Startseite Impact of graphene/graphene oxide on the mechanical properties of cellulose acetate membrane and promising natural seawater desalination
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Impact of graphene/graphene oxide on the mechanical properties of cellulose acetate membrane and promising natural seawater desalination

  • Nahla Ismail , Ayman El-Gendi EMAIL logo , Hisham Essawy , Lara Nezam El-Din , Kamal Abed und Awad Ahmed
Veröffentlicht/Copyright: 6. September 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

New formulations of cellulose acetate (CA) membrane with graphene (G)/graphene oxide (GO) are suggested and investigated in the present work. This study is intended to find a wide range of conditions for fabricating CA membranes in the presence of some additions of graphene (G), and graphene oxide (GO). The membrane is prepared by phase inversion process. Microscopic investigations for graphene (G), graphene oxide (GO), and prepared membrane were performed by high-resolution transmission electron microscope (HRTEM) and scanning electron microscopy (SEM). The mechanical properties of prepared membranes are determined and evaluated. Permeation tests were performed using natural seawater and simulated seawater to check the prepared membrane performance. The results presented that the permeate flux of M25% CA membranes containing 0.01 wt.% G is the highest flux (57–74 l/m2 h) compared with the neat CA membrane, and the 0.01 wt.% GO-based membranes, while the GO-based membranes were comparable as the neat CA membrane at operating pressures (30–35 bar) and with a feed of 35 g/l NaCl solution. The results showed a remarkable salt rejection of simulated seawater of 95%, and natural seawater with a feed from the Mediterranean Sea displayed 90% salt rejection and accepted pure water flux as well.

References

[1] Kamanul FJ, Zambas J, Masamb R. Phys. Chem. Earth, Parts A/B/C 2014, 72–75, 61–67.10.1016/j.pce.2014.09.001Suche in Google Scholar

[2] Liu C. Comprehensive Water Quality and Purification 2013, 2, 75–97.10.1016/B978-0-12-382182-9.00030-XSuche in Google Scholar

[3] Basile A, Cassano A, Rastogi NK, Advances in Membrane Technologies for Water Treatment, Elsevier/Wodhead: Oxford, UK, 2015, Vol. 3, pp 465–517, ISBN 978-1-78242-121-4.Suche in Google Scholar

[4] Petrinić I, Bajraktari N, Hélix-Nielsen C. In: Advances in Membrane Technologies for Water Treatment, Basile A, Cassano A, Rastogi NK, Eds., A Volume in Woodhead Publishing Series in Energy, 2015, pp 537–550.10.1016/B978-1-78242-121-4.00017-4Suche in Google Scholar

[5] Rastogi NK, Cassano A, Basile A. In: Advances in Membrane Technologies for Water Treatment, Basile A, Cassano A, Rastogi NK, Eds., A Volume in Woodhead Publishing Series in Energy, 2015, pp 129–154.10.1016/B978-1-78242-121-4.00004-6Suche in Google Scholar

[6] Sabir A, Islam A, Shafiq M, Shafeeq A, Butt MT, Ahmad NM, Sanaullah K, Jamil T. Desalination 2015, 367, 159–170.10.1016/j.desal.2014.12.041Suche in Google Scholar

[7] Daer S, Kharraz J, Giwa A, Wajih Hasan S. Desalination 2015, 367, 37–48.10.1016/j.desal.2015.03.030Suche in Google Scholar

[8] Bhadr M, Mitr S. Nanotechnol. App. Clean Water, Second ed., 2014, pp 109–122.10.1016/B978-1-4557-3116-9.00007-XSuche in Google Scholar

[9] Han B, Zhang D, Shao Z. Desalination 2013, 311, 80–89.10.1016/j.desal.2012.11.002Suche in Google Scholar

[10] Misdan N, Lau W, Ismail A. Desalination 2012, 287, 228–237.10.1016/j.desal.2011.11.001Suche in Google Scholar

[11] Waheed S, Ahmad A, Khan SM, Gul S, Jamil T, Islam A, Hussain T. Desalination 2014, 351, 59–69.10.1016/j.desal.2014.07.019Suche in Google Scholar

[12] Mahdavi H, Shahalizade T. J. Membr. Sci. 2015, 473, 256–266.10.1016/j.memsci.2014.09.013Suche in Google Scholar

[13] He Z, Meng M, Yan L, Zhu W, Sun F, Yan Y, Liu Y, Liu S. Sep. Purif. Technol. 2015, 145, 63–74.10.1016/j.seppur.2015.03.005Suche in Google Scholar

[14] Fischer S, Thuemmler K, Volkert B, Hettrich K, Schmidt I, Fischer K. Macromol. Symp. 2008, 262, 89–96.10.1002/masy.200850210Suche in Google Scholar

[15] Lucena M, Alencar A, Mazzeto S, Soares S. Polym. Degrad. Stabil. 2003, 80, 149–155.10.1016/S0141-3910(02)00396-8Suche in Google Scholar

[16] Shenvi S, Ismail AF, Isloor AM. Ind. Eng. Chem. Res. 2014, 53, 13820–13827.10.1021/ie502310eSuche in Google Scholar

[17] Wang LN, Xin AB, Liu CZB, Liu WT, Xia XLA, He SQA, Liu H, Zhu CS. Arab. J. Sci. Eng. 2015, 40, 2889–2895.10.1007/s13369-015-1828-1Suche in Google Scholar

[18] Arthanareeswaran G, Devi TK, Raajenthiren M. Sep. Purif. Technol. 2008, 64, 38–47.10.1016/j.seppur.2008.08.010Suche in Google Scholar

[19] Hamada T, Miyazaki Y. Desalination 2004, 169, 257–267.10.1016/S0011-9164(04)00532-6Suche in Google Scholar

[20] El Badawi N, Ramadan AR, Esawi AMK, El-Morsi M. Desalination 2014, 344, 79–85.10.1016/j.desal.2014.03.005Suche in Google Scholar

[21] Mahmoud KA, Mansoor B, Mansour A, Khraisheh M. Desalination 2015, 356, 208–225.10.1016/j.desal.2014.10.022Suche in Google Scholar

[22] Mukherjee R, Bhunia P, De S. Chem. Eng. J. 2016, 292, 284–297.10.1016/j.cej.2016.02.015Suche in Google Scholar

[23] Gopiraman M, Fujimori K, Zeeshan K, Kim BS, Kim IS. Poly. Lett. 2013, 7, 554–563.10.3144/expresspolymlett.2013.52Suche in Google Scholar

[24] Manawi Y, Kochkodan V, Hussein MA, Khaleel MA, Khraisheh M, Hilal N. Desalination 2016, 391, 69–88.10.1016/j.desal.2016.02.015Suche in Google Scholar

[25] Chen X, Qiu M, Ding H, Fu K, Fan Y. Nanoscale 2016, 8, 5696–5705.10.1039/C5NR08697CSuche in Google Scholar

[26] Xu Q, Xu H, Chen J, Lv Y, Dong C, Sreeprasad T. Chem. Front. 2015, 2, 417–424.10.1039/C4QI00230JSuche in Google Scholar

[27] Leenaerts O, Partoens B, Peeters FM. Appl. Phys. Lett. 2008, 93, 193107.10.1063/1.3021413Suche in Google Scholar

[28] Ruan M, Hu Y, Guo Z, Dong R, Palmer J, Hankinson J, Berger C, de Heer WA. MRS Bull. 2012, 37, 1138–1147.10.1557/mrs.2012.231Suche in Google Scholar

[29] Zhang Y, Wu B, Xu H, Liu H, Wang M, He Y, Pan B. NanoImpact 2016, 3–4, 22–39.10.1016/j.impact.2016.09.004Suche in Google Scholar

[30] Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Adv. Mater. 2010, 22, 3906–3924.10.1002/adma.201001068Suche in Google Scholar PubMed

[31] Yeh C, Raidongia K, Shao J, Yang Q, Huang J. Nat. Chem. 2015, 7, 166–170.10.1038/nchem.2145Suche in Google Scholar PubMed

[32] Xu Z. Nat. Commun. 2011, 2, 571.10.1038/ncomms1583Suche in Google Scholar PubMed PubMed Central

[33] Zaib Q, Fath H. Desalin. Water Treat. 2012, 51, 627–636.10.1080/19443994.2012.722772Suche in Google Scholar

[34] Hu M, Mi B. Environ. Sci. Technol. 2013, 47, 3715–3723.10.1021/es400571gSuche in Google Scholar PubMed

[35] Moraes A, Andrade P, Faria A, Simões M, Salomão F, Barros E, Gonçalves M, Alves O. Carbohydr. Polym. 2015, 123, 217–227.10.1016/j.carbpol.2015.01.034Suche in Google Scholar PubMed

[36] Uddin M, Layek R, Kim H, Kim N, Hui D, Lee J. Composites Part B 2016, 90, 223–231.10.1016/j.compositesb.2015.12.008Suche in Google Scholar

[37] El-Gendi A, Samhan FA, Ismail N, Nezam El-Dein LA. J. Ind. Eng. Chem. 2018, 65, 127–13.10.1016/j.jiec.2018.04.021Suche in Google Scholar

[38] Hummers WS, Offeman RE. J. Am. Chem. Soc. 1958, 80, 1339–1339.10.1021/ja01539a017Suche in Google Scholar

[39] Ismail N, Madian M, Samy El-Shall M. J. Ind. Eng. Chem. 2015, 30, 328–335.10.1016/j.jiec.2015.06.002Suche in Google Scholar

[40] Nezam El-Din LA, El-Gendi A, Ismail N, Abed KA, Awad Ahmed I. J. Ind. Eng. Chem. 2015, 26, 259–264.10.1016/j.jiec.2014.11.037Suche in Google Scholar

[41] Abdel-Halim AM, Aly-Eldeen MA. Egyptian J. Aquatic Res. 2016, 42, 133–140.10.1016/j.ejar.2016.05.002Suche in Google Scholar

[42] Abdallah H, El-Gendi A, Shalaby MS, Amin A, El-Bayoumi M, Shaban AM. Desalination Water Treat. 2018, 116, 29–38.10.5004/dwt.2018.22306Suche in Google Scholar

[43] Lee C, Wei X, Kysar JW, Hone J. Science 2008, 321, 385–388.10.1126/science.1157996Suche in Google Scholar PubMed

[44] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science 2004, 306, 666–669.10.1126/science.1102896Suche in Google Scholar PubMed

[45] Cohen-Tanugi D, Grossman JC. Nano Lett. 2012, 12, 3602–3608.10.1021/nl3012853Suche in Google Scholar PubMed

[46] Vetrivel S, Sri Abirami Saraswathi M, Rana D, Nagendran A. Int. J. Biol. Macromol. 2018, 107, 1607–1612.10.1016/j.ijbiomac.2017.10.027Suche in Google Scholar PubMed

[47] Vetrivel S, Sri Abirami Saraswathi M, Rana D, Divya K, Nagendran A. Int. J. Biol. Macromol. 2018, 115, 540–546.10.1016/j.ijbiomac.2018.04.091Suche in Google Scholar PubMed

[48] Sri Abirami Saraswathi M, Rana D, Alwarappan S, Gowrishankar S, Kanimozhi P, Nagendran A. New J. Chem. 2019, http://dx.doi.org/10.1039/C8NJ04511A.10.1039/C8NJ04511ASuche in Google Scholar

[49] Abdel-Karim A, Leaper S, Alberto M, Vijayaraghavan A, Gorgojo P. Chem. Eng. J. 2018, 334, 789–799.10.1016/j.cej.2017.10.069Suche in Google Scholar

[50] Alberto M, Miguel Luque-Alled J, Iliut LGM, Prestat E, Newman L, Haigh SJ, Vijayaraghavan A, Budd PM, Gorgojo P. J. Membr. Sci. 2017, 526, 437–449.10.1016/j.memsci.2016.12.061Suche in Google Scholar

[51] Yamamoto K, Koge S, Gunji T, Kanezashi M, Tsuru T, Ohshita J. Desalination 2017, 404, 322–327.10.1016/j.desal.2016.11.017Suche in Google Scholar

[52] Mi B. Science 2014, 343, 740–742.10.1126/science.1250247Suche in Google Scholar PubMed

[53] Boukhvalov DW, Katsnelson MI, Son YW. Nano Lett. 2013, 13, 3930–3935.10.1021/nl4020292Suche in Google Scholar PubMed

[54] Joshi RK, Carbone P, Wang FC, Kravets VG, Su Y, Grigorieva IV, Wu HA, Geim AK, Nair RR. Science 2014, 343, 752–754.10.1126/science.1245711Suche in Google Scholar PubMed

Received: 2019-03-14
Accepted: 2019-08-06
Published Online: 2019-09-06
Published in Print: 2019-09-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0075/html
Button zum nach oben scrollen