Influence of chemical postprocessing on mechanical properties of laser-sintered polyamide 12 parts
Abstract
A limiting factor for industrial usage of laser-sintered parts is the high surface roughness due to the semi-molten or attaching powder particles resulting from tool and pressureless manufacturing. An approach to improve the surface quality is the postprocessing with acids to smoothen the surface as it enables improvement without geometrical restrictions of the parts. The present work deals with the usage of nitric, hydrochloric, and trifluoroacetic acids, and exhibits the influence on the resulting surface morphology, dimensional accuracy, and the mechanical properties. The results exhibit different interaction mechanics and show great differences in the resulting part properties.
Acknowledgments
The iGF project (19623 N) with the title “Resource saving small series production by polymer laser sintering – influence of the anisotropy and surface structure on the dynamic and mechanic long-term properties of laser sintered parts” of the research association Institute of Energy and Environmental Technology e.V. (iUTA) was funded by the Federal Ministry of Economics and Energy via the AiF within the program for funding industrial joint research based on a decision of the German Bundestag.
References
[1] Caffrey T, Wohlers T, Campbell I. Wohlers Report, Wohlers Associates, Inc, 2016.Suche in Google Scholar
[2] Gebhardt A. Additive Fertigungsverfahren: Additive Manufacturing und 3D-Drucken für Prototyping–Tooling–Produktion, 5th ed., Carl Hanser Verlag: München, 2016.10.3139/9783446445390Suche in Google Scholar
[3] Schmid M. Laser Sintering with Plastics. Carl Hanser Verlag: München, 2018.10.3139/9781569906842Suche in Google Scholar
[4] Launhardt M, Wörz A, Loderer A, Laumer T, Drummer D, Hausotte T, Schmidt M. Polym. Test. 2016, 53, 217–226.10.1016/j.polymertesting.2016.05.022Suche in Google Scholar
[5] Lake M. Oberflächentechnik in der Kunststoffverarbeitung: vorbehandeln, beschichten, bedrucken, funktionalisieren, prüfen, 2nd ed., Carl Hanser Verlag: München, 2016.10.3139/9783446449497Suche in Google Scholar
[6] DIN 8580. Manufacturing Processes – Terms and Definitions Division, 2003.Suche in Google Scholar
[7] Breuninger J, Becker R, Wolf A, Rommel S, Verl A. Generative Fertigung mit Kunststoffen: Konzeption und Konstruktion für Selektives Lasersintern, Springer Vieweg: Berlin, 2012.10.1007/978-3-642-24325-7Suche in Google Scholar
[8] Wiedau LC, Meyer L, Wegner A, Witt G. Proceeding of the RapidTech, Carl Hanser Verlag: München, 2018, p 267–288.10.3139/9783446458123.017Suche in Google Scholar
[9] Schmachtenberg E, Seul T. Model of Isothermic Laser-Sintering, Proceeding of the 60th Annual Technical Conference of the Society of Plastic Engineers, San Francisco, 2002, p 3030–3035.Suche in Google Scholar
[10] Gibson I, Rosen DW, Stucker B. Additive Manufacturing Technologies, 2nd, Springer Science: New York, 2010.10.1007/978-1-4419-1120-9Suche in Google Scholar
[11] Wörz A, Wudy K, Drummer D. Einfluss des Schichtaufbaus auf das mechanische Verhalten von selektiv lasergesinterten Bauteilen, Proceeding of the RapidTech, Carl Hanser Verlag: München, 2018, p 254–266.10.3139/9783446458123.016Suche in Google Scholar
[12] Wörz A, Drummer D. Understanding Hatch-Dependent Part Properties in SLS, Proceeding of the Solid Freeform Fabrication Symposium, Austin, 2018, p 1360–1369.Suche in Google Scholar
[13] Kruth JP, Levy G, Schindel R, Craeghs T, Yasa E. Consolidation of Polymer Powders by Selective Laser Sintering, Proceeding of the PMI International Conference, Genth, 2008, p 1–6.Suche in Google Scholar
[14] Sauer A, Witt G. RTEJ. 2005, 2, 1–11.10.1007/978-3-322-82169-0_1Suche in Google Scholar
[15] Kaddar W. Die generative Fertigung mittels Laser-Sintern: Scanstrategien, Einflüsse verschiedener Prozessparameter auf die mechanischen und optischen Eigenschaften beim LS von Thermoplasten und deren Nachbearbeitungsmöglichkeiten, Dissertation University Duisburg-Essen, 2010.Suche in Google Scholar
[16] Caulfiled B, McHugh P, Lohfeld S. J. Mater. Process. Technol. 2007, 182, 477–488.10.1016/j.jmatprotec.2006.09.007Suche in Google Scholar
[17] Wörz A, Wudy K, Drummer D, Wegner A, Witt G. J. Polym. Eng. 2018, 38, 573–582.10.1515/polyeng-2017-0227Suche in Google Scholar
[18] Schmid M, Simon C, Levy G. Finishing of SLS-Parts for Rapid Manufacturing (RM)–a Comprehensive Approach, Proceedings of the Solid Freeform Fabrication Symposium, Austin, 2009, 1–10.Suche in Google Scholar
[19] Schmid M, Levy GN. RTEJ. 2010, 7. Available at: https://www.rtejournal.de/ausgabe7/2636.Suche in Google Scholar
[20] Baier O. Optimierung von FLM-Bauteilen durch chemische Nachbearbeitung sowie deren Einsatz in der Galvanik, Dissertation, Universtity Duisburg-Essen, 2016.Suche in Google Scholar
[21] Zorll U, Schütze EC. Kunststoffe in der Oberflächentechnik, Kohlhammer: Stuttgart, 1986.Suche in Google Scholar
[22] Ehrenstein GW, Pongratz S. Resistence and Stability of Polymers, Carl Hanser Verlag: München, 2013.10.3139/9783446437098Suche in Google Scholar
[23] Ehrenstein GW. Polymer-Werkstoffe: Struktur-Eigenschaften-Anwendung, 2nd ed., Carl Hanser Verlag: München, 1999.Suche in Google Scholar
[24] Reinhardt T. Entwicklung einer ganzheitlichen Verfahrenssystematik bei der Qualifizierung neuer Werkstoffe für das Laser-Sintern am Beispiel Polypropylen, Dissertation, University Duisburg-Essen, 2016.Suche in Google Scholar
[25] Hofmann H, Spindler J. Verfahren in der Beschichtungs-und Oberflächentechnik, 3rd ed., Carl Hanser Verlag: München, 2014.10.3139/9783446441835Suche in Google Scholar
[26] Hopmann C, Michaeli W, Greif H, Wolters L. Technologie der Kunststoffe: Lern- und Arbeitsbuch für die Aus- und Weiterbildung, 3rd ed., Carl Hanser Verlag: München, 2015.10.3139/9783446442078Suche in Google Scholar
[27] Schwister K. Taschenbuch der Chemie: Mit zahlreichen Bildern und Tabellen, Fachbuchverl, Leipzig im Hanser-Verl: München, 2010.Suche in Google Scholar
[28] Vollhardt KPC, Schore NE. Organische Chemie, Wiley-VCH: Weinheim, 2011.Suche in Google Scholar
[29] Gerthsen T. Chemie für den Maschinenbau: Anorganische Chemie für Werkstoffe und Verfahren, Univ.-Verl. Karlsruhe: Karlsruhe, 2006.Suche in Google Scholar
[30] DIN EN ISO 1133. Plastics-Determination of the melt mass-flow rate (MFR) and melt volume-rate (MVR) of thermoplastics – Part 1: Standard method, Beth Verlag: Berlin, 2011.Suche in Google Scholar
[31] Wegner A, Witt G, Karg W. Auffrischstrrategien für Polyamid 12-Pulver, Kunststoffe 2013, 11, 79–78.Suche in Google Scholar
[32] Wegner A, Mielicki C, Grimm T, Gronhoff B, Witt G. Wortberg J. Polym. Eng. Sci. 2014, 54, 1540–1555.10.1002/pen.23696Suche in Google Scholar
[33] DIN EN ISO 3167. Plastics-Multipurpose Test Specimens, Beth Verlag: Berlin, 2014.Suche in Google Scholar
[34] DIN EN ISO 4287. Geometrical Product Specifications (GPS) – Surface texture: Profile Method – Terms, Definitions and Surface Texture Parameters, Beuth Verlag: Berlin, 2010.Suche in Google Scholar
[35] DIN EN ISO 527. Plastics – Determination of Tensile Properties – Part 1: General Principle, Beuth Verlag: Berlin, 2012.Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Pyrolysis of polypropylene over zeolite mordenite ammonium: kinetics and products distribution
- Impact of graphene/graphene oxide on the mechanical properties of cellulose acetate membrane and promising natural seawater desalination
- Surface damage characterization of photodegraded low-density polyethylene by means of friction measurements
- Morphology and electrical properties of polypropylene/polyamide 6/glass fiber composites with low carbon black loading
- Preparation and assembly
- Preparation and evaluation of a stable and sustained release of lansoprazole-loaded poly(d,l-lactide-co-glycolide) polymeric nanoparticles
- Engineering and processing
- Influence of chemical postprocessing on mechanical properties of laser-sintered polyamide 12 parts
- Manufacture and mechanical properties of sandwich structure-battery composites
- Simulation of dynamic mold compression and resin flow for force-controlled compression resin transfer molding
- A mathematical analysis for the blade coating process of Oldroyd 4-constant fluid
Artikel in diesem Heft
- Frontmatter
- Material properties
- Pyrolysis of polypropylene over zeolite mordenite ammonium: kinetics and products distribution
- Impact of graphene/graphene oxide on the mechanical properties of cellulose acetate membrane and promising natural seawater desalination
- Surface damage characterization of photodegraded low-density polyethylene by means of friction measurements
- Morphology and electrical properties of polypropylene/polyamide 6/glass fiber composites with low carbon black loading
- Preparation and assembly
- Preparation and evaluation of a stable and sustained release of lansoprazole-loaded poly(d,l-lactide-co-glycolide) polymeric nanoparticles
- Engineering and processing
- Influence of chemical postprocessing on mechanical properties of laser-sintered polyamide 12 parts
- Manufacture and mechanical properties of sandwich structure-battery composites
- Simulation of dynamic mold compression and resin flow for force-controlled compression resin transfer molding
- A mathematical analysis for the blade coating process of Oldroyd 4-constant fluid