Abstract
In this study, silicone rubber foam (SF) was prepared through cross-linking and foaming. The effects of ethanol content on the SF were investigated in terms of the physical properties, static cushioning properties, dynamic thermomechanical properties, and dynamic fatigue properties. The cell structure was characterized using scanning electron microscopy and its relationship with the SF properties was analyzed. With increasing ethanol content, the cell diameter increases gradually and its uniformity deteriorates. Moreover, the density, tensile strength, and elongation at breaking of the SF samples gradually decrease. In addition, with the increase of strain and stress, the cushioning coefficient of SF decreases initially and then increases, and the fatigue times worsens with increasing ethanol content. However, fatigue process has little effect on the cushioning performance of SF, which means the SF can be used as reusable packaging materials and thereby reduce environmental pollution.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 51703058
Funding source: China packaging industry Transformation and Development Special Research
Award Identifier / Grant number: 2016ZBLZ02
Funding source: Natural Science Foundation of Hunan
Award Identifier / Grant number: 2017JJ4006
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: The authors gratefully acknowledge the financial support by National Natural Science Foundation of China (no. 51703058), China Packaging Industry Transformation and Development Special Research (no. 2016ZBLZ02), and the Natural Science Foundation of Hunan (no. 2017JJ4006).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Shit, S. C., Shah, P. Natl. Acad. Sci. Lett. 2013, 36, 355–365. https://doi.org/10.1007/s40009-013-0150-2.10.1007/s40009-013-0150-2Suche in Google Scholar
2. Zhou, N. L. Introduction of Silicone Polymer; Science Press: Beijing, 2000.Suche in Google Scholar
3. Landrock, A. H. Handbook of Plastic Foams; New Publications: JerseyNoyes, 1995.10.1016/B978-081551357-5.50005-XSuche in Google Scholar
4. Hernandez, R., Weksler, J., Padsalgikar, A., Runt, J. Macromolecules 2007, 40, 5441–5449. https://doi.org/10.1021/ma070767c.10.1021/ma070767cSuche in Google Scholar
5. Yannas, I. V., Burke, J. F. J. Biomed. Mater. Res. 1980, 14, 65–81. https://doi.org/10.1002/jbm.820140108.10.1002/jbm.820140108Suche in Google Scholar
6. Abbasi, F., Mirzadeh, H., Simjoo, M. J. Biomater. Sci. Polym. Ed. 2006, 17, 341–355. https://doi.org/10.1163/156856206775997287.10.1163/156856206775997287Suche in Google Scholar
7. Gao, Z. M., Nahrup, J. S., Mark, J. E., Sakr, A. J. Appl. Polym. Sci. 2005, 96, 494–501. https://doi.org/10.1002/app.21469.10.1002/app.21469Suche in Google Scholar
8. Hergenrother, R. W., Yu, X. H., Cooper, S. L. Biomaterials 1994, 15, 635–640. https://doi.org/10.1016/0142-9612(94)90215-1.10.1016/0142-9612(94)90215-1Suche in Google Scholar
9. Kim, Y. B., Cho, D., Park, W. H. J. Appl. Polym. Sci. 2010, 116, 449–454. https://doi.org/10.1002/app.31480.10.1002/app.31480Suche in Google Scholar
10. Hernandez, R., Weksler, J., Padsalgikar, A., Runt, J. J. Biomed. Mater. Res. 2008, 87A, 546–556. https://doi.org/10.1002/jbm.a.31823.10.1002/jbm.a.31823Suche in Google Scholar PubMed
11. Liu, P. B., Liu, D. L., Zou, H. W., Fan, P., Xu, W. J. Appl. Polym. Sci. 2009, 113, 3590–3595. https://doi.org/10.1002/app.30341.10.1002/app.30341Suche in Google Scholar
12. Fejdys, M., Chrusciel, J., Miazga, A. Polimery 2006, 51, 48–57. https://doi.org/10.14314/polimery.2006.048.10.14314/polimery.2006.048Suche in Google Scholar
13. Merker, R. L., Pittsburgh, P. US Patent NO. 2967170, 1961.Suche in Google Scholar
14. Grande, J. B., Gonzaga, F., Brook, M. A. Dalton Trans. 2010, 39, 9369–9378. https://doi.org/10.1039/c0dt00400f.10.1039/c0dt00400fSuche in Google Scholar PubMed
15. Grande, J. B., Thompson, D. B., Gonzaga, F., Brook, M. A. Chem. Commun. 2010, 46, 4988–4990. https://doi.org/10.1039/C0CC00369G.10.1039/c0cc00369gSuche in Google Scholar PubMed
16. Brook, M. A., Grande, J. B., Ganachaud, F. Adv. Polym. Sci. 2010, 235, 161–183. https://doi.org/10.1007/12_2009_47.10.1007/12_2009_47Suche in Google Scholar
17. Rubinsztajn, S., Cella, J. A., Park, C. US Patent NO. 7064173, 2006.Suche in Google Scholar
18. Jawhar, M. C. D., Blanc, D., Chaumont, P., Cassagnau, P. Macromol. Mater. Eng. 2014, 299, 336–343. https://doi.org/10.1002/mame.201300142.10.1002/mame.201300142Suche in Google Scholar
19. Grande, J. B., Fawcett, A. S., Mclaughlin, A. J., Gonzaga, F., Bender, T. P., Brook, M. A. Polymer. 2012, 53, 3135–3142. https://doi.org/10.1016/j.polymer.2012.05.033.10.1016/j.polymer.2012.05.033Suche in Google Scholar
20. Chadwick, R. C., Grande, J. B., Brook, M. A., Adronov, A. Macromolecules 2014, 47, 6527–6530. https://doi.org/10.1021/ma501297v.10.1021/ma501297vSuche in Google Scholar
21. Zhang, C. L., Zhang, C. Y., Huang, R., Gu, X. Y. J. Appl. Polym. Sci. 2017, 134, 1–7. https://doi.org/10.1002/app.44778.10.1002/app.45582Suche in Google Scholar
22. Zhang, C. L., Huang, R., Hou, J. Z., Li, A. M., Hou, X. M., Gu, X. Y. Chem. Res. Chin. Univ. 2016, 32, 867–871. https://doi.org/10.1007/s40242-016-6002-0.10.1007/s40242-016-6002-0Suche in Google Scholar
23. Chrusciel, J. J., Lesniak, E. J. Appl. Polym. Sci. 2011, 119, 1696–1703. https://doi.org/10.1002/app.32852.10.1002/app.32852Suche in Google Scholar
24. Verdejo, R., Barroso-Bujans, F., Rodriguez-Perez, M. A., De Saja, J. A., Lopez-Manchado, M. A. J. Mater. Chem. 2008, 18, 2221–2226. https://doi.org/10.1039/b718289a.10.1039/b718289aSuche in Google Scholar
25. Wang, J. J., Feng, L. J., Chao, X. L., Feng, Y. N. Polym. Plast. Technol. 2012, 51, 1245–1250. https://doi.org/10.1080/03602559.2012.699130.10.1080/03602559.2012.699130Suche in Google Scholar
26. Verdejo, R., Saiz-Arroyo, C., Carretero-Gonzalez, J., Barroso-Bujans, F., Rodriguez-Perez, M. A., Lopez-Manchado, M. A. Eur. Polym. J. 2008, 44, 2790–2797. https://doi.org/10.1016/j.eurpolymj.2008.06.033.10.1016/j.eurpolymj.2008.06.033Suche in Google Scholar
27. Verdejo, R., Barroso-Bujans, F., Rodriguez-Perez, M. A., De Saja, J. A., Arroyo, M., Lopez-Manchado, M. A. J. Mater. Chem. 2008, 18, 3933–3939. https://doi.org/10.1039/b805943h.10.1039/b805943hSuche in Google Scholar
28. Zhao, Y. H., Zhang, Y. F., Bai, S. L. Compos. Appl. Sci. Manuf. 2016, 85, 148–155. https://doi.org/10.1016/j.compositesa.2016.03.021.10.1016/j.compositesa.2016.03.021Suche in Google Scholar
29. Labouriau, A., Cox, J. D., Schoonover, J. R., Patterson, B. M., Havrilla, G. J., Stephens, T., Taylor, D. Polym. Degrad. Stabil. 2007, 92, 414–424. https://doi.org/10.1016/j.polymdegradstab.2006.11.017.10.1016/j.polymdegradstab.2006.11.017Suche in Google Scholar
30. Labouriau, A., Robison, T., Meincke, L.,Wrobleski, D., Taylor, D., Gill, J. Polym. Degrad. Stabil. 2015, 121, 60–68. https://doi.org/10.1016/j.polymdegradstab.2015.08.013.10.1016/j.polymdegradstab.2015.08.013Suche in Google Scholar
31. Katok, K. V., Whitby, R. L. D., Fayon, F., Bonnamy, S., Mikhalovsky, S. V., Cundy, A. B. ChemPhysChem. 2013, 14, 4126–4133. https://doi.org/10.1002/cphc.201300832.10.1002/cphc.201300832Suche in Google Scholar PubMed
32. Stewart, C. W. J. Polym. Sci. Part 2 Polym. Phys. 1970, 62, 937–955. https://doi.org/10.1002/pol.1970.160080609.10.1002/pol.1970.160080609Suche in Google Scholar
33. Morton-Jones, D. H. Polymer Processing; Champan and Hall: New York, 1989.10.1007/978-94-009-0815-4Suche in Google Scholar
34. Hirabayashi, S., Koike, Y. US Patent NO. 20080214688A1, 2008. https://doi.org/10.1098/rspa.1982.0088.10.1098/rspa.1982.0088Suche in Google Scholar
35. Gibson, L. J., Ashby, M. F. Proc. Roy. Soc. Lond. Math. Phys. Sci. 1982, 382, 43–59. https://doi.org/10.1098/rspa.1982.0088.10.1098/rspa.1982.0088Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Effects of ethanol content on the properties of silicone rubber foam
- Swelling behavior and mechanical properties of Chitosan-Poly(N-vinyl-pyrrolidone) hydrogels
- Microcellular foaming behavior of ether- and ester-based TPUs blown with supercritical CO2
- Influence of chain interaction and ordered structures in polymer dispersed liquid crystalline membranes on thermal conductivity
- Experimental investigations on compressive, impact and prediction of stress-strain of fly ash-geopolymer and portland cement concrete
- Preparation and assembly
- Fabrication of poly (1, 8-octanediol-co-Pluronic F127 citrate)/chitin nanofibril/bioactive glass (POFC/ChiNF/BG) porous scaffold via directional-freeze-casting
- Engineering and processing
- Continuous reactors of frontal polymerization in flow for the synthesis of polyacrylamide hydrogels with prescribed properties
- Effect of slot end faces on the three-dimensional airflow field from the melt-blowing die
- Experimental and numerical study of the crushing behavior of pultruded composite tube structure
Artikel in diesem Heft
- Frontmatter
- Material properties
- Effects of ethanol content on the properties of silicone rubber foam
- Swelling behavior and mechanical properties of Chitosan-Poly(N-vinyl-pyrrolidone) hydrogels
- Microcellular foaming behavior of ether- and ester-based TPUs blown with supercritical CO2
- Influence of chain interaction and ordered structures in polymer dispersed liquid crystalline membranes on thermal conductivity
- Experimental investigations on compressive, impact and prediction of stress-strain of fly ash-geopolymer and portland cement concrete
- Preparation and assembly
- Fabrication of poly (1, 8-octanediol-co-Pluronic F127 citrate)/chitin nanofibril/bioactive glass (POFC/ChiNF/BG) porous scaffold via directional-freeze-casting
- Engineering and processing
- Continuous reactors of frontal polymerization in flow for the synthesis of polyacrylamide hydrogels with prescribed properties
- Effect of slot end faces on the three-dimensional airflow field from the melt-blowing die
- Experimental and numerical study of the crushing behavior of pultruded composite tube structure