Abstract
An innovative sandwich battery composite was designed and manufactured by applying he vacuum assisted hand lay-up molding process. A series of bending mechanical properties and electrical performance testing were performed to investigate the reliability of the structure-battery composites. Experimental results showed that embedding the lithium polymer cell had no influence on the specific strength of the composite components and the electrical properties of the battery packs. Moreover, the charging and discharging properties of the structure-battery composites were not affected when subjected to 60% of failure load level or less. Under 80% of failure load, the charging and discharging capacities of the battery were reduced by 21.80% and 22.78%, respectively, and this degradation was unrecoverable. The structure-battery system has great potential as a multifunctional composite to optimize structural design and improve lightweight integrated properties.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 11902204
Award Identifier / Grant number: 11602150
Award Identifier / Grant number: U1733123
Funding source: Natural Science Foundation of Liaoning Province
Award Identifier / Grant number: 20170540695
Award Identifier / Grant number: L201725
Funding source: Shenyang Science Project
Award Identifier / Grant number: 18-013-0-23
Funding statement: This work was financially supported by the National Natural Science Foundation of China (Funder Id: http://dx.doi.org/10.13039/501100001809, Nos. 11902204, 11602150 and U1733123), the Natural Science Foundation of Liaoning Province (Funder Id: http://dx.doi.org/10.13039/501100005047, No. 20170540695), the Scientific Research Project of the Liaoning Provincial Education Department (L201725) and the Shenyang Science Project (18-013-0-23).
References
[1] Gibson RF. Compos. Struct. 2010, 92, 2793–2810.10.1016/j.compstruct.2010.05.003Suche in Google Scholar
[2] Gonzalez C, Vilatela JJ, Molina-Aldareguia JM, Lopes CS, Lorca J. Prog. Mater. Sci. 2017, 89, 194–251.10.1016/j.pmatsci.2017.04.005Suche in Google Scholar
[3] Wang Y, Peng CY, Zhang WH. J. Sci. Ind. Res. 2014, 73, 163–167.Suche in Google Scholar
[4] O’Brien DJ, Baechle DM, Wetzel ED. J. Compos. Mater. 2011, 45, 2797–2809.10.1177/0021998311412207Suche in Google Scholar
[5] Liu P, Sherman E, Jacobsen A. J. Power Sources 2009, 189, 646–650.10.1016/j.jpowsour.2008.09.082Suche in Google Scholar
[6] Carlson T, Ordeus D, Wysocki M. Compos. Sci. Technol. 2010, 70, 1135–1140.10.1016/j.compscitech.2010.02.028Suche in Google Scholar
[7] Saafi M, Gullane A, Huang B, Sadeghi H, Sadeghi F. Compos. Struct. 2018, 201, 766–778.10.1016/j.compstruct.2018.06.101Suche in Google Scholar
[8] Snyder JF, Gienger EB, Wetzel ED. J. Compos. Mater. 2015, 49, 1835–1848.10.1177/0021998314568167Suche in Google Scholar
[9] Javaid A, Ali MZ. Mater. Res. Express 2018, 5.10.1088/2053-1591/aabeb1Suche in Google Scholar
[10] Pereira T, Zhanhu G, Nieh S, Arias J, Hahn HT. J. Compos. Mater. 2009, 43, 549–560.10.1177/0021998308097682Suche in Google Scholar
[11] Zhang YC. J. Intell. Mat. Syst. Struct. 2017, 28, 1603–1613.10.1177/1045389X16679021Suche in Google Scholar
[12] Thomas JP, Qidwai MA. JOM-US. 2005, 57, 18–24.10.1007/s11837-005-0228-5Suche in Google Scholar
[13] Thomas JP, Qidwai MA. Acta. Mater. 2004, 52, 2155–2164.10.1016/j.actamat.2004.01.007Suche in Google Scholar
[14] Zhang Y, Ma J, Singh AK, Cao L, Seo J, Rahn CD. J. Intell. Mater. Syst. Struct. 2017, 28, 1603–1613.10.1177/1045389X16679021Suche in Google Scholar
[15] Perez-Rosado A, Gehlhar RD, Nolen S, Gupta SK, Bruck HA. Smart. Mater. Struct. 2015, 24, 1–35.10.1088/0964-1726/24/6/065042Suche in Google Scholar
[16] Sairajan KK, Aglietti GS, Mani KM. Acta. Astronaut. 2016, 120, 30–42.10.1016/j.actaastro.2015.11.024Suche in Google Scholar
[17] Adam T, Liao GY, Petersen J. Energies 2018, 11.10.3390/en11020335Suche in Google Scholar
[18] Roberts SC, Aglietti GS. Acta. Astronaut. 2010, 67, 424–439.10.1016/j.actaastro.2010.03.004Suche in Google Scholar
[19] Asp LE. Plast. Rubber. Compos. 2013, 42, 144–149.10.1179/1743289811Y.0000000043Suche in Google Scholar
[20] Yu YL, Zhang BM, Wang Y. Mater. Design. 2016, 104, 126–133.10.1016/j.matdes.2016.05.004Suche in Google Scholar
[21] Lin YR, Sodano HA. J. Appl. Phys. 2009, 106, 592–624.10.1063/1.3273384Suche in Google Scholar
[22] Salah MS. RMIT University: Melbourne, Australia, 2015.Suche in Google Scholar
[23] Minty RF, Yang L, Thomason JL. Compos. Part. A-Appl. S. 2018, 112, 64–70.10.1016/j.compositesa.2018.05.033Suche in Google Scholar
[24] Kocaman S, Ahmetli G. Prog. Org. Coat. 2016, 97, 53–64.10.1016/j.porgcoat.2016.03.025Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Pyrolysis of polypropylene over zeolite mordenite ammonium: kinetics and products distribution
- Impact of graphene/graphene oxide on the mechanical properties of cellulose acetate membrane and promising natural seawater desalination
- Surface damage characterization of photodegraded low-density polyethylene by means of friction measurements
- Morphology and electrical properties of polypropylene/polyamide 6/glass fiber composites with low carbon black loading
- Preparation and assembly
- Preparation and evaluation of a stable and sustained release of lansoprazole-loaded poly(d,l-lactide-co-glycolide) polymeric nanoparticles
- Engineering and processing
- Influence of chemical postprocessing on mechanical properties of laser-sintered polyamide 12 parts
- Manufacture and mechanical properties of sandwich structure-battery composites
- Simulation of dynamic mold compression and resin flow for force-controlled compression resin transfer molding
- A mathematical analysis for the blade coating process of Oldroyd 4-constant fluid
Artikel in diesem Heft
- Frontmatter
- Material properties
- Pyrolysis of polypropylene over zeolite mordenite ammonium: kinetics and products distribution
- Impact of graphene/graphene oxide on the mechanical properties of cellulose acetate membrane and promising natural seawater desalination
- Surface damage characterization of photodegraded low-density polyethylene by means of friction measurements
- Morphology and electrical properties of polypropylene/polyamide 6/glass fiber composites with low carbon black loading
- Preparation and assembly
- Preparation and evaluation of a stable and sustained release of lansoprazole-loaded poly(d,l-lactide-co-glycolide) polymeric nanoparticles
- Engineering and processing
- Influence of chemical postprocessing on mechanical properties of laser-sintered polyamide 12 parts
- Manufacture and mechanical properties of sandwich structure-battery composites
- Simulation of dynamic mold compression and resin flow for force-controlled compression resin transfer molding
- A mathematical analysis for the blade coating process of Oldroyd 4-constant fluid