Startseite Simulation of dynamic mold compression and resin flow for force-controlled compression resin transfer molding
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Simulation of dynamic mold compression and resin flow for force-controlled compression resin transfer molding

  • Chih-Yuan Chang EMAIL logo
Veröffentlicht/Copyright: 6. September 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the present study, an improved consolidation model, with mold inertia included, is proposed to completely predict how the upper mold rapidly moves from rest to maximal velocity and then decelerates to a steady value for a constant force-controlled compression resin transfer molding (CRTM). Simulation results show that all preform compaction cases cannot apply to quasi-static consolidation theory in CRTM. For cases with a massy mold, inadequate preform resistance, and low resin viscosity, the mold inertia has a short, remarkable influence on the resin counter-force and causes a slightly slow resin progression in the early compression stage. Contrarily, the compaction of the rigid preform is applicable to the quasi-static consolidation theory. Additionally, a reasonable time increment is discussed for using the quasi steady-state approximation.

Award Identifier / Grant number: MOST 106-2221-E-244-006

Funding statement: The author gratefully acknowledges the financial support of the Ministry of Science and Technology of Republic of China under Grant number: MOST 106-2221-E-244-006.

Nomenclature

DA

area density of fiber mat (kg/m2)

Df

density of the fiber filament (kg/m3)

Fcomp

compression force (N)

Ffiber

force exerted by preform (N)

Finertia

inertial force of mobile mold (N)

Fresin

force exerted by resin pressure (N)

h

preform thickness (m)

compression speed (m/s)

Kx, Ky

permeability of the preform in x and y directions (m2)

Lf

length of the saturated preform (m)

M

mass of mobile upper mold (kg)

N

number of fiber mats

nx, ny

directions of the outward unit normal to the element boundary

P

pressure (Pa)

Pinj

injection pressure (Pa)

u, v

velocity components in x, y direction (m/s)

uf

front velocity (m/s)

x, y

coordinate components in the physical domain (m)

Greek symbols
Δt

time increment (s)

ϕ

porosity of the preform

μ

resin viscosity (Pa-s)

σ

stress of compressed preform (N/m2)

Ψ

shape function

Γ

coordinate along the boundary

References

[1] Gutowski TG, Morigaki T, Cai Z. J. Compos. Mater. 1987, 21, 172–188.10.1177/002199838702100207Suche in Google Scholar

[2] Lee SH, Han JH, Kim SY, Youn JR, Song YS. J. Compos. Mater. 2010, 44, 1801–1820.10.1177/0021998310369583Suche in Google Scholar

[3] Kelly PA. J. Text. Inst. 2011, 102, 689–699.10.1080/00405000.2010.515103Suche in Google Scholar

[4] Pham XT, Trochu F, Gauvin R. J. Reinf. Plast. Compos. 1998, 17, 1525–1556.10.1177/073168449801701704Suche in Google Scholar

[5] Pham XT, Trochu F. Polym. Compos. 1999, 20, 436–459.10.1002/pc.10369Suche in Google Scholar

[6] Bickerton S, Abdullah MZ. Compos. Sci. Technol. 2003, 63, 1359–1375.10.1016/S0266-3538(03)00022-8Suche in Google Scholar

[7] Buntain MJ, Bickerton S. Compos. Part A 2007, 38, 1729–1741.10.1016/j.compositesa.2007.01.012Suche in Google Scholar

[8] Wu CH, Pan YR. J. Mater. Process. Technol. 2008, 201, 695–700.10.1016/j.jmatprotec.2007.11.241Suche in Google Scholar

[9] Shojaei A. Compos. Part A 2006, 37, 1434–1450.10.1016/j.compositesa.2005.06.021Suche in Google Scholar

[10] Yang B, Jin T, Li J, Bi F. J. Reinf. Plast. Compos. 2014, 33, 1316–1331.10.1177/0731684414528831Suche in Google Scholar

[11] Seuffert J, Karger L, Henning F. J. Compos. Sci. 2018, 2, 1–17.10.3390/jcs2020023Suche in Google Scholar

[12] Mamoune A, Saouab A, Ouahbi T, Park CH. J. Reinf. Plast. Compos. 2011, 30, 1629–1648.10.1177/0731684411421539Suche in Google Scholar

[13] Verleye B, Walbran WA, Bickerton S, Kelly PA. J. Compos. Mater. 2011, 45, 815–829.10.1177/0021998310376110Suche in Google Scholar

[14] Walbran WA, Bickerton S, Kelly PA. Polym. Compos. 2015, 36, 591–603.10.1002/pc.22976Suche in Google Scholar

[15] Buntain MJ, Bickerton S. Compos. Part A 2003, 34, 445–457.10.1016/S1359-835X(03)00090-3Suche in Google Scholar

[16] Seong DG, Kim JS, Um MK, Lee D. Fibers Polym. 2019, 20, 651–655.10.1007/s12221-019-8953-5Suche in Google Scholar

[17] Chang CY, Hourng LW, Yu CS. J. Reinf. Plast. Comp. 2004, 23, 1561–1570.10.1177/0731684404039800Suche in Google Scholar

[18] Chang CY. Adv. Compos. Mater. 2007, 16, 207–221.10.1163/156855107781393759Suche in Google Scholar

[19] Baskaran M, Aretxabaleta L, Mateos M, Aurrekoetxea J. Polym. Compos. 2018, 39, 4333–4340.10.1002/pc.24514Suche in Google Scholar

[20] Keller A, Dransfeld C, Masania K. Compos. Part B 2018, 153, 167–175.10.1016/j.compositesb.2018.07.041Suche in Google Scholar

[21] Studer J, Dransfeld C, Cano JJ, Keller A, Wink M, Masania K, Fiedler B. Compos. Part A 2019, 122, 45–53.10.1016/j.compositesa.2019.04.008Suche in Google Scholar

[22] Neale G, Nader W. Can. J. Chem. Eng. 1974, 52, 475–478.10.1002/cjce.5450520407Suche in Google Scholar

[23] Han K, Ni J, Toth J, Lee LJ, Greene JP. Polym. Compos. 1998, 19, 487–496.10.1002/pc.10123Suche in Google Scholar

[24] Vafai K, Thiyagaraja R. Int. J. Heat Mass. Transfer 1987, 30, 1391–1405.10.1016/0017-9310(87)90171-2Suche in Google Scholar

[25] Shojaei A. Compos. Sci. Technol. 2006, 66, 1546–1557.10.1016/j.compscitech.2005.11.035Suche in Google Scholar

[26] Simacek P, Advani SG, Iobst SA. J. Compos. Mater. 2008, 42, 2523–2545.10.1177/0021998308096320Suche in Google Scholar

[27] Bhat P, Merotte J, Simacek P, Advani SG. Compos. Part A 2009, 40, 431–441.10.1016/j.compositesa.2009.01.006Suche in Google Scholar

[28] Geissberger R, Maldonado J, Bahamonde N, Keller A, Dransfeld C, Masania K. Compos. Part B 2017, 124, 182–189.10.1016/j.compositesb.2017.05.040Suche in Google Scholar

[29] Merotte J, Simacek P, Advani SG. Compos. Part A 2010, 41, 881–887.10.1016/j.compositesa.2010.03.001Suche in Google Scholar

[30] Merotte J, Simacek P, Advani SG. Compos. Sci. Technol. 2010, 70, 725–733.10.1016/j.compscitech.2010.01.002Suche in Google Scholar

[31] Hopmann C, Wagner PN, Bastian R, Fischer K, Bottcher A. J. Polym. Eng. 2016, 36, 589–596.10.1515/polyeng-2015-0149Suche in Google Scholar

[32] Sun Z, Xiao J, Tao L, Wei Y, Wang S, Zhang H, Zhu S, Yu M. Materials 2019, 12, 13.10.3390/ma12010013Suche in Google Scholar PubMed PubMed Central

[33] Burnett DS. Finite Element Analysis, Addison-Wesley Publishing Company, Singapore, 1988.Suche in Google Scholar

[34] Bear J. Dynamics of Fluids in Porous Media, Dover Publication, New York, 1972.Suche in Google Scholar

[35] Wu CJ, Hourng LW. Polym. Eng. Sci. 1995, 35, 1272–1281.10.1002/pen.760351603Suche in Google Scholar

Received: 2019-06-10
Accepted: 2019-08-13
Published Online: 2019-09-06
Published in Print: 2019-09-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0180/html
Button zum nach oben scrollen