Abstract
Inorganic montmorillonite (MMT)/poly(vinylidene fluoride) nanocomposites were prepared by two methods: co-precipitation and solution casting. The effect of preparation methods and thermal treatment on crystalline phase was investigated by Fourier transform infrared spectroscopy and differential scanning calorimetry tests. The isothermal crystallization process was observed with polarized optical microscopy. It was found that the solution-casting method was more effective than the co-precipitation method in inducing the polar phase in the melt-isothermal crystallization process. The addition of inorganic MMT by the solution-casting method without further thermal treatment promoted the β-phase crystallization. The inorganic MMT significantly improved the γ phase of the solution-cast samples in the melt-recrystallization process. The degree of dispersion of inorganic MMT influenced the relative content of the polar phase and the crystallinity of the samples in the same crystallization conditions, i.e. the preparation method and the thermal treatment. The effect of dispersion on crystallization kinetics was also studied to verify the enhancement of finely dispersed nanolayer clusters on the γ phase.
Funding source: National Science Foundation
Award Identifier / Grant number: 21504091
Funding statement: This work was supported by the National Science Foundation for Young Scientists of China (grant no. 21504091).
Acknowledgments:
This work was supported by the National Science Foundation for Young Scientists of China (grant no. 21504091).
References
[1] Shah D, Maiti P, Gunn E, Schmidt DF, Jiang DD, Batt CA. Adv. Mater. 2004, 16, 1173–1177.10.1002/adma.200306355Suche in Google Scholar
[2] Hasegawa R, Takahashi Y, Chatani Y, Tadokoro H. Polym. J. 1972, 3, 600–610.10.1295/polymj.3.600Suche in Google Scholar
[3] He X, Yao K. Appl. Phys. Lett. 2006, 89, 112909.10.1063/1.2352799Suche in Google Scholar
[4] Ke K, Pötschke P, Jehnichen D, Fischer D, Voit B. Polymer 2014, 55, 611–619.10.1016/j.polymer.2013.12.014Suche in Google Scholar
[5] Rath SK, Dubey S, Kumar GS, Kumar S, Patra A, Bahadur J. J. Mater. Sci. 2014, 49, 103–113.10.1007/s10853-013-7681-2Suche in Google Scholar
[6] Jiang Z, Zheng G, Zhan K, Han Z, Yang J. J. Phys. D: Appl. Phys. 2015, 48, 245303.10.1088/0022-3727/48/24/245303Suche in Google Scholar
[7] El Achaby M, Arrakhiz F, Vaudreuil S, Essassi E, Qaiss A. Appl. Surf. Sci. 2012, 258, 7668–7677.10.1016/j.apsusc.2012.04.118Suche in Google Scholar
[8] Mandal D, Henkel K, Schmeißer D. Mater. Lett. 2012, 73, 123–125.10.1016/j.matlet.2011.11.117Suche in Google Scholar
[9] Li B, Xu C, Zheng J, Xu C. Sensors 2014, 14, 9889–9899.10.3390/s140609889Suche in Google Scholar PubMed PubMed Central
[10] Thakur P, Kool A, Bagchi B, Das S, Nandy P. Phys. Chem. Chem. Phys. 2015, 17, 1368–1378.10.1039/C4CP04006FSuche in Google Scholar PubMed
[11] Jia N, Xing Q, Liu X, Sun J, Xia G, Huang W. J. Colloid. Interf. Sci. 2015, 453, 169–176.10.1016/j.jcis.2015.05.002Suche in Google Scholar PubMed
[12] Ince-Gunduz BS, Alpern R, Amare D, Crawford J, Dolan B, Jones S. Polymer 2010, 51, 1485–1493.10.1016/j.polymer.2010.01.011Suche in Google Scholar
[13] Asai K, Okamoto M, Tashiro K. Polymer 2008, 49, 4298–4306.10.1016/j.polymer.2008.07.037Suche in Google Scholar
[14] Ramasundaram S, Yoon S, Kim KJ, Park C. J. Polym. Sci. B: Polym. Phys. 2008, 46, 2173–2187.10.1002/polb.21550Suche in Google Scholar
[15] Benabid F-Z, Rong L, Benachour D, Cagiao ME, Ponçot M, Zouai F. J. Polym. Eng. 2015, 35, 181–190.10.1515/polyeng-2014-0113Suche in Google Scholar
[16] Yang J, Wang J, Zhang Q, Chen F, Deng H, Wang K. Polymer 2011, 52, 4970–4978.10.1016/j.polymer.2011.08.051Suche in Google Scholar
[17] Lopes A, Costa C, Tavares C, Neves I, Lanceros-Mendez S. J. Phys. Chem. C 2011, 115, 18076–18082.10.1021/jp204513wSuche in Google Scholar
[18] Santos K, Bischoff E, Liberman S, Oviedo M, Mauler R. Ultrason. Sonochem. 2011, 18, 997–1001.10.1016/j.ultsonch.2011.03.011Suche in Google Scholar PubMed
[19] Gregorio Jr R, Cestari M. J. Polym. Sci. B: Polym. Phys. 1994, 32, 859–870.10.1002/polb.1994.090320509Suche in Google Scholar
[20] Lovinger AJ. Poly (vinylidene fluoride). In: Developments in Crystalline Polymers–1, Bassett E, Ed., Applied Science Publishers: London, 1982, pp. 197–273.10.1007/978-94-009-7343-5_5Suche in Google Scholar
[21] Kobayashi M, Tashiro K, Tadokoro H. Macromolecules 1975, 8, 158–171.10.1021/ma60044a013Suche in Google Scholar
[22] Martins P, Lopes A, Lanceros-Mendez S. Prog. Polym. Sci. 2014, 39, 683–706.10.1016/j.progpolymsci.2013.07.006Suche in Google Scholar
[23] Lam CK, Lau KT, Cheung HY, Ling HY. Mater. Lett. 2005, 59, 1369–1372.10.1016/j.matlet.2004.12.048Suche in Google Scholar
[24] He L, Xia G, Sun J, Zhao Q, Song R, Ma Z. J. Colloid. Interf. Sci. 2013, 393, 97–103.10.1016/j.jcis.2012.10.060Suche in Google Scholar PubMed
[25] Sharma M, Madras G, Bose S. Cryst. Growth. Des. 2015, 15, 3345–3355.10.1021/acs.cgd.5b00445Suche in Google Scholar
[26] Zhang Y, Jiang S, Yu Y, Xiong G, Zhang Q, Guang G. J. Appl. Polym. Sci. 2012, 123, 2595–2600.10.1002/app.34431Suche in Google Scholar
[27] Silva M, Sencadas V, Botelho G, Machado A, Rolo AG, Rocha JG. Mater. Chem. Phys. 2010, 122, 87–92.10.1016/j.matchemphys.2010.02.067Suche in Google Scholar
[28] Hu B, Hu N, Wu L, Liu F, Liu Y, Ning H. J. Polym. Eng.2015, 35, 451–461.10.1515/polyeng-2014-0239Suche in Google Scholar
[29] Lopes A, Ferreira JC, Costa C, Lanceros-Méndez S. Thermochim. Acta 2013,574, 19–25.10.1016/j.tca.2013.08.003Suche in Google Scholar
[30] Martins P, Costa CM, Benelmekki M, Botelho G, Lanceros-Mendez S. CrystEngComm 2012, 14, 2807–2811.10.1039/c2ce06654hSuche in Google Scholar
[31] Martins P, Caparros C, Gonçalves R, Martins P, Benelmekki M, Botelho G, Lanceros-Mendez S. J. Phys. Chem. C 2012, 116, 15790–15794.10.1021/jp3038768Suche in Google Scholar
[32] Lopes AC, Sonia AC, Manuel Fernando RP, Gabriela B, Lanceros-Mendez S. ChemPhysChem 2013, 14, 1926–1933.10.1002/cphc.201300174Suche in Google Scholar PubMed
[33] Mendes SF, Costa CM, Caparrós C, Sencadas V, Lanceros-Méndez S. J. Mater. Sci. 2012, 47, 1378–1388.10.1007/s10853-011-5916-7Suche in Google Scholar
[34] Su-Hsia L, Ruey-Shin J. J. Hazard. Mater. 2002, 92, 2002, 315–326.10.1016/S0304-3894(02)00026-2Suche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review
- Characterization of polymeric shape memory materials
- Original articles
- Reworkable layered silicate-epoxy nanocomposites: synthesis, thermomechanical properties and combustion behaviour
- Crystalline phase of inorganic montmorillonite/poly(vinylidene fluoride) nanocomposites: influence of dispersion of nanolayers
- Effects of epoxidized natural rubber as a compatibilizer on latex compounded natural rubber-clay nanocomposites
- Preparation and mechanical properties of poly(p-phenylene sulfide) nanofiber sheets obtained by CO2 laser supersonic multi-drawing
- Fabrication of mixed matrix poly(phenylene ether-ether sulfone)-based nanofiltration membrane modified by Fe3O4 nanoparticles for water desalination
- Tailoring PES membrane morphology and properties via selected preparation parameters
- Preparation and characterization of pure and copper-doped PVC films
- Study on preparation and properties of carbon nanotubes/hollow glass microspheres/epoxy syntactic foam
- Processing of polycaprolactone and hydroxyapatite to fabricate graded electrospun composites for tendon-bone interface regeneration
Artikel in diesem Heft
- Frontmatter
- Review
- Characterization of polymeric shape memory materials
- Original articles
- Reworkable layered silicate-epoxy nanocomposites: synthesis, thermomechanical properties and combustion behaviour
- Crystalline phase of inorganic montmorillonite/poly(vinylidene fluoride) nanocomposites: influence of dispersion of nanolayers
- Effects of epoxidized natural rubber as a compatibilizer on latex compounded natural rubber-clay nanocomposites
- Preparation and mechanical properties of poly(p-phenylene sulfide) nanofiber sheets obtained by CO2 laser supersonic multi-drawing
- Fabrication of mixed matrix poly(phenylene ether-ether sulfone)-based nanofiltration membrane modified by Fe3O4 nanoparticles for water desalination
- Tailoring PES membrane morphology and properties via selected preparation parameters
- Preparation and characterization of pure and copper-doped PVC films
- Study on preparation and properties of carbon nanotubes/hollow glass microspheres/epoxy syntactic foam
- Processing of polycaprolactone and hydroxyapatite to fabricate graded electrospun composites for tendon-bone interface regeneration