Startseite Experimental and numerical determination of compressive mechanical properties of multi-walled carbon nanotube reinforced polymer
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Experimental and numerical determination of compressive mechanical properties of multi-walled carbon nanotube reinforced polymer

  • Kamran Alasvand Zarasvand und Hossein Golestanian EMAIL logo
Veröffentlicht/Copyright: 19. August 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, experimental and numerical methods were used to determine compressive mechanical properties of multi-walled carbon nanotube (MWCNT) reinforced epoxy. Standard samples with varying weight fractions of MWCNTs were prepared and were tested in compression. Nanocomposite modulus of elasticity, yield strength and compressive strength were determined experimentally. Experimental results show that incorporation of CNTs improves yield and compressive strengths of the epoxy resin to a large extent. Also, numerical simulation of nanocomposites was conducted in ABAQUS finite element (FE) software. In these simulations, the effects of the interface strength between individual nanotubes and between the outer nanotube and matrix were also investigated. Two different mechanisms were used to model these interfaces. In one set of the models, connector constraints were used as the interface. In the second set, an interface consisting of thin shells surrounding the nanotubes was used. The results of this investigation suggest that nanocomposite longitudinal modulus increases with increasing interface strength. Also, numerical results suggest that the connector model predicts values lower than the thin shell interphase model. Finally, experimental and numerical results were compared and a good correlation is observed between the results.

References

[1] Gkikas G, Barkoula NM, Paipetis AS. Compos. Part B 2012, 43, 2697–2705.10.1016/j.compositesb.2012.01.070Suche in Google Scholar

[2] Srivastava VK. Mater. Des. 2012, 39, 432–436.10.1016/j.matdes.2012.02.039Suche in Google Scholar

[3] Ajayan PM, Schadler LS, Giannaris C, Rubio A. Adv. Mater. 2000, 12, 750.10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6Suche in Google Scholar

[4] Lourie O, Wagner HD. Appl. Phys. Lett. 1998, 73, 3527.10.1063/1.122825Suche in Google Scholar

[5] Schadler LS, Giannaris SC, Ajayan PM. Appl. Phys. Lett. 1998, 73, 3842.10.1063/1.122911Suche in Google Scholar

[6] Bai JB, Allaoui A. Compos. Part A 2003, 34A, 689–694.10.1016/S1359-835X(03)00140-4Suche in Google Scholar

[7] Rahmanian S, Suraya AR, Shazed MA, Zahari R, Zainudin ES. Mater. Des. 2014, 60, 34–40.10.1016/j.matdes.2014.03.039Suche in Google Scholar

[8] Montazeri A, Javadpour J, Khavandi A, Tcharkhtchi A, Mohajeri A. Mater. Des. 2010, 31, 4202–4208.10.1016/j.matdes.2010.04.018Suche in Google Scholar

[9] Ayatollahi MR, Shadlou S, Shokrieh MM, Chitsazzadeh M. Polym. Test. 2011, 30, 548–556.10.1016/j.polymertesting.2011.04.008Suche in Google Scholar

[10] Xu LR, Bhamidipati V, Zhong WH, Li J, Lukehart CM. Compos. Mater. 2004, 38, 1563–1582.10.1177/0021998304043758Suche in Google Scholar

[11] Maa PC, Siddiqui NA, Marom G, Kim JK. Compos. Part A Rev. 2010, 41, 1345–1367.10.1016/j.compositesa.2010.07.003Suche in Google Scholar

[12] Montazeri A, Chitsazzadeh M. Mater. Des. 2014, 56, 500–508.10.1016/j.matdes.2013.11.013Suche in Google Scholar

[13] Chen ZK, Yang JP, Ni QQ, Fu SY, Huang YG. Polym. 2009, 50, 4753–4759.10.1016/j.polymer.2009.08.001Suche in Google Scholar

[14] Ghosh PK, Kumar K, Chaudhary N. Compos. Part B 2015, 77, 139–144.10.1016/j.compositesb.2015.03.028Suche in Google Scholar

[15] Joshi P, Upadhyay SH. Comput. Mater. Sci. 2014, 81, 332–338.10.1016/j.commatsci.2013.08.034Suche in Google Scholar

[16] Joshi P, Upadhyay SH. Comput. Mater. Sci. 2014, 87, 267–273.10.1016/j.commatsci.2014.02.029Suche in Google Scholar

[17] Giannopoulos GI, Georgantzinos SK, Anifantis NK. Compos. Part B 2010, 41, 594–601.10.1016/j.compositesb.2010.09.023Suche in Google Scholar

[18] Weidt D, Figiel L. Comput. Mater. Sci. 2014, 82, 298–309.10.1016/j.commatsci.2013.10.001Suche in Google Scholar

[19] Zuberi MJS, Esat V. Compos. Part B 2015, 71, 1–9.10.1016/j.compositesb.2014.11.020Suche in Google Scholar

[20] Shokrieh MM, Rafiee R. Compos. Struct. 2010, 92, 2415–2420.10.1016/j.compstruct.2010.02.018Suche in Google Scholar

[21] Weidt D, Figiel L. Compos. Sci. Technol. 2015, 115, 52–59.10.1016/j.compscitech.2015.04.018Suche in Google Scholar

[22] Ma P, Jiang G, Chen Q, Cong H, Nie X. Compos. Part B 2015, 69, 526–533.10.1016/j.compositesb.2014.09.038Suche in Google Scholar

[23] Li C, Chou T. Compos. Sci. Technol. 2006, 66, 2409–2414.10.1016/j.compscitech.2006.01.013Suche in Google Scholar

[24] Golestanian H, Hamedi M. NANO: Brief Reps. Rev. 2012, 7, 1250041.10.1142/S1793292012500415Suche in Google Scholar

[25] Golestanian H, Shojaie M. Comput. Mater. Sci. 2010, 50, 731–736.10.1016/j.commatsci.2010.10.003Suche in Google Scholar

[26] ASTM D695-10, West Conshohocken, PA: ASTM International, 2010. Available at: www.astm.org.Suche in Google Scholar

Received: 2016-3-16
Accepted: 2016-6-29
Published Online: 2016-8-19
Published in Print: 2017-5-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2016-0100/html
Button zum nach oben scrollen