Startseite Preparation and characterization of pure and copper-doped PVC films
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation and characterization of pure and copper-doped PVC films

  • K. Bhagya Sree , Y. Madhava Kumar , N.O. Gopal und Ch. Ramu EMAIL logo
Veröffentlicht/Copyright: 7. April 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Pure and Cu2+-doped polyvinyl chloride (PVC) polymer films were prepared using the solution cast technique. Investigations were conducted using DSC, TGA, XRD, FT-IR, UV–Vis, SEM and EPR. Differential scanning calorimetry studies suggested that the Cu2+ samples have higher values of the glass transition (Tg) temperature, and thermo gravimetric studies show that weight loss of polymer film indicates the improved thermal stability of the polymer film. The features of the complexation of the polymer films were studied by X-ray diffraction. FT-IR spectra exhibits the bands in three regions, which are attributed to C–Cl, C–C and numerous CH groups of stretching and bending vibrations. The absorption spectra have been recorded in the wavelength range 200–900 nm. The absorption edge, direct bandgap, indirect bandgap and urbach energy have been evaluated. Film morphology was examined by scanning electron microscopy. XRD, DSC and SEM reveal the amorphous nature and surface morphology of polymer films, respectively. Electron paramagnetic resonance studies were used to calculate the number of spins and paramagnetic susceptibility as a function of dopant concentration, all the Cu2+-doped PVC samples exhibit signal with g values g=2.176 and g||=2.254. The observed variation in the EPR signal intensity is due to variation in the dopant concentration.

Keywords: DSC/TGA; EPR; PVC; SEM; XRD

Acknowledgments:

The authors thank Dr. Tushar Jana, Associate Professor, Department of Chemistry, for his constant encouragement and active cooperation to carry out the work. We also thank the Central University of Hyderabad for supporting this research.

References

[1] Gray FM, Solid Polymer Electrolytes: Fundamentals and Technological Applications, Wiley-VCH: New York, 1991, p. 1–30.Suche in Google Scholar

[2] Ahmad S, Ahmad S, Agnihotry AS. J. Power Sources 2005, 140, 151–156.10.1016/j.jpowsour.2004.08.002Suche in Google Scholar

[3] Ramesh S, Tai FY. Chaia JS. Spectrochimca Acta A 2008, 69, 670–675.10.1016/j.saa.2007.05.029Suche in Google Scholar

[4] Aouachria K, Belhaneche-Bensemra N. Polym. Degrad. Stab. 2006, 91, 504–511.10.1016/j.polymdegradstab.2005.01.054Suche in Google Scholar

[5] Azman H, Barry H. J. Mater. Proc. Technol. 2006, 172, 341–345.10.1016/j.jmatprotec.2005.07.015Suche in Google Scholar

[6] Guangming C. J. Appl. Polym. Sci. 2007, 106, 817–820.10.1002/app.26514Suche in Google Scholar

[7] Mohamed NA, Yassin AA, Khalil KD, Sabaa MW. Polym. Degred. Stab. 2000, 70, 5–10.10.1016/S0141-3910(00)00054-9Suche in Google Scholar

[8] Murphy, J. Plastic. Add. Comp. 1999, 1, 24–29.10.1177/1742271X9900700204Suche in Google Scholar

[9] Yang ZH, Shu WY, Long HZ, Li XH. Rare Earths 1999, 20, 60–62.Suche in Google Scholar

[10] Mathew CM, Kesavan K, Mumoorthi M, Rajendran S. J. Nanosci. Nano Technol. 2014, 2, 12–14.Suche in Google Scholar

[11] Alamgir M, Abraham KM. J. Electrochem. Soc. 1993, 140, L96–L97.10.1149/1.2221654Suche in Google Scholar

[12] Sukeshini AM, Nishimoto A, Watanabe M. Solid State Ionics 1996, 86–88, 385–393.10.1016/0167-2738(96)00156-7Suche in Google Scholar

[13] Rhoo HJ, Kim HT, Park JK, Hwang TS. Electrochim Acta 1997, 42, 1571–1579.10.1016/S0013-4686(96)00318-0Suche in Google Scholar

[14] Manuel SA, Thirunakaran R, Renganathan NG, Sundram V, Pitchumani S, Muniyandi N. J. Power Sources 1999, 82, 752–758.Suche in Google Scholar

[15] Ramesh S, Arof AK. Solid State Ionics 2000, 136–137, 1197–1200.10.1016/S0167-2738(00)00598-1Suche in Google Scholar

[16] Manuel SA, Prem Kumar T, Renganathan NG, Pitchumani S, Thirunkara R, Muniyandi N. J. Power Sources 2000, 89, 80–87.10.1016/S0378-7753(00)00379-7Suche in Google Scholar

[17] Ramesh S, Yahaya AH, Arof AK. Solid State Ionics, 2000, 152–153, 291–294.10.1016/S0167-2738(02)00311-9Suche in Google Scholar

[18] Subba Reddy Ch, Ham X, Zhu Q-Y, Mai L-Q, Chen W. Europ. Polym. J. 2006, 42, 3114–3120.10.1016/j.eurpolymj.2006.05.009Suche in Google Scholar

[19] Ramesh S, Arof AK. J. Power Sources 2001, 99, 41–47.10.1016/S0378-7753(00)00690-XSuche in Google Scholar

[20] Janaki Rami Reddy T, Achari VBS, Shrama AK, Narasimha Rao VVR. Ionics 2003, 13, 55–59.10.1007/s11581-007-0072-4Suche in Google Scholar

[21] Ahmad S, Bohidar HB, Ahmad S, Agnihotry SA. Polymer 2006, 47, 3583–3590.10.1016/j.polymer.2006.03.059Suche in Google Scholar

[22] Radhakrishna S, Arof AK, Polymeric Materials, Narosa Publishing House: India, 1998.Suche in Google Scholar

[23] Farces S. Nat. Sci. 2012, 4, 499–507.Suche in Google Scholar

[24] Mano V, Felisbersti MI, Matencio T, De Paoli MA. Polymer 1997, 37, 5165–5170.10.1016/0032-3861(96)00339-4Suche in Google Scholar

[25] Zain NF, Zainal N, Mohamed NS. Phys. Scr. 2015, 90, 1–7.10.1088/0031-8949/90/1/015702Suche in Google Scholar

[26] Bandra LRAK, Dissannayake MAKL, Mellander B-E, Electochem. Acta. 1998, 43, 1447–1451.10.1016/S0013-4686(97)10082-2Suche in Google Scholar

[27] Kulasekarpandian K, Jayanthi S, Muthukumar A, Arulsankar A, Sundaresan B. Int. J. Eng. Res. Develop. 2013, 5, 30–39.Suche in Google Scholar

[28] Hodge RM, Edward GH, Simon GP. Polymer 1996, 37, 1371–1376.10.1016/0032-3861(96)81134-7Suche in Google Scholar

[29] Mohamed NS, Zakira MZ, Ali AMM, Arof AK. J. Power Sources 1997, 66, 169–172.10.1016/S0378-7753(96)02541-4Suche in Google Scholar

[30] Carre C, Hamaide T, Guyot A, Mari C. Br. Polym. J. 1988, 20, 269–274.10.1002/pi.4980200318Suche in Google Scholar

[31] Rajendran S, Ramesh Prabhu M, Usha Rani M. Int. J. Electrochem. Sci. 2008, 3, 282–290.Suche in Google Scholar

[32] Reddeppa N, Sharma AK, Narasimha Rao VVR, Chen W Measurement 2014, 47, 33–41.10.1016/j.measurement.2013.08.047Suche in Google Scholar

[33] Rahman MYA, Ahmad A, Lee TK, Farina Y, Dahlan HM. Mater. Sci. Appl. 2011, 2, 818–826.Suche in Google Scholar

[34] Davis DS, Shalliday JS. Phys. Rev. 1960, 118, 1020–1022.10.1103/PhysRev.118.1020Suche in Google Scholar

[35] Abdelaziz M. J. App. Polym. Sci. 2008, 108, 1013–1020.10.1002/app.27320Suche in Google Scholar

[36] Thutupalli GM, Tomilin SG. J. Phys. D. App. Phys. 1976, 9, 1639–1646.10.1088/0022-3727/9/11/010Suche in Google Scholar

[37] Wang DH. Thin Solid Films 1996, 288, 254–255.10.1016/S0040-6090(96)08869-4Suche in Google Scholar

[38] Hemantha Kumar GN, Lakshmana Rao J, Gopal NO, Narasimhulu KV, Chandrasekhar RPS, Varada Rajulu A. Polymer 2004, 45, 5407–5415.10.1016/j.polymer.2004.05.068Suche in Google Scholar

[39] Urbach F. Phys. Rev. 1953, 92, 1324.10.1103/PhysRev.92.1324Suche in Google Scholar

[40] Dow JD, Redfield D. Phys. Rev. B 1972, 5, 594–610.10.1103/PhysRevB.5.594Suche in Google Scholar

[41] Davis EA, Mott NF. Philos. Mag. 1970, 22, 903–922.10.1080/14786437008221061Suche in Google Scholar

[42] Tong M, Chen H, Yang Z, Wen R. Int. J. Mol. Sci. 2011, 12, 1756–1766.10.3390/ijms12031756Suche in Google Scholar

[43] Rahman MYA, Ahmad A, Lee TK, Farina Y, Dahlan HM. Mater. Sci. App. 2011, 2, 817–825.10.4236/msa.2011.27111Suche in Google Scholar

[44] Dahlan HM, Harun AG, Mamat R. J. Sains Nuklear Malaysia 1999, 17, 1–13.Suche in Google Scholar

[45] Vickraman R, Aravindan V, Selvambikai M, Shankarasubramanian N. Ionics 2009, 15, 433–437.10.1007/s11581-008-0288-ySuche in Google Scholar

[46] Rao JL, Murali A, Rao ED. J. Non-Cryst. Solids 1996, 202, 215–221.10.1016/0022-3093(96)00199-8Suche in Google Scholar

Received: 2015-10-17
Accepted: 2016-3-3
Published Online: 2016-4-7
Published in Print: 2017-1-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2015-0446/html
Button zum nach oben scrollen