Influence of chain interaction and ordered structures in polymer dispersed liquid crystalline membranes on thermal conductivity
-
Ying Li
, Pan Pan
, Chao Liu , Wenying Zhou , Chenggong Li , Changdan Gong , Huilu Li , Liang Zhang und Hui Song
Abstract
Polymer dispersed liquid crystalline (PDLC) membrane with intrinsic thermal conductivity was prepared by dispersing liquid crystalline polysiloxane containing crosslinked structure (liquid crystalline polysiloxane elastomer (LCPE)) into polyvinyl alcohol (PVA). Chemical structures were characterized by Fourier transform infrared (FT-IR) and 1H-NMR, and microscopic structures were analyzed by polarizing optical microscope (POM), scanning electron microscope (SEM) and X-ray diffraction (XRD). The thermal conductivity of PDLC membrane was characterized by hot disk thermal constants analyzer, and the tensile properties were measured by tensile testing machine. Thermal properties were characterized by differential scanning calorimeter (DSC) and thermal gravimetric analyzer (TGA). The results show that LCPE was dispersed in PVA uniformly, and the mesogenic monomer of LCPE formed microscopic ordered structures in PDLC membrane. Meanwhile, hydrogen-bond interaction was formed between LCPE and PVA chain. Both microscopic-ordered structure and the hydrogen-bond interaction improved the phonon transmission path, and the thermal conductivity of PDLC membrane was up to 0.74 W/m⋅K, which was 6 times higher than that of pure PVA film. PDLC membrane possessed proper tensile strength and elongation at break, respectively 5.18 MPa and 338%. As a result, PDLC membrane can be used as thermal conductive membrane in electronic packaging and other related fields.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 51903207, 51577154
Funding source: Priority Research and Development Foundations of Shaanxi Provincial Government
Award Identifier / Grant number: 2018GY-174, 2018GY-115
Funding source: Science and Technology activity Foundation for overseas person of Shaanxi Provincial Government
Award Identifier / Grant number: 2017030
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: The authors would like to thank the National Natural Science Foundation of China (project nos. 51903207 and 51577154), Priority Research and Development Foundations of Shaanxi Provincial Government (project nos. 2018GY-174 and 2018GY-115), the Science and Technology Activity Foundation for overseas person of Shaanxi Provincial Government (project no. 2017030) for financial support of this work.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Krakhalev, M. N., Prishchepa, O. O., Sutormin, V. S., Zyryanov, V. Y. Opt. Mater. 2019, 89, 1–4; https://doi.org/10.1016/j.optmat.2019.01.004.Suche in Google Scholar
2. Zhou, W. Y., Kou, Y. J., Yuan, M. X., Li, B., Cai, H. W., Li, Z., Chen, F., Liu, X. G., Wang, G. H., Chen, Q. G., Dang, Z. M. Compos. Sci. Technol. 2019, 181, 107686; https://doi.org/10.1016/j.compscitech.2019.107686.Suche in Google Scholar
3. Ahmad, F., Jamil, M., Jae Jeon, Y. Arabian J. Chem. 2017, 10, S3394–S3401; https://doi.org/10.1016/j.arabjc.2014.01.022.Suche in Google Scholar
4. Prusińska-Kurstak, E., Kołakowska, A., Kłosowicz, S. J. J. Mol. Liq. 2018, 267, 127–130. https://doi.org/10.1016/j.molliq.2018.03.087.Suche in Google Scholar
5. Yang, X. T., Liang, C. B., Ma, T. B., Guo, Y. Q., Kong, J., Gu, J. W., Chen, M. J., Zhu, J. H. Adv. Compos. Hybrid Mater. 2018, 1, 207–230; https://doi.org/10.1007/s42114-018-0031-8.Suche in Google Scholar
6. Pashayi, K., Fard, H. R., Lai, F. Y., Iruvanti, S., Plawsky, J., Borca-Tasciuc, T. Nanoscale 2014, 6, 4292–4296; https://doi.org/10.1039/c3nr06494h.Suche in Google Scholar PubMed
7. Zhou, Y. C., Wang, H., Wang, L., Yu, K., Lin, Z. D., He, L., Bai, Y. Y. Mater. Sci. Eng. B 2012, 177, 892–896; https://doi.org/10.1016/j.mseb.2012.03.056.Suche in Google Scholar
8. Yung, K. C., Liem, H. J. Appl. Polym. Sci. 2007, 106, 3587–3591; https://doi.org/10.1002/app.27027.Suche in Google Scholar
9. Li, Y., Li, C. G., Zhang, L., Zhou, W. Y. J. Mater. Sci.: Mater. Electron. 2019, 30, 8329–8338; https://doi.org/10.1007/s10854-019-01150-1.Suche in Google Scholar
10. Zhao, J. N., Tan, A. T., Green, P. F. J. Mater. Chem. C 2017, 5; https://doi.org/10.1039/c7tc03240d.Suche in Google Scholar
11. Zhao, T. B., Zhang, X. L. Polym. Compos. 2018, 39, 1041–1050; https://doi.org/10.1002/pc.24031.Suche in Google Scholar
12. Liu, Y., Chen, J. M., Zhang, Y. H., Gao, S., Lu, Z. J., Xue, Q. B. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 1813–1821; https://doi.org/10.1002/polb.24414.Suche in Google Scholar
13. Muthaiah, R., Garg, J. J. Appl. Phys. 2018, 124, 105102; https://doi.org/10.1063/1.5041000.Suche in Google Scholar
14. Chowdhury, R., Rai, A., Glynn, E., Morgan, P., Moore, A., Youngblood, J. P. Polymer 2019, 164, 17–25; https://doi.org/10.1016/j.polymer.2019.01.006.Suche in Google Scholar
15. Hasegawa, M., Shigeta, K., Ishii, J. Polym. Adv. Technol. 2019, 30, 128–142; https://doi.org/10.1002/pat.4451.Suche in Google Scholar
16. Kang, Y., Ahn, Y. J., Kim, M. S., Kim, B. G. Fibers Polym. 2018, 19, 1143–1149; https://doi.org/10.1007/s12221-018-8010-9.Suche in Google Scholar
17. Zhang, L., Ruesch, M., Zhang, X. L., Bai, Z. T., Liu, L. RSC Adv. 2015, 5, 87981–87986; https://doi.org/10.1039/c5ra18519j.Suche in Google Scholar
18. Bai, L., Zhao, X., Bao, R. Y., Liu, Z. Y., Yang, M. B., Yang, W. J. Mater. Sci. 2018, 53, 10543–10553; https://doi.org/10.1007/s10853-018-2306-4.Suche in Google Scholar
19. Luo, D. C., Huang, C. L., Huang, Z. J. Heat Transfer 2018, 140, 031302; https://doi.org/10.1115/1.4038003.Suche in Google Scholar
20. Shingo, T., Fusao, H., Takezawa, Y., Kanie, K., Muramatsu, A. ACS Omega 2018, 3, 3562–3570. https://doi.org/10.1021/acsomega.7b02088.Suche in Google Scholar PubMed PubMed Central
21. Zhanga, R. C., Huanga, Z. H., Sun, D., Ji, D. H., Zhong, M. L., Zang, D. M., Xu, J. Z., Wan, Y. Z., Lu, A. Polymer 2018, 154, 42–47; https://doi.org/10.1016/j.polymer.2018.08.078.Suche in Google Scholar
22. Tu, R. C., Liao, Q. W., Zeng, L. P., Liu, Z. C., Liu, W. Appl. Phys. Lett. 2017, 110, 101905; https://doi.org/10.1063/1.4978206.Suche in Google Scholar
23. Guo, H., Li, X., Wang, ZY., Li, B. A., Wang, J. X., Wang, S. C. Chin. J. Chem. Eng. 2018, 26, 1213–1218; https://doi.org/10.1016/j.cjche.2017.12.015.Suche in Google Scholar
24. Sawada, T., Murata, Y., Marubayashi, H., Nojima, S., Morikawa, J., Serizawa, T. Viruses 2018, 10, 608; https://doi.org/10.3390/v10110608.Suche in Google Scholar PubMed PubMed Central
25. Liu, Y. V., Chen, J. M., Qi, Y. X., Gao, S., Balaji, K., Zhang, Y. H., Xue, Q. B., Lu, Z. J. Polymer 2018, 145, 252–260; https://doi.org/10.1016/j.polymer.2018.05.004.Suche in Google Scholar
26. Olivier, J. H., Barbera, J., Bahaidarah, E., Harriman, A., Ziessel, R. J. Am. Chem. Soc. 2012, 134, 6100−6103; https://doi.org/10.1021/ja3007935.Suche in Google Scholar PubMed
27. Zeng, Y., Khodadadi, J. M Energy Fuels 2018, 32, 11253–11260; https://doi.org/10.1021/acs.energyfuels.8b02500.Suche in Google Scholar
28. Shi, R., Bin, Y. Z., Jian, X. G. Polym. Bull. 2018, 75, 947–962; https://doi.org/10.1007/s00289-017-2073-4.Suche in Google Scholar
29. Feng, Y. H., Zou, H. Y., Qiu, L., Zhang, X. X. Comput. Mater. Sci. 2019, 158, 14–19; https://doi.org/10.1016/j.commatsci.2018.11.012.Suche in Google Scholar
30. Wei, X. F., Luo, T. F. Phys. Chem. Chem. Phys. 2018, 20, 20534–20539; https://doi.org/10.1039/c8cp03433h.Suche in Google Scholar PubMed
31. Trefon-Radziejewska, D., Hamaoui, G., Chirtoc, M., Horny, N., Smokal, V., Biitseva, A., Krupka, O., Derkowska-Zielinska, B. Mater. Chem. Phys. 2019, 223, 700–707; https://doi.org/10.1016/j.matchemphys.2018.11.054.Suche in Google Scholar
32. Somdee, P., Lassuú-Kuknyó, T., Kónya, C., Szabó, T., Marossy, K. J. Therm. Anal. Calorim. 2019, 138, 1003–1010. https://doi.org/10.1007/s10973-019-08183-y.Suche in Google Scholar
33. Xu, Y. F., Wang, X. X., Zhou, J. W., Song, B., Jiang, Z., Lee, E. M. Y., Huberman, S., Gleason, K. K., Chen, G. Sci. Adv. 2018, 4, 3031; https://doi.org/10.1126/sciadv.aar3031.Suche in Google Scholar PubMed PubMed Central
34. Li, R., Shana, Z. Polym. Test. 2018, 69, 125–132. https://doi.org/10.1016/j.polymertesting.2018.05.024.Suche in Google Scholar
35. Xu, Y., Zhang, S. D., Wang, P., Wang, J. S. Polymer 2018, 154, 258–271; https://doi.org/10.1016/j.polymer.2018.09.025.Suche in Google Scholar
36. Mehra, N., Kashfipour, M. A., Zhu, J. H. Appl. Mater. Today2018, 13, 207–216; https://doi.org/10.1016/j.apmt.2018.09.007.Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Effects of ethanol content on the properties of silicone rubber foam
- Swelling behavior and mechanical properties of Chitosan-Poly(N-vinyl-pyrrolidone) hydrogels
- Microcellular foaming behavior of ether- and ester-based TPUs blown with supercritical CO2
- Influence of chain interaction and ordered structures in polymer dispersed liquid crystalline membranes on thermal conductivity
- Experimental investigations on compressive, impact and prediction of stress-strain of fly ash-geopolymer and portland cement concrete
- Preparation and assembly
- Fabrication of poly (1, 8-octanediol-co-Pluronic F127 citrate)/chitin nanofibril/bioactive glass (POFC/ChiNF/BG) porous scaffold via directional-freeze-casting
- Engineering and processing
- Continuous reactors of frontal polymerization in flow for the synthesis of polyacrylamide hydrogels with prescribed properties
- Effect of slot end faces on the three-dimensional airflow field from the melt-blowing die
- Experimental and numerical study of the crushing behavior of pultruded composite tube structure
Artikel in diesem Heft
- Frontmatter
- Material properties
- Effects of ethanol content on the properties of silicone rubber foam
- Swelling behavior and mechanical properties of Chitosan-Poly(N-vinyl-pyrrolidone) hydrogels
- Microcellular foaming behavior of ether- and ester-based TPUs blown with supercritical CO2
- Influence of chain interaction and ordered structures in polymer dispersed liquid crystalline membranes on thermal conductivity
- Experimental investigations on compressive, impact and prediction of stress-strain of fly ash-geopolymer and portland cement concrete
- Preparation and assembly
- Fabrication of poly (1, 8-octanediol-co-Pluronic F127 citrate)/chitin nanofibril/bioactive glass (POFC/ChiNF/BG) porous scaffold via directional-freeze-casting
- Engineering and processing
- Continuous reactors of frontal polymerization in flow for the synthesis of polyacrylamide hydrogels with prescribed properties
- Effect of slot end faces on the three-dimensional airflow field from the melt-blowing die
- Experimental and numerical study of the crushing behavior of pultruded composite tube structure