Startseite Electrical conductivity of carbon nanotube/polypropylene composites prepared through microlayer extrusion technology
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Electrical conductivity of carbon nanotube/polypropylene composites prepared through microlayer extrusion technology

  • Changjin Li , Zhiwei Jiao , Liangzhao Xiong und Weimin Yang EMAIL logo
Veröffentlicht/Copyright: 26. Januar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The morphological distribution of carbon nanotubes (CNTs) in polymer matrix has a crucial impact on the performance of CNT-filled polymer composites. A novel microlayer extrusion technology used in the dispersion and orientation of CNTs was proposed, and polypropylene (PP)/multiwalled CNT (MWCNT) composites with different numbers of layers were prepared with it. The MWCNT dispersion was investigated by scanning electron microscopy and Raman mapping method, and the MWCNT orientation was quantified by Raman spectroscopy. The influences of the dispersion and orientation of MWCNTs on the electrical conductivity and crystallization behavior of the composites were investigated. The results showed that the anisotropic conducting properties of the multilayered composites varied distinguishably with the increase of layer numbers and rotation speed. Furthermore, the degree of crystallinity of PP increased when the layer number increased from 1 to 729. All of these results suggest that with the increase of the layer numbers and the rotation speed, the dispersion and orientation of MWCNTs in PP matrix improve greatly. Overall, we provide an efficient and practical approach to control the dispersion and orientation of CNT in polymer matrix, which has a promising application prospect in the field of plastic processing.

Award Identifier / Grant number: 21174015

Award Identifier / Grant number: 51603009

Funding statement: Funding: Fundamental Research Funds for the Central Universities, (Grant/Award Number: ‘YS1403’). National Natural Science Foundation of China (grant no. 21174015, 51603009).

Acknowledgments

This research was funded by the National Natural Science Foundation of China (grant no. 21174015, 51603009) and the Fundamental Research Funds for the Central Universities (grant nos. YS1403). The authors express their gratitude to Jiangsu Golden Material Technology Co., Ltd., for their generous support and use of their laboratory machines.

  1. Conflict of interest statement: The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

[1] Iijima S. Nature 1991, 354, 56–58.10.1038/354056a0Suche in Google Scholar

[2] Zhu D, Bin Y, Matsuo M. J. Polym. Sci. Pol. Phys. 2007, 49, 1037–1044.10.1002/polb.21115Suche in Google Scholar

[3] Cheng C. J. Polym. Eng. 2010, 30, 95–108.10.1592/phco.30.1.95Suche in Google Scholar

[4] Bonilla-Blancas Ε, Sanchez-Solis Α, Manero Ο. J. Polym. Eng. 2008, 28, 553–576.10.1515/POLYENG.2008.28.9.553Suche in Google Scholar

[5] Jawahar P, Kanny K, Balasubramanian M. J. Polym. Eng. 2009, 29, 563–580.10.1515/POLYENG.2009.29.8-9.563Suche in Google Scholar

[6] Kim BK, Seo JW, Jeong HM. J. Polym. Eng. 2009, 29, 27–38.10.1515/POLYENG.2009.29.1-3.27Suche in Google Scholar

[7] Ajayan PM, Schadler LS, Giannaris C, Rubio A. Adv. Mater. 2000, 12, 750–753.10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6Suche in Google Scholar

[8] Park C, Ounaies Z, Watson KA, Crooks RE, Smith J Jr, Lowther SE, Connell JW, Siochi EJ, Harrison JS, Clair TLS. Chem. Phys. Lett. 2002, 364, 303–308.10.1016/S0009-2614(02)01326-XSuche in Google Scholar

[9] Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Prog. Polym. Sci. 2010, 35, 357–401.10.1016/j.progpolymsci.2009.09.003Suche in Google Scholar

[10] Yang X, Li L, Shang S, Tao XM. J. Appl. Polym. Sci. 2011, 122, 1986–1992.10.1002/app.34072Suche in Google Scholar

[11] Yan X, Zhang X, Wen C, Ke W, Hong T, Qin Z, Du R, Qiang F. J. Appl. Polym. Sci. 2007, 104, 1880–1886.10.1002/app.25852Suche in Google Scholar

[12] Pötschke P, Brünig H, Janke A, Fischer D, Jehnichen D. Polymer 2005, 46, 10355–10363.10.1016/j.polymer.2005.07.106Suche in Google Scholar

[13] Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey KI. Chem. Phys. Lett. 2000, 330, 219–225.10.1016/S0009-2614(00)01013-7Suche in Google Scholar

[14] Fischer D, Pötschke P, Brünig H, Janke A. Macromol. Symp. 2005, 230, 167–172.10.1002/masy.200551156Suche in Google Scholar

[15] Li SN, Li B, Li ZM, Fu Q, Shen KZ. Polymer 2006, 47, 4497–4500.10.1016/j.polymer.2006.04.051Suche in Google Scholar

[16] Lin Y, Hiltner A, Baer E. Polymer 2010, 51, 4218–4224.10.1016/j.polymer.2010.06.059Suche in Google Scholar

[17] Xu S, Wen M, Li J, Guo S, Wang M, Du Q, Shen J, Zhang Y, Jiang S. Polymer 2008, 49, 4861–4870.10.1016/j.polymer.2008.08.056Suche in Google Scholar

[18] Lin Y, Hiltner A, Baer E. Polymer 2010, 51, 5807–5814.10.1016/j.polymer.2010.09.070Suche in Google Scholar

[19] Gupta M, Lin YJ, Deans T, Baer E, Hiltner A, Schiraldi DA. Macromolecules 2010, 43, 4230–4239.10.1021/ma100391uSuche in Google Scholar

[20] Wang H, Keum JK, Hiltner A, Baer E, Freeman B, Rozanski A. Science 2009, 323, 757–760.10.1126/science.1164601Suche in Google Scholar PubMed

[21] Langhe DS, Hiltner A, Baer E. Polymer 2011, 52, 5879–5889.10.1016/j.polymer.2011.10.018Suche in Google Scholar

[22] Langhe DS, Keum JK, Hiltner A, Baer E. J. Polym. Sci. Pol. Phys. 2011, 49, 159–171.10.1002/polb.22162Suche in Google Scholar

[23] Alferey T, Schrenk WJ. Science 1980, 208, 813–818.10.1126/science.208.4446.813Suche in Google Scholar PubMed

[24] Alferey T, Gurnee EF, Schrenk WJ. Polym. Eng. Sci. 1969, 9, 400–404.10.1002/pen.760090605Suche in Google Scholar

[25] Im J, Schrenk WJ. J. Plast. Film. Sheet. 1988, 4, 104–115.10.1177/875608798800400204Suche in Google Scholar

[26] Liu RYF, Bernal-Lara TE, Hiltner A, Baer E. Macromolecules 2005, 38, 4819–4827.10.1021/ma047292zSuche in Google Scholar

[27] Baer E, Hiltner A, Keith HD. Science 1987, 235, 1015–1022.10.1126/science.3823866Suche in Google Scholar

[28] Lee PC, Dooley J, Robacki J, Jenkins S, Wrisley R. J. Plast. Film. Sheet. 2013, 30, 234–247.10.1177/8756087913506728Suche in Google Scholar

[29] Lee PC, Dooley J. J. Plast. Film. Sheet. 2012, 29, 78–98.10.1177/8756087912450698Suche in Google Scholar

[30] Shen J, Li J, Guo S. Polymer 2012, 53, 2519–2523.10.1016/j.polymer.2012.04.004Suche in Google Scholar

[31] Velasco JI, Saja JAD, Martínez AB. J. Appl. Polym. Sci. 1996, 61, 125–132.10.1002/(SICI)1097-4628(19960705)61:1<125::AID-APP14>3.0.CO;2-6Suche in Google Scholar

[32] Liu X, Wu Q, Berglund LA, Fan J, Qi Z. Polymer 2001, 42, 8235–8239.10.1016/S0032-3861(01)00307-XSuche in Google Scholar

[33] Qiu W, Mai K, Zeng H. J. Appl. Polym. Sci. 2000, 77, 2974–2977.10.1002/1097-4628(20000923)77:13<2974::AID-APP22>3.0.CO;2-RSuche in Google Scholar

[34] Wu CM, Chen M, Karger-Kocsis J. Polym. Bull. 1998, 41, 239–245.10.1007/s002890050357Suche in Google Scholar

[35] Assouline E, Pohl S, Fulchiron R, Gérard J-F, Lustiger A, Wagner HD, Marom G. Polymer 2000, 41, 7843–7854.10.1016/S0032-3861(00)00113-0Suche in Google Scholar

[36] Campbell D, Qayyum MM. J. Polym. Sci. Polym. Phys. Ed. 1980, 18, 83–93.10.1002/pol.1980.180180107Suche in Google Scholar

[37] Jiang S, Qiao C, Tian S, Ji X, An L, Jiang B. Polymer 2001, 42, 5755–5761.10.1016/S0032-3861(01)00026-XSuche in Google Scholar

[38] Qiu F, Wang M, Hao YB, Guo SY. Compos. Part. A. 2014, 58, 7–15.10.1016/j.compositesa.2013.11.011Suche in Google Scholar

[39] Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH. Polymer 1999, 40, 5967–5971.10.1016/S0032-3861(99)00166-4Suche in Google Scholar

[40] Liu H, Shen Y, Song Y, Nan CW, Lin Y, Yang X. Adv. Mater. 2011, 23, 5104–5108.10.1002/adma.201102079Suche in Google Scholar PubMed

[41] Ji J, Sui G, Yu Y, Liu Y, Lin Y, Du Z, Ryu S, Yang X. J. Phys. Chem. C. 2009, 113, 4779–4785.10.1021/jp8077198Suche in Google Scholar

[42] Zhu Y, Du Z, Li H, Zhang C. Polym. Eng. Sci. 2011, 51, 1770–1779.10.1002/pen.21964Suche in Google Scholar

[43] Šašić S, Jiang JH, Sato H, Ozaki Y. Analyst 2003, 128, 1097–1103.10.1039/B303245KSuche in Google Scholar

[44] Nepal D, Balasubramanian S, Simonian AL, Davis VA. Nano. Lett. 2008, 8, 1896–1901.10.1021/nl080522tSuche in Google Scholar PubMed

[45] Deng H, Zhang R, Bilotti E, Loos J, Peijs T. J. Appl. Polym. Sci. 2009, 113, 742–751.10.1002/app.29624Suche in Google Scholar

[46] Shen J, Champagne MF, Gendron R, Guo S. Eur. Polym. J. 2012, 48, 930–939.10.1016/j.eurpolymj.2012.03.005Suche in Google Scholar

[47] Saujanya C, Radhakrishnan S. Polymer 2001, 42, 6723–6731.10.1016/S0032-3861(01)00140-9Suche in Google Scholar

[48] Marco C, Naffakh M, Gómez MA, Santoro G, Ellis G. Polym. Compos. 2011, 32, 324–333.10.1002/pc.21059Suche in Google Scholar

[49] Xie XL, Aloys K, Zhou XP, Zeng FD. J. Therm. Anal. Calorim. 2003, 74, 317–323.10.1023/A:1026362727368Suche in Google Scholar

Received: 2016-2-10
Accepted: 2016-11-20
Published Online: 2017-1-26
Published in Print: 2017-10-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2016-0040/pdf
Button zum nach oben scrollen