Startseite Effects of ethanol content on the properties of silicone rubber foam
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of ethanol content on the properties of silicone rubber foam

  • Yu Tan , Jin Yao und He-Ping Zhu EMAIL logo
Veröffentlicht/Copyright: 29. Juni 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, silicone rubber foam (SF) was prepared through cross-linking and foaming. The effects of ethanol content on the SF were investigated in terms of the physical properties, static cushioning properties, dynamic thermomechanical properties, and dynamic fatigue properties. The cell structure was characterized using scanning electron microscopy and its relationship with the SF properties was analyzed. With increasing ethanol content, the cell diameter increases gradually and its uniformity deteriorates. Moreover, the density, tensile strength, and elongation at breaking of the SF samples gradually decrease. In addition, with the increase of strain and stress, the cushioning coefficient of SF decreases initially and then increases, and the fatigue times worsens with increasing ethanol content. However, fatigue process has little effect on the cushioning performance of SF, which means the SF can be used as reusable packaging materials and thereby reduce environmental pollution.


Corresponding author: He-Ping Zhu, School of Packaging Design and Art, Hunan University of Technology, Zhuzhou, 412007, China, E-mail:

Award Identifier / Grant number: 51703058

Funding source: China packaging industry Transformation and Development Special Research

Award Identifier / Grant number: 2016ZBLZ02

Award Identifier / Grant number: 2017JJ4006

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors gratefully acknowledge the financial support by National Natural Science Foundation of China (no. 51703058), China Packaging Industry Transformation and Development Special Research (no. 2016ZBLZ02), and the Natural Science Foundation of Hunan (no. 2017JJ4006).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Shit, S. C., Shah, P. Natl. Acad. Sci. Lett. 2013, 36, 355–365. https://doi.org/10.1007/s40009-013-0150-2.10.1007/s40009-013-0150-2Suche in Google Scholar

2. Zhou, N. L. Introduction of Silicone Polymer; Science Press: Beijing, 2000.Suche in Google Scholar

3. Landrock, A. H. Handbook of Plastic Foams; New Publications: JerseyNoyes, 1995.10.1016/B978-081551357-5.50005-XSuche in Google Scholar

4. Hernandez, R., Weksler, J., Padsalgikar, A., Runt, J. Macromolecules 2007, 40, 5441–5449. https://doi.org/10.1021/ma070767c.10.1021/ma070767cSuche in Google Scholar

5. Yannas, I. V., Burke, J. F. J. Biomed. Mater. Res. 1980, 14, 65–81. https://doi.org/10.1002/jbm.820140108.10.1002/jbm.820140108Suche in Google Scholar

6. Abbasi, F., Mirzadeh, H., Simjoo, M. J. Biomater. Sci. Polym. Ed. 2006, 17, 341–355. https://doi.org/10.1163/156856206775997287.10.1163/156856206775997287Suche in Google Scholar

7. Gao, Z. M., Nahrup, J. S., Mark, J. E., Sakr, A. J. Appl. Polym. Sci. 2005, 96, 494–501. https://doi.org/10.1002/app.21469.10.1002/app.21469Suche in Google Scholar

8. Hergenrother, R. W., Yu, X. H., Cooper, S. L. Biomaterials 1994, 15, 635–640. https://doi.org/10.1016/0142-9612(94)90215-1.10.1016/0142-9612(94)90215-1Suche in Google Scholar

9. Kim, Y. B., Cho, D., Park, W. H. J. Appl. Polym. Sci. 2010, 116, 449–454. https://doi.org/10.1002/app.31480.10.1002/app.31480Suche in Google Scholar

10. Hernandez, R., Weksler, J., Padsalgikar, A., Runt, J. J. Biomed. Mater. Res. 2008, 87A, 546–556. https://doi.org/10.1002/jbm.a.31823.10.1002/jbm.a.31823Suche in Google Scholar PubMed

11. Liu, P. B., Liu, D. L., Zou, H. W., Fan, P., Xu, W. J. Appl. Polym. Sci. 2009, 113, 3590–3595. https://doi.org/10.1002/app.30341.10.1002/app.30341Suche in Google Scholar

12. Fejdys, M., Chrusciel, J., Miazga, A. Polimery 2006, 51, 48–57. https://doi.org/10.14314/polimery.2006.048.10.14314/polimery.2006.048Suche in Google Scholar

13. Merker, R. L., Pittsburgh, P. US Patent NO. 2967170, 1961.Suche in Google Scholar

14. Grande, J. B., Gonzaga, F., Brook, M. A. Dalton Trans. 2010, 39, 9369–9378. https://doi.org/10.1039/c0dt00400f.10.1039/c0dt00400fSuche in Google Scholar PubMed

15. Grande, J. B., Thompson, D. B., Gonzaga, F., Brook, M. A. Chem. Commun. 2010, 46, 4988–4990. https://doi.org/10.1039/C0CC00369G.10.1039/c0cc00369gSuche in Google Scholar PubMed

16. Brook, M. A., Grande, J. B., Ganachaud, F. Adv. Polym. Sci. 2010, 235, 161–183. https://doi.org/10.1007/12_2009_47.10.1007/12_2009_47Suche in Google Scholar

17. Rubinsztajn, S., Cella, J. A., Park, C. US Patent NO. 7064173, 2006.Suche in Google Scholar

18. Jawhar, M. C. D., Blanc, D., Chaumont, P., Cassagnau, P. Macromol. Mater. Eng. 2014, 299, 336–343. https://doi.org/10.1002/mame.201300142.10.1002/mame.201300142Suche in Google Scholar

19. Grande, J. B., Fawcett, A. S., Mclaughlin, A. J., Gonzaga, F., Bender, T. P., Brook, M. A. Polymer. 2012, 53, 3135–3142. https://doi.org/10.1016/j.polymer.2012.05.033.10.1016/j.polymer.2012.05.033Suche in Google Scholar

20. Chadwick, R. C., Grande, J. B., Brook, M. A., Adronov, A. Macromolecules 2014, 47, 6527–6530. https://doi.org/10.1021/ma501297v.10.1021/ma501297vSuche in Google Scholar

21. Zhang, C. L., Zhang, C. Y., Huang, R., Gu, X. Y. J. Appl. Polym. Sci. 2017, 134, 1–7. https://doi.org/10.1002/app.44778.10.1002/app.45582Suche in Google Scholar

22. Zhang, C. L., Huang, R., Hou, J. Z., Li, A. M., Hou, X. M., Gu, X. Y. Chem. Res. Chin. Univ. 2016, 32, 867–871. https://doi.org/10.1007/s40242-016-6002-0.10.1007/s40242-016-6002-0Suche in Google Scholar

23. Chrusciel, J. J., Lesniak, E. J. Appl. Polym. Sci. 2011, 119, 1696–1703. https://doi.org/10.1002/app.32852.10.1002/app.32852Suche in Google Scholar

24. Verdejo, R., Barroso-Bujans, F., Rodriguez-Perez, M. A., De Saja, J. A., Lopez-Manchado, M. A. J. Mater. Chem. 2008, 18, 2221–2226. https://doi.org/10.1039/b718289a.10.1039/b718289aSuche in Google Scholar

25. Wang, J. J., Feng, L. J., Chao, X. L., Feng, Y. N. Polym. Plast. Technol. 2012, 51, 1245–1250. https://doi.org/10.1080/03602559.2012.699130.10.1080/03602559.2012.699130Suche in Google Scholar

26. Verdejo, R., Saiz-Arroyo, C., Carretero-Gonzalez, J., Barroso-Bujans, F., Rodriguez-Perez, M. A., Lopez-Manchado, M. A. Eur. Polym. J. 2008, 44, 2790–2797. https://doi.org/10.1016/j.eurpolymj.2008.06.033.10.1016/j.eurpolymj.2008.06.033Suche in Google Scholar

27. Verdejo, R., Barroso-Bujans, F., Rodriguez-Perez, M. A., De Saja, J. A., Arroyo, M., Lopez-Manchado, M. A. J. Mater. Chem. 2008, 18, 3933–3939. https://doi.org/10.1039/b805943h.10.1039/b805943hSuche in Google Scholar

28. Zhao, Y. H., Zhang, Y. F., Bai, S. L. Compos. Appl. Sci. Manuf. 2016, 85, 148–155. https://doi.org/10.1016/j.compositesa.2016.03.021.10.1016/j.compositesa.2016.03.021Suche in Google Scholar

29. Labouriau, A., Cox, J. D., Schoonover, J. R., Patterson, B. M., Havrilla, G. J., Stephens, T., Taylor, D. Polym. Degrad. Stabil. 2007, 92, 414–424. https://doi.org/10.1016/j.polymdegradstab.2006.11.017.10.1016/j.polymdegradstab.2006.11.017Suche in Google Scholar

30. Labouriau, A., Robison, T., Meincke, L.,Wrobleski, D., Taylor, D., Gill, J. Polym. Degrad. Stabil. 2015, 121, 60–68. https://doi.org/10.1016/j.polymdegradstab.2015.08.013.10.1016/j.polymdegradstab.2015.08.013Suche in Google Scholar

31. Katok, K. V., Whitby, R. L. D., Fayon, F., Bonnamy, S., Mikhalovsky, S. V., Cundy, A. B. ChemPhysChem. 2013, 14, 4126–4133. https://doi.org/10.1002/cphc.201300832.10.1002/cphc.201300832Suche in Google Scholar PubMed

32. Stewart, C. W. J. Polym. Sci. Part 2 Polym. Phys. 1970, 62, 937–955. https://doi.org/10.1002/pol.1970.160080609.10.1002/pol.1970.160080609Suche in Google Scholar

33. Morton-Jones, D. H. Polymer Processing; Champan and Hall: New York, 1989.10.1007/978-94-009-0815-4Suche in Google Scholar

34. Hirabayashi, S., Koike, Y. US Patent NO. 20080214688A1, 2008. https://doi.org/10.1098/rspa.1982.0088.10.1098/rspa.1982.0088Suche in Google Scholar

35. Gibson, L. J., Ashby, M. F. Proc. Roy. Soc. Lond. Math. Phys. Sci. 1982, 382, 43–59. https://doi.org/10.1098/rspa.1982.0088.10.1098/rspa.1982.0088Suche in Google Scholar

Received: 2019-07-11
Accepted: 2020-04-05
Published Online: 2020-06-29
Published in Print: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0205/html
Button zum nach oben scrollen