Suche in Google Scholar

69. Frick, A., Rochman, A. Characterization of TPU-elastomers by thermal analysis (DSC). Polym. Test. 2004, 23, 413–417; https://doi.org/10.1016/j.polymertesting.2003.09.013.Suche in Google Scholar

70. Zhai, W., Kuboki, T., Wang, L., Park, C. B., Lee, E. K., Naguib, H. E. Cell structure evolution and the crystallization behavior of polypropylene/clay nanocomposites foams blown in continuous extrusion. Ind. Eng. Chem. Res. 2010, 49, 9834–9845; https://doi.org/10.1021/ie101225f.Suche in Google Scholar

71. Matsunaga, K., Sato, K., Tajima, M., Yoshida, Y. Gas permeability of thermoplastic polyurethane elastomers. Poly. J. 2005, 37, 413–417; https://doi.org/10.1295/polymj.37.413.Suche in Google Scholar

Received: 2020-01-21
Accepted: 2020-04-27
Published Online: 2020-08-08
Published in Print: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0014/pdf
Button zum nach oben scrollen