Effect of screw configuration on the dispersion of nanofillers in thermoset polymers
-
Gangadhar Angadi
, Hebbale NarayanaRao Narasimha Murthy, Sridhar Ramakrishna
, Salim Firdosh , Raghavendra Nagappa und Krishna Munishamaiah
Abstract
This paper deals with the study of screw configuration for dispersing nanofillers in thermoset polymers using an intermesh co-rotating twin screw extruder. The influence of kneading elements on the dispersion of nanoclay in epoxy was examined using 10 different screw configurations. Nanoclay was dispersed in epoxy at a barrel temperature of 5°C and a screw speed of 100 rpm. The combination of right hand kneading block and three/four lobed kneading blocks resulted in uniform dispersion of nanofiller. Positive staggered angle with right hand kneading elements yielded uniform dispersion of the nanofiller. Mechanical properties of epoxy nanocomposites processed with these configurations were better than those of neat epoxy. Excessive shear was associated with four lobed kneading block (4KB)/4KB configuration and hence degradation of polymers leading to shorter chains, whereas inadequate shearing in neutral kneading block (NKB)/NKB configuration led to agglomerations. These observations were evidenced by scanning electron microscopy (SEM) and X-ray diffraction (XRD).
References
[1] Ha SR, Ryu SH, Park SJ, Rhee KY. J. Mater. Sci. Eng. A. 2007, 448, 264–268.10.1016/j.msea.2006.10.052Suche in Google Scholar
[2] Asmussen E, Peutzfeldt A. Dent. Mater. 1998, 14, 51–56.10.1016/S0109-5641(98)00009-8Suche in Google Scholar
[3] Avila AF, Morais DTS. Compos. Struct. 2009, 87, 55–62.10.1016/j.compstruct.2007.12.009Suche in Google Scholar
[4] Sung RH, Kyong YR, Hee CK, Jeong TK. Colloids Surf. A 2008, 313–314, 112–115.10.1016/j.colsurfa.2007.04.082Suche in Google Scholar
[5] Salahuddin NA. Polym. Adv. Technol. 2004, 15, 251–259.10.1002/pat.382Suche in Google Scholar
[6] Jeffrey WG. Appl. Clay Sci. 1999, 15, 31–49.10.1016/S0169-1317(99)00019-8Suche in Google Scholar
[7] Achmad C, Mujtahid K, Saeed AZ, Mansour NAO. J. Thermoplast. Compos. 2014, 1–30, 2014.Suche in Google Scholar
[8] Sun ML, Sheng HW, Gwo GL, Trong MD. Eur. Polym. J. 2014, 52, 193–206.10.1016/j.eurpolymj.2013.12.012Suche in Google Scholar
[9] Lam C, Lau K, Cheung H, Ling H. Mater. Lett. 2005, 59, 1369–1372.10.1016/j.matlet.2004.12.048Suche in Google Scholar
[10] Zunjarrao SC, Sriraman R, Singh RP. J. Mater. Sci. 2006, 41, 2219–2228.10.1007/s10853-006-7179-2Suche in Google Scholar
[11] Asma Y, Jandro LA, Isaac MD. Scripta Mater. 2003, 49, 81–86.10.1016/S1359-6462(03)00173-8Suche in Google Scholar
[12] Velumurugan R, Mohan TP. J. Mater. Sci. 2004, 39, 7333–7339.10.1023/B:JMSC.0000048748.35490.9fSuche in Google Scholar
[13] Lu H, Liang G, Ma X, Zhang B, Chen X. Polym. Int. 2004, 53, 1545–1553.10.1002/pi.1596Suche in Google Scholar
[14] Jeena JK, Narasimhamurthy HN, Rai KS, Krishna M, Sreejith M. Polym.-Plast. Technol. Eng. 2010, 49, 1207–1213.10.1080/03602559.2010.496413Suche in Google Scholar
[15] Raghavendra N, Narasimhamurthy HN, Krishna M, Vishnumahesh KR, Sridhar R, Firdosh S, Angadi G, Sharma SC. Front. Mater. Sci. 2013, 7, 396–404.10.1007/s11706-013-0224-6Suche in Google Scholar
[16] Vishnumahesh KR, Narasimhamurthy HN, Kumaraswamy BE, Sridhar R, Krishna M, Sherigara BS. J. Compos. Mater. 2012, 47, 2163–2178.10.1177/0021998312454902Suche in Google Scholar
[17] Vishnumahesh KR, Narasimhamurthy HN, Kumara SBE, Sharma SC, Sridhar R, Niranjan P, Krishna M, Sherigara BS. Front. Mater. Sci. 2011, 5, 401–411.10.1007/s11706-011-0149-xSuche in Google Scholar
[18] Sridhar R, Narasimhamurthy HN, Niranjan P, Vishnumahesh KR, Krishna M. Compos. Part B 1012, 43, 599–608.10.1016/j.compositesb.2011.08.025Suche in Google Scholar
[19] Salim F, Narasimhamurthy HN, Ratna P, Gangadhar A, Raghavendra N, Krishna M. Compos. Part B 2015, 69, 443–451.10.1016/j.compositesb.2014.09.028Suche in Google Scholar
[20] Ratna D, Khan S, Barman S, Chakraborty BC. Open Macromol. J. 2012, 6, 59–67.Suche in Google Scholar
[21] Raghavendra N, Narasimhamurthy HN, Vishnu Mahesh KR, Sridhar R, Krishna M. J. Nanoeng. Nanosys. 2015, 229, 55–65.Suche in Google Scholar
[22] Veerabhadrayya H, Munna S, Dharmendra KS. Proce Engg. 2014, 97, 479–487.10.1016/j.proeng.2014.12.272Suche in Google Scholar
[23] Ha SR, Ryu SH, Park SJ, Rhee KY. Mater. Sci. Eng., A 2007, 448, 264–268.10.1016/j.msea.2006.10.052Suche in Google Scholar
[24] Wang Q, Song C, Lin W. J. Appl. Polym. Sci. 2003, 90, 511–517.10.1002/app.12689Suche in Google Scholar
[25] Virgínia SS, Otávio B, Martha FSL, Raquel SM. J. Non-Cryst. Solids 2014, 400, 58–66.10.1016/j.jnoncrysol.2014.05.003Suche in Google Scholar
[26] Zeng QH, Yu AB, Lu GQ, Paul DR. J. Nanosci. Nanotechnol. 2005, 5, 1574–1592.10.1166/jnn.2005.411Suche in Google Scholar PubMed
[27] Uddin MF, Sun CT. In 50th Materials Conference, American Institute of Aeronautics and Astronautics California: Palm Springs, 4–7 May 2009.Suche in Google Scholar
[28] Li H, Thompson MR, O’Donnell KP. Chem. Eng. Sci. 2014, 113, 11–21.10.1016/j.ces.2014.03.007Suche in Google Scholar
[29] Mario H, Gisela G, Philipp T, Lisa F, Heike PS. J. Food Eng. 2014, 124, 122–127.10.1016/j.jfoodeng.2013.10.006Suche in Google Scholar
[30] Tang H, Wrobel LC, Fan Z. Mater. Sci. Eng. 2003, 11, 771–790.10.1088/0965-0393/11/5/305Suche in Google Scholar
[31] Vercruysse J, Córdoba Díaz D, Peeters E, Fonteyne M, Delaet U, Van Assche I, Remon JP. Eur. J. Pharm. Biopharm. 2012, 82, 205–211.10.1016/j.ejpb.2012.05.010Suche in Google Scholar PubMed
[32] Tobias V, Bernd K, Petra P. Compos. Sci. Technol. 2010, 70, 2045–2055.10.1016/j.compscitech.2010.07.021Suche in Google Scholar
[33] Kompaniets LV, Kuptsov SA, Erina NA, Dubnikova IL, Zharov AA, Prut EV. Polym. Degrad. Stabil. 2004, 84, 61–68.10.1016/j.polymdegradstab.2003.09.013Suche in Google Scholar
[34] Vlachopoulos J, Strutt D. Mater. Sci. Technol. 2003, 19, 1161–1169.10.1179/026708303225004738Suche in Google Scholar
[35] Booy ML. Polym. Eng. Sci. 1978, 18, 973–984.10.1002/pen.760181212Suche in Google Scholar
[36] Potente H, Ansahl J, Klarholz B. Int. Polym. Proc. 1994, IX, 11–25.10.3139/217.940011Suche in Google Scholar
[37] Asif AA, Kyong YR, Soo JP, David H. Compos. Part B 2013, 45, 308–320.10.1016/j.compositesb.2012.04.012Suche in Google Scholar
[38] Messersmith PB, Giannelis EP. Chem. Mater. 1994, 6, 1719–1724.10.1021/cm00046a026Suche in Google Scholar
[39] Sun ML, Sheng HW, Gwo GL, Trong MD. Eur. Polym. J. 2014, 52, 193–206.10.1016/j.eurpolymj.2013.12.012Suche in Google Scholar
[40] Jawahar P, Gnanamoorthy R, Balasubramanian M. Wear 2006, 261, 835–840.10.1016/j.wear.2006.01.010Suche in Google Scholar
[41] Milos D. Tomi. Prog. Org. Coat. 2014, 77, 518–527.10.1016/j.porgcoat.2013.11.017Suche in Google Scholar
[42] Tongwu J. Compos. Sci. Technol. 2013, 79, 115–125.10.1016/j.compscitech.2013.02.018Suche in Google Scholar
[43] Jo BW, Park SK, Kim DK. Constr. Build. Mater. 2008, 22, 14–20.10.1016/j.conbuildmat.2007.02.009Suche in Google Scholar
[44] Carneiro OS, Caldeira G, Covas JA. J. Mater. Process. Tech. 1999, 92–93, 309–315.10.1016/S0924-0136(99)00168-5Suche in Google Scholar
[45] Sung CS, Jia LT. Compos. Part B 2014, 56, 691–697.10.1016/j.compositesb.2013.09.007Suche in Google Scholar
[46] Zhu YD, Allen GC, Jones PG, Adams JM, Gittins DI, Heard PJ, Skuse DR. Compos. Part A 2014, 60, 38–43.10.1016/j.compositesa.2014.01.012Suche in Google Scholar
[47] Shafi UK, Arshad M, Rizwan H, Jang KK. Compos. Sci. Technol. 2010, 70, 2077–2085.10.1016/j.compscitech.2010.08.004Suche in Google Scholar
[48] Abdul KHPS, Fizree HM, Bhat AH, Jawaid M, Abdullah CK. Compos. Part B 2013, 53, 324–333.10.1016/j.compositesb.2013.04.013Suche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original articles
- 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering
- Studies on the effects of 4,4′-dihydroxyphenyl on crystallization and melting behavior of poly (butylene terephthalate)
- Effect of the particulate morphology of resin on the gelation process of PVC plastisols
- Effect of aluminum nitride concentration on different physical properties of low density polyethylene based nanocomposites
- Application of polyurethane membrane with surface modified ZSM-5 for pervaporation of phenol/water mixture
- Synergistic effects of hybridization of carbon black and carbon nanotubes on the mechanical properties and thermal conductivity of a rubber blend system
- Electrical conductivity of carbon nanotube/polypropylene composites prepared through microlayer extrusion technology
- Mechanical performance and electromagnetic shielding effectiveness of composites based on Ag-plating cellulose micro-nano fibers and epoxy
- Effect of screw configuration on the dispersion of nanofillers in thermoset polymers
- Study of a novel co-rotating non-twin screw extruder in processing flame retardant polymer materials
- Thermal influences in the star-pre-distributor of a spiral mandrel die
Artikel in diesem Heft
- Frontmatter
- Original articles
- 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering
- Studies on the effects of 4,4′-dihydroxyphenyl on crystallization and melting behavior of poly (butylene terephthalate)
- Effect of the particulate morphology of resin on the gelation process of PVC plastisols
- Effect of aluminum nitride concentration on different physical properties of low density polyethylene based nanocomposites
- Application of polyurethane membrane with surface modified ZSM-5 for pervaporation of phenol/water mixture
- Synergistic effects of hybridization of carbon black and carbon nanotubes on the mechanical properties and thermal conductivity of a rubber blend system
- Electrical conductivity of carbon nanotube/polypropylene composites prepared through microlayer extrusion technology
- Mechanical performance and electromagnetic shielding effectiveness of composites based on Ag-plating cellulose micro-nano fibers and epoxy
- Effect of screw configuration on the dispersion of nanofillers in thermoset polymers
- Study of a novel co-rotating non-twin screw extruder in processing flame retardant polymer materials
- Thermal influences in the star-pre-distributor of a spiral mandrel die